FOCUSED TIERED ENVIRONMENTAL IMPACT REPORT

CREATIVE ARTS & HOLLOWAY MIXED-USE PROJECT

SCH NO. 2016072013

Prepared for: SAN FRANCISCO STATE UNIVERSITY
1600 Holloway Avenue, San Francisco, California 94131

Prepared by
DUDEK
725 Front Street, Suite 400
Santa Cruz, California 95060

MARCH 2017
FINAL
Focused Tiered Environmental Impact Report
Creative Arts & Holloway Mixed-Use Project

SCH No. 2016072013

Prepared for:
San Francisco State University
1600 Holloway Avenue
San Francisco, California 94131
Contact: Wendy Bloom

Prepared by:
DUDEK
725 Front Street, Suite 400
Santa Cruz, California 95060
Contact: Ann Sansevero

MARCH 2017
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRONYMS AND ABBREVIATIONS</td>
<td>ACR-1</td>
</tr>
<tr>
<td>1 SUMMARY</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Campus Master Plan background</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3 Tiering to the CMP EIR</td>
<td>1-1</td>
</tr>
<tr>
<td>1.4 Project Overview</td>
<td>1-2</td>
</tr>
<tr>
<td>1.4.1 Project Location</td>
<td>1-2</td>
</tr>
<tr>
<td>1.4.2 The Project Objectives</td>
<td>1-2</td>
</tr>
<tr>
<td>1.4.3 Project Summary</td>
<td>1-3</td>
</tr>
<tr>
<td>1.5 Impact Summary</td>
<td>1-4</td>
</tr>
<tr>
<td>1.6 Alternatives to the Project</td>
<td>1-17</td>
</tr>
<tr>
<td>1.7 Areas of Known Controversy</td>
<td>1-18</td>
</tr>
<tr>
<td>1.8 Topics Not Carried Forward for Further Analysis</td>
<td>1-19</td>
</tr>
<tr>
<td>1.9 References</td>
<td>1-19</td>
</tr>
<tr>
<td>2 INTRODUCTION</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Tiering to CMP EIR</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Scope and Purpose of the EIR</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3 Environmental Review and Approval Process</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.1 Scoping</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.2 Public Review of Draft EIR</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.3 Final EIR/Project Approval</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.4 Adoption of Mitigation Monitoring & Reporting Program</td>
<td>2-4</td>
</tr>
<tr>
<td>2.4 Organization of this EIR</td>
<td>2-5</td>
</tr>
<tr>
<td>2.5 References</td>
<td>2-6</td>
</tr>
<tr>
<td>3 PROJECT DESCRIPTION</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Project Overview</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Project Location and Setting</td>
<td>3-1</td>
</tr>
<tr>
<td>3.3 Project Background</td>
<td>3-2</td>
</tr>
<tr>
<td>3.3.1 CMP Building Program and Master Plan Map</td>
<td>3-2</td>
</tr>
<tr>
<td>3.3.2 CMP Population Growth</td>
<td>3-3</td>
</tr>
<tr>
<td>3.4 Project Objectives</td>
<td>3-4</td>
</tr>
<tr>
<td>3.4.1 Campus Master Plan Objectives</td>
<td>3-4</td>
</tr>
<tr>
<td>3.4.2 Project-Specific Objectives</td>
<td>3-6</td>
</tr>
<tr>
<td>3.5 Project Components</td>
<td>3-7</td>
</tr>
<tr>
<td>3.5.1 Housing</td>
<td>3-8</td>
</tr>
</tbody>
</table>
Table of Contents

3.5.2 Retail and Student Support Services .. 3-9
3.5.3 Creative Arts Replacement Building and Concert Hall 3-9
3.5.4 Design Guidelines ... 3-11
3.5.5 Transportation Improvements ... 3-13
3.5.6 Utilities and Energy Use ... 3-16
3.5.7 Landscaping ... 3-18
3.5.8 CMP EIR Mitigation Monitoring & Reporting Program 3-18
3.6 Demolition and Construction ... 3-19
3.7 Project Approvals ... 3-20
3.8 References ... 3-21

4 ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION MEASURES. 4.0-1

4.0 Introduction ... 4.0-1
 4.0.1 Tiering ... 4.0-1
 4.0.2 Definition of Baseline ... 4.0-2
 4.0.3 Definition of the Study Area ... 4.0-2
 4.0.4 Basis of Impact Analysis ... 4.0-2
 4.0.5 Year of Impact Analysis .. 4.0-3
 4.0.6 Cumulative Impacts ... 4.0-3
 4.0.7 References ... 4.0-4

4.1 Aesthetics ... 4.1-1
 4.1.1 Environmental Setting .. 4.1-1
 4.1.2 Impacts and Mitigation Measures .. 4.1-8
 4.1.3 References ... 4.1-18

4.2 Air Quality ... 4.2-1
 4.2.1 Environmental Setting .. 4.2-1
 4.2.2 Impacts and Mitigation Measures .. 4.2-11
 4.2.3 References ... 4.2-30

4.3 Greenhouse Gas Emissions ... 4.3-1
 4.3.1 Environmental Setting .. 4.3-1
 4.3.2 Impacts and Mitigation Measures .. 4.3-20
 4.3.3 References ... 4.3-34

4.4 Historic Resources ... 4.4-1
 4.4.1 Environmental Setting .. 4.4-2
 4.4.2 Impacts and Mitigation Measures .. 4.4-15
 4.4.3 References ... 4.4-27

4.5 Transportation .. 4.5-1
 4.5.1 Environmental Setting .. 4.5-2
 4.5.2 Impacts and Mitigation Measures .. 4.5-10
 4.5.3 References ... 4.5-33
5 OTHER CEQA CONSIDERATIONS ... 5-1
 5.1 Significant and Unavoidable Impacts... 5-1
 5.1.1 Significant and Unavoidable Impacts of CMP................................. 5-1
 5.1.2 New Significant and Unavoidable Impacts of Project 5-2
 5.2 Significant Irreversible Environmental Changes............................... 5-3
 5.3 Growth Inducing Impacts ... 5-4

6 ALTERNATIVES ... 6-1
 6.1 Introduction .. 6-1
 6.2 Project Objectives .. 6-2
 6.3 Significant Impacts of Project ... 6-2
 6.3.1 Significant and Unavoidable Impacts of CMP 6-2
 6.3.2 New Significant and Unavoidable Impacts of Project 6-3
 6.3.3 Other Impacts of Project ... 6-4
 6.4 Campus Master Plan Alternatives.. 6-5
 6.5 Project Alternatives ... 6-6
 6.5.1 Alternatives Considered but Eliminated 6-7
 6.5.2 Alternatives Evaluated in Detail .. 6-7
 6.6 Environmentally Superior Alternative ... 6-21
 6.7 References ... 6-33

7 RESPONSE TO COMMENTS .. 7-1
 7.1 Introduction .. 7-1
 7.2 Responses to Comments .. 7-1
 7.3 References ... 7-67

8 LIST OF PREPARERS .. 8-1
 8.1 Lead Agency .. 8-1
 8.2 San Francisco State University ... 8-1
 8.3 CEQA Consultant Team ... 8-2

APPENDICES

A Notice of Preparation & Revised Tiered Initial Study
B Comment Letters Received During Scoping
C Air Quality and Greenhouse Gas Emissions Calculations
D Historic Resources Technical Report
E Transportation Memorandum
F Mitigation Monitoring and Reporting Program
FIGURES

3-1 Regional Location.. 3-23
3-2 Project Location.. 3-25
3-3 Project Site Location.. 3-27
3-4 Existing Master Plan Map.. 3-29
3-5 Proposed Master Plan Map.. 3-31
3-6 Holloway Student Housing/Mixed-Use Site Plan (Block 6) .. 3-33
3-7 Holloway Student Housing/Mixed-Use Typical Housing Floor (Block 6) 3-35
3-8 Conceptual Massing for Holloway Mixed-Use Building.. 3-37
3-9 Creative Arts Site Plan (Block 1).. 3-39
3-10 Conceptual Massing for Creative Arts Building... 3-41
4.1-1 View Looking West from Brooks Park.. 4.1-21
4.4-1 Eligible Parkmerced Historic District Boundary.. 4.4-29
4.4-2 San Francisco State Blocks Associated with Eligible Parkmerced
 Historic District.. 4.4-31
4.4-3 Photographs of Block 1... 4.4-33
4.4-4 Photographs of Block 2... 4.4-35
4.4-5 Photographs of Block 5... 4.4-37
4.4-6 Photographs of Block 6... 4.4-39
4.4-7 Photographs of Block 41... 4.4-41
4.4-8 Photographs of Block 42 ... 4.4-43
4.4-9 Eligible Parkmerced Remnant Historic District Boundary with Future
 Buildout of Parkmerced Project .. 4.4-45
4.5-1 Project Sites and Existing Bicycle and Transit Network.. 4.5-35
6-1 Partial Reuse/Preservation Alternative.. 6-35
6-2 Alternative Site Locations.. 6-37

TABLES

1-1 Project Summary .. 1-4
1-2 Summary of Project Impacts ... 1-6
1-3 Characteristics of Alternatives .. 1-17
3-1 SF State Campus Population (Headcount) Since CMP EIR Base Year 3-3
3-2 Project Summary .. 3-8
3-3 Project Approvals .. 3-20
4.2-1 State and Federal Ambient Air Quality Standards and Attainment Status 4.2-4
4.2-2 Local Ambient Air Quality Data – Arkansas Street Station .. 4.2-8
4.2-3 2014 Annual Average Ambient Concentrations of Carcinogenic Toxic Air
 Contaminants and Health Risk – Arkansas Street Station.. 4.2-10
<table>
<thead>
<tr>
<th>4.2.4</th>
<th>Thresholds of Significance</th>
<th>4.2-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.5</td>
<td>Construction Scenario Assumptions</td>
<td>4.2-14</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Average Daily Construction Emissions</td>
<td>4.2-20</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Annual Unmitigated Operational Emissions</td>
<td>4.2-21</td>
</tr>
<tr>
<td>4.3.1</td>
<td>GHG Emissions Sources in California</td>
<td>4.3-5</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Estimated Annual Construction GHG Emissions</td>
<td>4.3-27</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Estimated Annual Operational GHG Emissions</td>
<td>4.3-28</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Project Consistency with Scoping Plan GHG Emission Reduction Strategies</td>
<td>4.3-29</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Original Parkmerced Blocks on SF State Campus</td>
<td>4.4-3</td>
</tr>
<tr>
<td>4.5.1</td>
<td>PM Peak-Hour Student Housing Trip Generation</td>
<td>4.5-14</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Event-Day PM Peak-Hour Trip Generation due to New Concert Hall Only</td>
<td>4.5-16</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Total PM Net New Peak-Hour Project Trip Generation – Typical Non-Event Day</td>
<td>4.5-17</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Total PM Net New Peak-Hour Project Trip Generation – Event Day Only</td>
<td>4.5-17</td>
</tr>
<tr>
<td>4.5.5</td>
<td>SF State Campus PM Peak-Hour Travel Demand 2007–2016</td>
<td>4.5-18</td>
</tr>
<tr>
<td>4.5.6</td>
<td>PM Peak-Hour CMP Trip Envelope Adjustments and Project Trip Generation</td>
<td>4.5-19</td>
</tr>
<tr>
<td>4.5.7</td>
<td>PM Peak-Hour Muni Downtown Screenlines – Southwest Screenline I</td>
<td>4.5-28</td>
</tr>
<tr>
<td>6.1</td>
<td>Characteristics of Alternatives</td>
<td>6-8</td>
</tr>
<tr>
<td>6.2</td>
<td>Ability to Meet Project Objectives Comparison</td>
<td>6-23</td>
</tr>
<tr>
<td>6.3</td>
<td>Alternatives Impact Comparison</td>
<td>6-26</td>
</tr>
</tbody>
</table>
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym/Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Assembly Bill</td>
</tr>
<tr>
<td>ABAG</td>
<td>Association of Bay Area Governments</td>
</tr>
<tr>
<td>ACM</td>
<td>asbestos-containing material</td>
</tr>
<tr>
<td>BAAQMD</td>
<td>Bay Area Air Quality Management District</td>
</tr>
<tr>
<td>BECA</td>
<td>Department of Broadcast & Electronic Communication Arts</td>
</tr>
<tr>
<td>BMP</td>
<td>best management practice</td>
</tr>
<tr>
<td>CAAQS</td>
<td>California Ambient Air Quality Standards</td>
</tr>
<tr>
<td>CalEEMod</td>
<td>California Emissions Estimator Model</td>
</tr>
<tr>
<td>CAP</td>
<td>Climate Action Plan</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>City</td>
<td>City and County of San Francisco</td>
</tr>
<tr>
<td>CMP</td>
<td>Campus Master Plan</td>
</tr>
<tr>
<td>CNRA</td>
<td>California Natural Resources Agency</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CPUC</td>
<td>California Public Utilities Commission</td>
</tr>
<tr>
<td>CSU</td>
<td>California State University</td>
</tr>
<tr>
<td>DMP</td>
<td>diesel particulate matter</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>FTE</td>
<td>full-time equivalent</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GSF</td>
<td>gross square feet</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>HABS</td>
<td>Historic American Building Survey</td>
</tr>
<tr>
<td>HAER</td>
<td>Historic American Engineering Record</td>
</tr>
<tr>
<td>HAP</td>
<td>Hazardous Air Pollutant</td>
</tr>
<tr>
<td>HCFC</td>
<td>hydrochlorofluorocarbon</td>
</tr>
<tr>
<td>HFC</td>
<td>hydrofluorocarbon</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IS</td>
<td>Initial Study</td>
</tr>
<tr>
<td>LCFSS</td>
<td>Low Carbon Fuel Standard</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>LOS</td>
<td>level of service</td>
</tr>
<tr>
<td>MMT</td>
<td>million metric tons</td>
</tr>
<tr>
<td>mph</td>
<td>miles per hour</td>
</tr>
<tr>
<td>MTA</td>
<td>San Francisco Municipal Transportation Agency</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NHTSA</td>
<td>National Highway Traffic Safety Administration</td>
</tr>
<tr>
<td>NO₂</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>Acronym/Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>NOP</td>
<td>Notice of Preparation</td>
</tr>
<tr>
<td>NO<sub>x</sub></td>
<td>oxides of nitrogen</td>
</tr>
<tr>
<td>O<sub>3</sub></td>
<td>ozone</td>
</tr>
<tr>
<td>PFC</td>
<td>perfluorocarbon</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>coarse particulate matter</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>fine particulate matter</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>ROG</td>
<td>reactive organic gas</td>
</tr>
<tr>
<td>RPS</td>
<td>Renewable Portfolio Standard</td>
</tr>
<tr>
<td>SCS</td>
<td>Sustainable Communities Strategy</td>
</tr>
<tr>
<td>SFBAAB</td>
<td>San Francisco Bay Area Air Basin</td>
</tr>
<tr>
<td>SF State</td>
<td>San Francisco State University</td>
</tr>
<tr>
<td>SFCTA</td>
<td>San Francisco County Transportation Authority</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>TAC</td>
<td>toxic air contaminant</td>
</tr>
<tr>
<td>TDM</td>
<td>transportation demand management</td>
</tr>
<tr>
<td>Trustees of the California State University</td>
<td>Board of Trustees of the California State University</td>
</tr>
<tr>
<td>μg/m<sup>3</sup></td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>UPN</td>
<td>University Park North</td>
</tr>
<tr>
<td>UPS</td>
<td>University Park South</td>
</tr>
</tbody>
</table>
CHAPTER 1
SUMMARY

1.1 INTRODUCTION

This Focused Tiered Final Environmental Impact Report (EIR) evaluates the potential environmental impacts of the San Francisco State University (SF State) Creative Arts & Holloway Mixed-Use Project (Project), which would involve construction of the Creative Arts replacement building; an associated concert hall; and a mixed-use development including student housing, neighborhood-serving retail, student support services. Transportation and parking improvements, utility connections, stormwater improvements, landscaping and lighting improvements are also included in the Project. This chapter highlights the major areas of importance in the environmental analysis for the Project, as required by Section 15123 of the California Environmental Quality Act (CEQA) Guidelines. It also provides a brief description of the Campus Master Plan (CMP) background, tiering to the 2007 CMP EIR, Project overview, Project impact summary, alternatives to the Project, areas of controversy known to SF State, and topics not carried forward for detailed analysis in this EIR.

1.2 CAMPUS MASTER PLAN BACKGROUND

The CMP, adopted by the Board of Trustees of the California State University (Trustees of the California State University) in 2007, addresses all aspects of future physical development and land use on the campus to accommodate the enrollment ceiling of 25,000 full-time equivalent (FTE) students (SF State 2007a). The CMP provides a comprehensive framework for the physical development of the SF State campus through 2020. It addresses the acquisition of property, older facilities, changing student demographics, and the need for additional academic building space and other support space to accommodate the anticipated growth in enrollment. To accommodate the projected growth in enrollment and academic activities, the adopted CMP accommodates a building program that envisions development of 0.9 million gross square feet (GSF) of new and replacement non-residential building space on campus, and development or conversion of approximately 1,198 additional units of housing on campus for faculty, staff, and students. The existing adopted CMP includes a land use map and urban design plan map that locate major uses and buildings to guide the siting of future campus facilities. Most of the growth in facilities would occur through demolition and replacement of existing buildings, as a number of existing buildings are at or beyond their useful life.

1.3 TIERING TO THE CMP EIR

As the CEQA lead agency, the Trustees of the California State University certified the SF State CMP EIR (SCH No. 2006102050) in 2007 (SF State 2007b). The Project conforms to the CMP building program and, therefore, the CEQA analysis for the Project is tiered to the 2007 CMP EIR.
SF State prepared a Notice of Preparation (NOP) and issued a Tiered Initial Study (Tiered IS) on July 6, 2016 (Appendix A) that was tiered to the 2007 CMP EIR. The Tiered IS evaluated potential environmental effects of the Project, identified the issues that were adequately addressed in the 2007 CMP EIR, and identified the issues that would require further analysis. Based on the NOP/Tiered IS and the results of comments received during the scoping process, SF State determined that a Focused Tiered EIR is the appropriate CEQA document to evaluate potential impacts related to aesthetics, air quality, greenhouse gas emissions, historical resources, and transportation.

The 2007 CMP EIR is incorporated by reference and referred to throughout this EIR. The 2007 CMP EIR and related documents (e.g., Board of Trustees Approval, Mitigation Monitoring and Reporting Program, Findings of Fact, Notice of Determination) are available at http://cpdc.sfsu.edu/plan. Additional updated and/or site-specific information is also incorporated throughout this EIR.

1.4 PROJECT OVERVIEW

1.4.1 Project Location

The Project is on the existing 144-acre SF State campus located in the southwestern corner of the City and County of San Francisco, in California. The approximately 3.6-acre Project site is located in the south campus, with one parcel (Block 6) on the south side of Holloway Avenue between Cardenas and Varela Avenues, and one parcel (Block 1), referred to as the Tapia Triangle, bounded by Tapia Drive, Holloway Avenue, and Font Boulevard. The Project site is part of University Park South, which was purchased by SF State between 2000 and 2005 and includes a portion of the original Parkmerced development, which extends beyond the campus boundaries to the south.

1.4.2 The Project Objectives

CEQA indicates that the statement of a project’s objectives should be clearly written to define the underlying purpose of a project in order to permit development of a reasonable range of alternatives and aid the lead agency in making findings when considering a project for approval. The Project objectives below are drawn from the CMP (SF State 2007a):

1. Replace significant portions of the existing Creative Arts building, which has various deficiencies and no longer supports the academic program, and construct a new concert hall with recording and broadcast capability to provide hands-on learning for BECA [Broadcast & Electronic Communication Arts] students and support SF State and community programs.

2. Reinforce the academic core and extend it westward to create a contiguous, uninterrupted academic core. The Creative Arts replacement building and concert hall
would occupy a pivotal location at Holloway Avenue and Font Boulevard, in proximity to residential mixed-use development and adjacent to College of Liberal and Creative Arts facilities to provide for programmatic collaboration.

3. Position semi-public uses, such as the concert hall, at the corners or edges of campus, creating icons that redefine SF State's external identity and engage the larger community.

4. Provide for the most efficient and effective use of the West Campus Green and the Tapia Triangle for planned future Creative Arts programs.

5. Provide new on-campus student housing to aid in recruitment and retention of students and to provide close-in housing that enables students to walk to school, thereby reducing commute trips to campus and associated greenhouse gas (GHG) emissions.

6. Begin to integrate and make efficient use of more recently acquired residential properties located along the southern edge of the campus.

7. Locate new student housing, neighborhood retail, and support services in proximity to the existing Muni M line and bus lines and to the future planned underground Muni M line and station and to planned 19th Avenue bicycle and pedestrian facilities. Additionally, locate the above uses in immediate proximity to the academic core of the campus, where pedestrian access to the core is readily available.

8. Locate higher-density student housing with ground-floor neighborhood retail and services along Holloway Avenue to redefine Holloway Avenue as a “college main street.”

9. Ensure that new construction achieves LEED (Leadership in Energy and Environmental Design) Gold or equivalent performance and energy efficiency beyond California Energy Commission Title 24 requirements. LEED Platinum certification (or an equivalent rating under WELL or another green building rating system) and ZNE (zero net energy) should be targeted, and the Project should meet other CMP and Climate Action Plan (SF State 2010) sustainability objectives.

1.4.3 Project Summary

The Project would include construction of new housing, neighborhood-serving retail, and student support services on the south side of Holloway Avenue, and construction of the Creative Arts replacement building and concert hall on the north side of the Holloway Avenue/Font Boulevard intersection. The Project would also include preparation and implementation of design guidelines, transportation and parking improvements, utility connections, storm drainage improvements, landscaping, lighting, and the implementation of applicable CMP mitigation measures adopted as part of the CMP Mitigation Monitoring and Reporting Program. A revision to the existing Master Plan map would be required to allow for the proposed uses on the identified sites. All key elements of the Project are summarized in Table 1-1.
Table 1-1
Project Summary

<table>
<thead>
<tr>
<th>Project Element</th>
<th>Existing Project Site Conditions</th>
<th>Proposed Project Site Conditions</th>
<th>Net Change on Project Site</th>
<th>Campus-wide Development Allowed Under 2007 CMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student housing (Block 6)</td>
<td>173 beds (Blocks 1 & 6) 7 units (Block 1) (^1)</td>
<td>550 beds</td>
<td>355 beds</td>
<td>1,198 units (^2) (approximately 2,995 beds)</td>
</tr>
<tr>
<td>Neighborhood-serving retail/student support services (Block 6)</td>
<td>None</td>
<td>33,000 (75,000) gross square feet (GSF)</td>
<td>(33,000\ (75,000) GSF</td>
<td>CMP calls for neighborhood retail on Holloway Avenue, but specific square footage or location on Holloway Avenue is not identified.</td>
</tr>
<tr>
<td>Parking facilities</td>
<td>53 auto spaces (^3) 9 motorcycle spaces (^3)</td>
<td>72 (20) parking spaces</td>
<td>0 parking spaces (^4)</td>
<td>No net increase in parking</td>
</tr>
<tr>
<td>Creative Arts replacement building (Block 1)</td>
<td>None</td>
<td>75,000 (76,350) GSF</td>
<td>(75,000\ (76,350) GSF</td>
<td>133,500 GSF Creative Arts 149,000 GSF Classroom/Faculty Offices (^5)</td>
</tr>
<tr>
<td>Concert hall (Block 1)</td>
<td>None</td>
<td>60,000 GSF 800 seats</td>
<td>(60,000\ (800) seats</td>
<td>Square footage included in Creative Arts space above</td>
</tr>
</tbody>
</table>

Source: Data compiled by SF State in 2016.

\(^1\) The seven units are occupied by approximately 3.1 people per unit which is equivalent to 22 beds.

\(^2\) CMP EIR Table 3-3 (Final EIR, Chapter 3, Changes to the Draft EIR).

\(^3\) Parking located on Tapia Drive.

\(^4\) Parking would be removed elsewhere on campus to provide for no net increase in parking with the Project.

\(^5\) \(22,000\ \(11,000\) GSF of the total space would be for general classroom space.

\(^6\) CMP EIR Table 3-2 (Final EIR, Chapter 3, Changes to the Draft EIR).

1.5 IMPACT SUMMARY

Table 1-2 provides a complete list of the conclusions from the analyses of all potential Project impacts, which are related to aesthetics, air quality, greenhouse gas emissions, historic resources and transportation. All other environmental topics were adequately addressed in the 2007 CMP EIR and Tiered Initial Study (see Section 1.8, below for additional information about topics not carried forward for additional analysis in the EIR).

As this EIR is tiered to the 2007 CMP EIR, the table identifies the related CMP EIR impacts to facilitate the determination about whether the Project would result in new significant or substantially more severe impacts than those identified in the CMP EIR. The table summarizes: (1) the potential environmental impacts that would occur as the result of implementation of the 2007 CMP and CMP EIR mitigation measures (identified in gray text); (2) the potential environmental impacts that would occur as the result of implementation of the Project; (3) the level of Project impact significance with adopted CMP mitigation; (4) any additional Project mitigation measures that would avoid or reduce new significant environmental impacts; and (5) the level of Project impact significance after mitigation measures are implemented.
This Final EIR determined that the Project would result in one new significant and unavoidable impact compared to the impacts identified in the CMP EIR. The Project would have a significant adverse cumulative impact related to historical resources. The proposed demolition of Blocks 1 and 6 and removal of existing landscape features on the Project site would contribute to a significant cumulative impact on the historic significance of the Parkmerced Remnant Historic District, identified during the preparation of this EIR, as it would erode its integrity. The Project’s contribution to this significant cumulative impact would be cumulatively considerable (see Project Impact CULT-5B in Table 1-2). This significant cumulative impact can be reduced through the implementation of CMP EIR Mitigation CULT-2A through CULT-2C as part of the Project and through the implementation of Project Mitigation CULT-5B identified in Table 1-2. However, the impact is significant and unavoidable as the implementation of the feasible mitigation measure would not reduce the impact to less than significant. This is considered a new significant cumulative impact, as the CMP EIR did not contemplate impacts to eligible historic districts and did not identify a significant cumulative impact on historic resources.
<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiered Project EIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesthetics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Impact AES-0</td>
<td>AES-0</td>
<td>The Project would not have a substantial adverse impact on a scenic vista</td>
<td>LS</td>
</tr>
<tr>
<td>CMP Impact AES-1</td>
<td>AES-1</td>
<td>Development under the Campus Master Plan would not substantially damage the small groves of Monterey Cypress and Monterey Pine located in and around the Campus Core landscape zone that constitute scenic resources on the campus</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AES-1</td>
<td>AES-1</td>
<td>The Project would not substantially damage the small groves of Monterey Cypress and Monterey Pine or otherwise substantially damage a scenic resource</td>
<td>LS</td>
</tr>
<tr>
<td>CMP Impact AES-2</td>
<td>AES-2</td>
<td>Development under the Campus Master Plan would not substantially degrade the existing visual character of the existing SF State campus</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AES-2</td>
<td>AES-2</td>
<td>The Project would not substantially degrade the existing visual character of the existing site or SF State campus surroundings</td>
<td>LS</td>
</tr>
<tr>
<td>CMP Impact AES-3</td>
<td>AES-3</td>
<td>Development of new housing in University Park South under the Campus Master Plan could potentially degrade the existing visual character of the adjacent Parkmerced neighborhood, if not properly designed</td>
<td>PS</td>
</tr>
<tr>
<td>Project Impact AES-3</td>
<td>AES-3</td>
<td>The Project would not substantially degrade the existing visual character of the adjacent</td>
<td>LS</td>
</tr>
</tbody>
</table>
Table 1-2
Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkmerced area given the implementation of design guidelines and compatibility with approved plans for Parkmerced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP Impact AES-4</td>
<td>LS</td>
<td>Adopted CMP Mitigation AES-4A and AES-4B included in the CMP MMRP and the Project</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AES-4</td>
<td>LS</td>
<td>No additional mitigation required</td>
<td>LS</td>
</tr>
<tr>
<td>CMP Impact AES-5</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AES-5</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
</tbody>
</table>

Development under the proposed Campus Master Plan will not create new sources of substantial light or glare on campus that could adversely affect daytime or nighttime views in the area. The Project would not create new sources of substantial light or glare on or adjacent to campus that could adversely affect daytime or nighttime views in the area. Development under the Campus Master Plan, in conjunction with other vicinity development, would not result in significant cumulative impacts due to substantial degradation of the existing visual character of the area. The Project, in conjunction with other vicinity development, would not result in significant cumulative impacts due to substantial degradation of the existing visual character of the area.
Table 1-2

Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP Impact AIR-1</td>
<td>PS</td>
<td>Adopted CMP Mitigation AIR-1 included in the CMP MMRP and the Project</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AIR-1</td>
<td>LS</td>
<td>No additional mitigation required</td>
<td>LS</td>
</tr>
<tr>
<td>CMP Impact AIR-2</td>
<td>PS</td>
<td>Adopted CMP Mitigations AIR-2A and AIR-2B and AIR-2C included in the CMP MMRP and the Project and implemented campus wide</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AIR-2</td>
<td>LS</td>
<td>No additional mitigation required</td>
<td>LS</td>
</tr>
<tr>
<td>CMP Impact AIR-3</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AIR-3</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
</tbody>
</table>
Table 1-2
Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP Impact AIR-4</td>
<td>PS</td>
<td>Adopted CMP Mitigation AIR-2A and AIR-2B and AIR-2C included in the CMP MMRP and the Project and implemented campus wide</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AIR-4A</td>
<td>LS</td>
<td>No additional mitigation required</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AIR-4B</td>
<td>LS</td>
<td>No additional mitigation required</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AIR-5</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
<tr>
<td>Greenhouse Gas Emissions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Impact GHG-1</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact GHG-2</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact GHG-3</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
</tbody>
</table>
Table 1-2
Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP Impact CULT-2</td>
<td>Implementation of the Campus Master Plan could cause a substantial adverse change in the significance of a historical building or structure, as a result of alteration, removal or demolition of the building, or alteration of the site associated with project</td>
<td>PS</td>
<td>Adopted CMP Mitigations CULT-2A, CULT-2B, and CULT-2C included in the CMP MMRP and the Project</td>
</tr>
<tr>
<td>Project Impact CULT-2A</td>
<td>The proposed Project would demolish Blocks 1 and 6, which are qualified historic resources as contributors to an identified Parkmerced Historic District. The demolition of Blocks 1 and 6 would erode the integrity of the historic district but would not materially impair its significance</td>
<td>LS</td>
<td>No additional mitigation required</td>
</tr>
<tr>
<td>Project Impact CULT-2B</td>
<td>The Project would demolish Blocks 1 and 6, which are qualified historic resources as contributors to an identified Parkmerced Remnant Historic District. The demolition of Blocks 1 and 6 would erode the integrity of the historic district but would not materially impair its significance</td>
<td>LS</td>
<td>No additional mitigation required</td>
</tr>
</tbody>
</table>
Table 1-2
Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP Impact CULT-5</td>
<td>PS</td>
<td>Adopted CMP Mitigations CULT-2A, CULT-2B, and CULT-2C included in the CMP MMRP and the Project</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact CULT-5A</td>
<td>LS</td>
<td>No additional mitigation required</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact CULT-5B</td>
<td>S</td>
<td>Project Mitigation CULT-5B: The following mitigation measures are recommended in advance of the Project, and elaborate on the mitigation measure outlined in the Campus Master Plan EIR's Mitigation CULT-2C (ii):

DOCUMENTATION:
SF State shall facilitate documentation of the affected historic resource and its setting. Generally, this documentation shall be in accordance with Historic American Building Survey (HABS) Level II per Campus Master Plan EIR Mitigation CULT-2C(ii), which includes:

i. Drawings: Select original Church and Schultze drawings of Blocks 1 and 6, if available from Parkmerced Investors LLC or the San Francisco Planning Department, should be photographed with large-format negatives or photographically reproduced on Mylar.</td>
<td>SU</td>
</tr>
</tbody>
</table>
Table 1-2
Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measured drawings are not required, as these were completed for each type of building as part of the mitigation for demolition of the Parkmerced site (completed by Page & Turnbull in 2016).</td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td>Photographs: Archivally printed digital photographs of exterior and interior views of Blocks 1 and 6. These photographs must adequately document the character-defining features of the buildings and should be produced by a qualified professional who is familiar with the character-defining features of the buildings, as identified in the Historic Resource Evaluation completed by Page & Turnbull in 2009 and information provided in this report. Photographs should include general views that illustrate the setting; the exterior façades; the courtyard façades; details including front entrances and/or typical doorways; typical windows; exterior details indicative of the era of construction or of historic or architectural interest; and interior views to capture spatial relationships and any decorative elements. An example of printed digital photographs, site plans, and photo captions can be found in the Parkmerced HABS-HALS photographs produced as part of the mitigation for demolition of the Parkmerced Investors LLC site. These photograph sets are located at the</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1-2
Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>San Francisco Public Library History Center and the Northwest Information Center of the California Historical Resources Information System. The photograph set for Blocks 1 and 6 should correspond to the previously produced sets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Written data: Not required, as these blocks are covered in the HABS-HALS written report produced as part of the mitigation for demolition of the Parkmerced Investors LLC site.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HABS material standards regarding reproducibility, durability, and size shall be met. The HABS Level II documentation shall be completed by professionals who meet or exceed the Secretary of the Interior's Professional Qualification Standards for History or Architectural History.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three copies of the drawings and photographs should be provided to the San Francisco Public Library History Center, the Northwest Information Center of the California Historical Resources Information System, and SF State University.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This mitigation would create a collection of preservation materials that would be available to the public and inform future research. Implementation of this mitigation measure will assist in reducing the project-specific impacts: however, according to Section 15126.4 (b) (2) of the Public Resources Code (CEQA),</td>
</tr>
</tbody>
</table>
Table 1-2
Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HABS-level documentation of a historical resource as mitigation for significant impacts of demolition of the resource will typically not mitigate the impacts to less-than-significant. VIDEO RECORDATION: SF State will facilitate the creation of a walk-through video of Blocks 1 and 6 and their Parkmerced setting, including an exterior overview of adjacent streets (with medians and traffic circles), nearby tower apartments, and primary public spaces at Parkmerced such as the central Common and the Meadow. The documentation shall be conducted by a professional videographer, preferably one with experience recording architectural resources. The documentation shall be narrated by a qualified architectural historian. The documentation shall include as much information as possible—using visuals in combination with narration—about the materials, construction methods, current condition, historic use, and historic context of the historical resources. Copies of the video documentation shall be submitted to the San Francisco Public Library History Room, the Northwest Information Center, and SF State University. This mitigation measure will supplement the traditional HABS-HALS documentation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1-2
Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP Impact TRA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Impact TRA-1</td>
<td>Implementation of the Campus Master Plan could potentially contribute substantial traffic at two intersections in southwest San Francisco</td>
<td>S</td>
<td>Adopted CMP Mitigation TRA-1 included in the CMP MMRP and the Project and implemented campus wide</td>
</tr>
<tr>
<td></td>
<td>The Project would not increase vehicle trips above the adjusted CMP EIR trip envelope and therefore would not result in new or increased level of service impacts over those identified in the CMP EIR.</td>
<td>LS</td>
<td>No additional mitigation required</td>
</tr>
<tr>
<td>CMP Impact TRA-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Impact TRA-2</td>
<td>Implementation of the Campus Master Plan would result in a substantial increase in transit</td>
<td>PS</td>
<td>Adopted CMP Mitigations TRA-2A, TRA-2B, and TRA-2C included in the CMP MMRP and the Project and implemented campus wide</td>
</tr>
<tr>
<td></td>
<td>The Project would not increase transit trips above the adjusted CMP EIR trip envelope and therefore would not result in new or increased impacts over those identified in the CMP EIR</td>
<td>LS</td>
<td>No additional mitigation required</td>
</tr>
<tr>
<td>CMP Impact TRA-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Impact TRA-3</td>
<td>Implementation of the Project would not adversely affect conditions for pedestrians or otherwise interfere with pedestrian accessibility</td>
<td>LS</td>
<td>Mitigation not required</td>
</tr>
<tr>
<td></td>
<td>Implementation of the Project would not adversely affect conditions for pedestrians or otherwise interfere with accessibility, nor would the Project create hazardous conditions for pedestrians</td>
<td>LS</td>
<td>Mitigation not required</td>
</tr>
</tbody>
</table>
Table 1-2
Summary of Project Impacts

<table>
<thead>
<tr>
<th>Impact</th>
<th>Level of Significance Prior to Mitigation</th>
<th>Mitigation Measures</th>
<th>Level of Significance After Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation of the Campus Master Plan would not adversely affect conditions for bicyclists</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
<tr>
<td>Implementation of the Project would not adversely affect conditions for bicyclists or otherwise interfere with accessibility, nor would the Project create hazardous conditions for bicyclists</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
<tr>
<td>Implementation of the Campus Master Plan would not conflict with any adopted plans, policies or programs supporting alternative transportation</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
<tr>
<td>Implementation of the Project would not conflict with any adopted plans, policies or programs supporting alternative transportation</td>
<td>LS</td>
<td>Mitigation not required</td>
<td>LS</td>
</tr>
</tbody>
</table>

Other CMP EIR Significant Unavoidable Impacts from Tiered Initial Study

<table>
<thead>
<tr>
<th>Noise</th>
<th>Level of Significance</th>
<th>Mitigation Measures</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of campus facilities under the Campus Master Plan could expose nearby sensitive receptors to excessive airborne noise</td>
<td>PS</td>
<td>Adopted CMP Mitigation NOIS-1 included in the CMP MMRP and the Project</td>
<td>SU</td>
</tr>
</tbody>
</table>

NA = not applicable; LS = less than significant; PS = potentially significant; S= significant; SU = significant and unavoidable; MMRP = Mitigation Monitoring and Reporting Program
1.6 ALTERNATIVES TO THE PROJECT

The following alternatives are analyzed in detail in Chapter 6 of this Focused Tiered Final EIR in comparison to the Project. The purpose of the alternatives analysis is to determine whether an alternative would feasibly attain some or most of the Project objectives, while avoiding or substantially lessening some of the significant effects of the Project. A two-step process was used to conduct the alternatives analysis in this Final EIR. First, potential alternatives were examined for their feasibility and ability to meet most of the Project objectives. Those that clearly were found to be infeasible were rejected without further environmental review. Alternatives that may be feasible and that would attain at least some of the basic Project objectives were carried forward and analyzed with regard to whether they would reduce or avoid any significant impacts of the Project. Chapter 6 evaluates five alternatives to the Project, including those listed below and summarized in Table 1-3, below:

- No Project Alternative – Development under Adopted Campus Master Plan
- No Project Alternative – No New Development/Preservation
- Reduced Project Alternative – Partial Reuse/Preservation
- Reduced Project Alternative – No Development on Block 6
- Alternative Site Location – Avoidance of Former Parkmerced Properties

Table 1-3
Characteristics of Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Student Housing Beds</th>
<th>Retail and Support Space (GSF)</th>
<th>Creative Arts Replacement Building Space (GSF)</th>
<th>Concert Hall Space (GSF)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Project</td>
<td>550</td>
<td>33,000 25,000</td>
<td>75,000 76,350</td>
<td>60,000</td>
<td>Block 1 Block 6</td>
</tr>
<tr>
<td>No Project – Development under Adopted CMP</td>
<td>550</td>
<td>0</td>
<td>75,000 76,350</td>
<td>0</td>
<td>Block 1 Block 5</td>
</tr>
<tr>
<td>No Project – No New Development/Preservation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Block 1 Block 6</td>
</tr>
<tr>
<td>Reduced Project Alternative – Partial Reuse/Preservation</td>
<td>100 – 120</td>
<td>10,000 – 12,000</td>
<td>75,000 76,350</td>
<td>60,000</td>
<td>Block 1 Block 6</td>
</tr>
<tr>
<td>Reduced Project Alternative – No Development on Block 6</td>
<td>0</td>
<td>0</td>
<td>75,000 76,350</td>
<td>60,000</td>
<td>Block 1 Block 6</td>
</tr>
<tr>
<td>Alternative Site Location – Avoidance of Former Parkmerced Properties</td>
<td>550</td>
<td>33,000 25,000</td>
<td>75,000 76,350</td>
<td>60,000</td>
<td>West Campus Green UPN Site</td>
</tr>
</tbody>
</table>
The No Project Alternative – No New Development/Preservation would avoid all of the impacts of the Project, as no development would occur under this alternative. However, this alternative would not locate student housing on campus and therefore would not reduce vehicle trips on typical days compared to existing conditions. Despite not reducing vehicle trips on typical days, this alternative would be the environmentally superior alternative, as it would avoid the significant cumulative impact on the Parkmerced Remnant Historic District and avoid other less-than-significant impacts. However, the No Project Alternative would not meet any of the Project objectives, as discussed in Chapter 6.

If the environmentally superior alternative is the No Project Alternative, CEQA Guidelines Section 15126(d)(2) requires that the EIR identify another alternative as environmentally superior. Of the remaining alternatives, the environmentally superior alternative is the Alternative Site Locations alternative that calls for avoiding development on the Project site, which consists of two blocks in the southern portion of the campus that have former Parkmerced apartments and other character-defining features. This alternative would avoid the significant unavoidable cumulative historic resource impact of the Project, as it would not contribute to this impact. It would also provide for the full housing program and associated vehicle and transit trip reduction benefits, similar to the Project. However, the construction of the Creative Arts replacement building and concert hall on the West Campus Green would not meet most of the Project objectives for these uses and would not provide for the most efficient and effective use of the West Campus Green and the Tapia Triangle (Block 1) for all of the planned future Creative Arts programs.

This alternative also would not meet the Project objective that aims to integrate and make efficient use of more recently acquired properties along the southern edge of campus, as the Project would be pursued in the northern portion of the campus. It would not meet the objective to locate the building in immediate proximity to the academic core of the campus, where pedestrian access to the core is readily available. This alternative also would not facilitate redefining Holloway Avenue as a “college main street.”

1.7 AREAS OF KNOWN CONTROVERSY

This EIR addresses environmental issues associated with the Project that are known to the lead agency or were raised by agencies or interested parties during the public and agency NOP review period. These issues include the following:

- The potential displacement of people associated with the replacement of existing housing units in UPS with denser housing.
- The aesthetics of the proposed development as it transitions to the Parkmerced area to the south.
• The identification and historic resource impacts of the Project and recommended mitigation measures.
• Transportation impacts in the vicinity of campus.
• The potential worsening of over-flow parking in the surrounding neighborhoods and associated neighborhood traffic.
• Effects of campus growth on local public services.

More comprehensive and detailed listings of issues raised during scoping are provided in the beginning of each section in Chapter 4. Comments received during the Scoping period for the Project are included as Appendix B.

1.8 TOPICS NOT CARRIED FORWARD FOR FURTHER ANALYSIS

The Tiered Initial Study (Appendix A) found that the Project could have a “potentially significant” or “potentially significant unless mitigated” impacts on the environment, but most effects (1) were adequately analyzed in the 2007 CMP EIR pursuant to applicable legal standards and (2) were addressed by mitigation measures based on that earlier analysis, as described in Appendix A, Section 4, Initial Study Checklist. An EIR was determined to be required to analyze only the effects that remain to be addressed, including aesthetics, air quality, greenhouse gas emissions, historic resources, and transportation. These topics are evaluated in this EIR and the conclusions of the analyses are summarized in Table 1-2.

All other effects were determined to not warrant further analyses in this EIR as they were determined to be adequately analyzed in the 2007 CMP EIR, based on the analysis in the Tiered Initial Study. Specifically, the Tiered Initial Study determined that the Project would not result in new significant or substantially more severe impacts compared to those identified in the CMP EIR and do not require further analysis in this EIR. Therefore, additional analyses of those topics are not provided herein.

1.9 REFERENCES

CHAPTER 2
INTRODUCTION

The California Environmental Quality Act (CEQA) serves as the main framework of environmental law and policy in California. CEQA emphasizes the need for public disclosure and identifying and preventing environmental damage associated with proposed projects. Unless the project is deemed categorically exempt, CEQA is applicable to any project that must be approved by a public agency in order to be processed and established. The Creative Arts and Holloway Mixed-Use Project (Project) does not fall under any of the statutory or categorical exemptions listed in the 2013 CEQA Statute and Guidelines (California Public Resources Code, Section 21000 et seq.; 14 California Code of Regulations (CCR) 15000 et seq.), and, therefore, must meet CEQA requirements.

2.1 TIERING TO CMP EIR

As the CEQA lead agency, the Board of Trustees of the California State University (Trustees of the California State University)\(^1\) certified the San Francisco State University (SF State) Campus Master Plan Environmental Impact Report (CMP EIR) (SCH No. 2006102050) in 2007. The 2007 CMP is a comprehensive document that addresses all aspects of future physical development and land use on the SF State campus to accommodate the increased enrollment ceiling of 25,000 full-time-equivalent students. The 2007 CMP is guiding change to the campus over the long term, and will ultimately give physical form to the SF State’s strategic vision and values. The purpose of the 2007 CMP is to address acquisition of property, older facilities, changing student demographics, and the need for additional academic building space and other support space to accommodate the growth in enrollment anticipated to occur through the planning horizon (2020).

The Project conforms to the CMP building program and, therefore, the CEQA analysis for the Project is tiered to the 2007 CMP EIR. Tiering refers to using the analysis of general matters contained in a broader EIR, such as the CMP EIR, with later EIRs or Negative Declarations on narrower projects, incorporating by reference the general discussions from the broader EIR, and concentrating the later EIR or Negative Declaration solely on the issues specific to the relevant activities/project (14 CCR 15152(a)). A later EIR is required when the Initial Study or other analysis finds that the later project may cause a significant effect on the environment that was not adequately addressed in the prior EIR (14 CCR 15152(f)).

\(^1\) The Board of Trustees of the California State University is responsible for the oversight of the California State University system, including the San Francisco State University (SF State) campus. They adopt rules, regulations, and policies governing SF State. They have authority over curricular development, use of property, development of facilities, and fiscal and human resources management. As such, the Trustees of the California State University are the lead agency under CEQA and are responsible for review and certification of the EIR for the Project and for consideration of Project approval.
SF State prepared a Notice of Preparation (NOP) and issued a Tiered Initial Study (Tiered IS) on July 6, 2016 (Appendix A) that was tiered to the 2007 CMP EIR. The Tiered IS evaluated potential environmental effects of the Project, identified the issues that were adequately addressed in the 2007 CMP EIR, and identified the issues that would require further analysis. Based on the NOP/Tiered IS and the results of comments received during the scoping process, SF State determined that a Focused Tiered EIR is the appropriate CEQA document to evaluate potential impacts related to aesthetics, air quality, greenhouse gas emissions, historical resources, and transportation.

The 2007 CMP EIR is incorporated by reference and referred to throughout this EIR. The 2007 CMP EIR and related documents (e.g., Board of Trustees Approval, Mitigation Monitoring and Reporting Program, Findings of Fact, Notice of Determination) are available at http://cpdc.sfsu.edu/plan. Additional updated and/or site-specific information is also incorporated throughout this EIR.

2.2 SCOPE AND PURPOSE OF THE EIR

The Initial Study concluded that the Project may have potentially significant effects on the environment that were not previously or adequately addressed in the 2007 CMP EIR, or may have environmental effects that are less than significant but have been selected for further analysis and disclosure. This EIR analyzes the potential impacts of the Project related to aesthetics, air quality, greenhouse gas emissions, historical resources, and transportation. This Focused Tiered EIR was prepared to further evaluate the potential for significant impacts or substantially more severe impacts in these topic areas not previously identified in the CMP EIR, and to develop, if necessary, Project-specific mitigation measures.

An EIR is an informational document that is required to (1) identify the potentially significant environmental effects of a project on the environment, (2) indicate the manner in which those significant effects can be avoided or significantly lessened via the implementation of potentially feasible mitigation measures, (3) identify a reasonable range of potentially feasible alternatives to a project that would eliminate or substantially lessen any significant environmental effects, and (4) identify any significant and unavoidable adverse impacts that cannot be mitigated or otherwise reduced. According to the CEQA Guidelines, “feasible” means capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, legal, social, and technological factors. This EIR provides information about the potential effects of the Project on the local and regional environment for the lead agency, responsible and trustee agencies, and the public.
2.3 ENVIRONMENTAL REVIEW AND APPROVAL PROCESS

2.3.1 Scoping

Under CEQA, the lead agency for a project is the public agency with primary responsibility for carrying out or approving the project, and for implementing the requirements of CEQA. CEQA Guidelines Section 15083 authorizes and encourages an early consultation or scoping process to help identify the range of actions, alternatives, mitigation measures, and significant effects to be analyzed and considered in an EIR, and to help resolve the concerns of affected regulatory agencies, organizations, and the public. Scoping is designed to explore issues for environmental evaluation, ensuring that important considerations are not overlooked and uncovering concerns that might otherwise go unrecognized.

On July 6, 2016, an NOP/Tiered IS was published for the Project to determine the scope and extent of environmental issues to be addressed in this EIR. The NOP was circulated for a 30-day comment period from July 6, 2016 to August 8, 2016. An EIR scoping meeting was held on July 26, 2016, at the J. Paul Leonard Library at SF State to solicit input from interested agencies, individuals, and organizations. The NOP/Tiered IS is provided in Appendix A. All comments received on the NOP are provided in Appendix B. A summary of pertinent comments received on the NOP is included in each resource section in Chapter 4, Environmental Setting, Impacts, and Mitigation Measures, and in Chapter 6, Alternatives. This Focused Tiered EIR addresses pertinent scoping comments. The Tiered IS has also been revised in underline/strikeout to address scoping and EIR public review comments received (see Appendix A).

2.3.2 Public Review of Draft EIR

The Draft EIR will be distributed for a 45-day public review period from September 27, 2016 to November 11, 2016. During this public review period, written comments on the adequacy of the Draft EIR can be submitted by all interested public agencies, organizations, community groups, and individuals to Wendy Bloom, Director of Campus Planning, Office of Capital Planning, Design & Construction, San Francisco State University, 1600 Holloway Avenue, San Francisco, California, 94132.

The Draft EIR will be available for public review during the comment period at the following locations:

- Reference Desk of the J. Paul Leonard Library, on the SF State campus
- Merced Branch Library and Ocean View Branch Library
- Online at http://cpdc.sfsu.edu/plan
A public meeting was held on the SF State campus at the J. Paul Leonard Library, Room 121, on October 18, 2016, at 6:30 p.m., to receive public comment on the adequacy of the information presented in the Draft EIR. SF State encouraged public agencies, organizations, community groups, and all other interested persons to provide written comments on the Draft EIR prior to the end of the 45-day public review period. If any agency, organization, group, or person wishes to make a legal challenge to the Trustees of the California State University’s final decision on the Project, that agency or person may be limited to addressing only those environmental issues that they or someone else raised during the 45-day public review period for the Draft EIR.

2.3.3 Final EIR/Project Approval

Following the close of the public and agency comment period on the Draft EIR, responses will have been prepared for all comments received during the public review period that raise CEQA-related environmental issues regarding the Project. This Final EIR has also been revised in underline/strikeout to address public review comments received on the Draft EIR and to make other required changes. The responses will be published in this Final EIR.

As required by CEQA, written responses to comments submitted by public agencies will be provided to those agencies for review at least 10 days prior to the Trustees of the California State University’s consideration of certification of the EIR. The EIR will be considered by the Trustees of the California State University in a public meeting likely to be held in March May 2017, and will be certified if it is determined to be in compliance with CEQA. Upon certification of the EIR, the Trustees of the California State University will consider the Project for approval during the same or subsequent public meeting.

2.3.4 Adoption of Mitigation Monitoring & Reporting Program

CEQA requires that a program to monitor and report on mitigation measures be adopted by lead agencies as part of the project approval process. CEQA requires that such a program be adopted at the time the agencies determine to carry out a project for which an EIR has been prepared to ensure that mitigation measures identified in the EIR are implemented.

The Trustees of the California State University adopted a mitigation monitoring and reporting program (MMRP) in 2007 as part of the CMP approval that applies to the Project. The measures that are applicable to the Project are considered to be part of the Project and will not be re-adopted. These measures are included in full in Appendix A-1; referred to as part of the Project in Chapter 3, Project Description; and referred to as relevant in Chapter 4, Environmental Setting, Impacts, and Mitigation Measures. Nothing in this Final EIR in any way alters the obligations of SF State to implement the CMP EIR mitigation measures. If an additional project-specific mitigation measure is identified in this Final EIR, a project-
specific MMRP will be has been developed and will be considered for adoption by the Trustees of the California State University as part of the Project approval process. Appendix F provides the Project MMRP.

2.4 ORGANIZATION OF THIS EIR

The content and format of this Final EIR are designed to meet the requirements of CEQA and the CEQA Guidelines (Sections 15122 through 15132). This Final EIR is organized into the following chapters so that the reader can easily obtain information about the Project and the specific environmental issues. Figures are placed at the end of each chapter, or in the case of Chapter 4, figures follow each major section (Section 4.1, Section 4.2, etc.).

- **Chapter 1, Summary**, presents an overview of the Project; provides a summary of the impacts of the Project and mitigation measures; provides a summary of the alternatives being considered; includes a discussion of known areas of controversy; and lists the topics not carried forward for further analysis.

- **Chapter 2, Introduction**, explains the CEQA process and tiering to the 2007 CMP EIR; describes the scope and purpose of this Final EIR; provides information on the review and approval process; and outlines the organization of this Final EIR.

- **Chapter 3, Project Description**, provides information about the location, setting, and background for the Project; identifies the CMP and Project-specific objectives; provides a detailed description of the Project characteristics; and lists the likely approvals for the Project.

- **Chapter 4, Environmental Setting, Impacts, and Mitigation Measures**, explains the approach to the environmental analysis for this EIR, and provides environmental setting, impacts, and mitigation measures for the topics under study in this Final EIR.

- **Chapter 5, Other CEQA Considerations**, identifies the growth-inducing impacts; the significant and unavoidable impacts; and the significant and irreversible commitment of resources associated with the Project.

- **Chapter 6, Alternatives**, describes the alternatives to the Project that were considered but eliminated from further consideration; analyzes the environmental impacts of alternatives to the Project and compares them to the Project; and identifies the environmentally superior alternative.

- **Chapter 7, Response to Comment**, provides the comment letters on the Draft EIR and responses to each individual comment. This chapter, in its entirety, is new in the Final EIR. Given that, it is not underlined, but should be considered new text.
• **Chapter 8, List of Preparers**, lists the organizations and individuals who were involved in preparing this Final EIR and the individuals who provided information.

• **Appendices** contain additional information used in preparing this Final EIR. Appendix A contains the NOP and Revised Tiered IS that was revised in response to comments received during the scoping process and during the public review of the Draft EIR. Appendix B contains the comment letters that were submitted in response to the NOP and Tiered IS. Appendix C includes the technical support for the air quality and greenhouse gas emissions calculations. Appendix D is the historical resources technical report. Appendix E is the transportation memorandum. **Appendix F is the Project MMRP**.

2.5 REFERENCES

CHAPTER 3
PROJECT DESCRIPTION

3.1 PROJECT OVERVIEW

San Francisco State University (SF State) proposes to develop the Creative Arts and Holloway Mixed-Use Project (Project) in the southern portion of the SF State campus. The Project would include construction of the Creative Arts replacement building; an associated concert hall; and a mixed-use development including student housing, neighborhood-serving retail, student support services, transportation and parking improvements, utility connections, stormwater improvements, landscaping, and lighting.

3.2 PROJECT LOCATION AND SETTING

The Project is on the existing 144-acre SF State campus located in the southwestern corner of the City and County of San Francisco, in California (see Figure 3-1, Regional Map). The SF State campus is generally bounded by Lake Merced Boulevard and the lake and its associated open spaces, including Harding Park, public and private golf courses, Fort Funston, and the San Francisco Zoo, on the west; 19th Avenue (State Route 1) and residential development in the Ingleside neighborhood on the east; the Stonestown Galleria shopping center, Lowell High School, and Lakeshore Alternative Elementary School to the north; and Parkmerced and other residential development to the south (see Figure 3-2, Project Location). The Pacific Ocean lies to the west of the campus, beyond Lake Merced.

The approximately 3.6-acre Project site is located in the south campus, with one parcel (Block 6) on the south side of Holloway Avenue between Cardenas and Varela Avenues, and one parcel (Block 1), referred to as the Tapia Triangle, bounded by Tapia Drive, Holloway Avenue, and Font Boulevard (see Figure 3-3, Project Setting). The Project site is part of University Park South, which was purchased by SF State between 2000 and 2005 and includes a portion of the original Parkmerced development, which extends beyond the campus boundaries to the south. Block 1 and Block 6 are composed primarily of two-story housing around the perimeter of the block, with an interior courtyard. Of the 46-54 housing units in Block 1 and Block 6, most are occupied by SF State students and are licensed by the bed space.

The SF State campus is located on state land under the jurisdiction Board of Trustees of the California State University (Trustees of the California State University). Streets and private property surrounding the campus in all directions are under the jurisdiction of the City and County of San Francisco (City).
3.3 PROJECT BACKGROUND

3.3.1 CMP Building Program and Master Plan Map

The CMP, adopted by the Trustees of the California State University in 2007, addresses all aspects of future physical development and land use on the campus to accommodate the enrollment ceiling of 25,000 full-time equivalent (FTE) students (SF State 2007). The CMP provides a comprehensive framework for the physical development of the SF State campus through 2020. It addresses the acquisition of property, older facilities, changing student demographics, and the need for additional academic building space and other support space to accommodate the anticipated growth in enrollment. To accommodate the projected growth in enrollment and academic activities, the adopted CMP accommodates a building program that envisions development of 0.9 million gross square feet (GSF) of new and replacement non-residential building space on campus, and development or conversion of approximately 1,198 additional units of housing on campus for faculty, staff, and students.

The existing adopted CMP includes a land use map and urban design plan map that locate major uses and buildings to guide the siting of future campus facilities. The land use map maintains the current general configuration of land uses on the campus, which consist of a concentrated academic core surrounded by residential and other campus uses. Most of the growth in facilities would occur through demolition and replacement of existing buildings, as a number of existing buildings are at or beyond their useful life.

The 2007 CMP included a new Creative Arts complex located on Lot 41, at the intersection of Font and Lake Merced Boulevards. The current Master Plan map was recently revised and approved in May 2014 to allow for relocation of the planned Mashouf Wellness Center on Lot 41 and relocation of the planned Creative Arts replacement buildings from Lot 41 to two adjacent sites located closer to the academic core. Based on the May 2014 approved map, the Creative Arts complex would consist of four replacement buildings, with an 800-seat auditorium and a building housing the Theatre Arts program located on the West Campus Green, and two buildings to house the Department of Broadcast & Electronic Communication Arts (BECA) and Music & Dance programs located on the Tapia Triangle. Since approval of the Master Plan map revision in 2014, the programs have reorganized into the School of Theatre and Dance and the School of Music.

The 2007 CMP proposed redeveloping the University Park South block on the south side of Holloway Avenue between Cardenas and Arellano Avenues with denser housing and ground-floor retail, and assumed that Block 6 to the east would remain in its current use through the CMP planning horizon (2020).
The Project is consistent with the 2007 CMP building program; however, a Master Plan map revision is required to allow for the proposed uses on the identified sites, as described below. The map revision is required to (1) repurpose the planned auditorium as an 800-seat concert hall, (2) co-locate the 800-seat concert hall on the Tapia Triangle with the building that would house BECA, (3) rename and co-locate the Music building on the West Campus Green with the renamed building for Theatre and Dance, and (4) relocate planned future housing from its current location to Block 6 and re-designate the site for housing/mixed-use development. Figures 3-4 and 3-5 depict the existing approved Master Plan map and the proposed Master Plan map revisions.

3.3.2 CMP Population Growth

As indicated above, the 2007 CMP accommodates an enrollment increase to 25,000 FTE students. The campus is currently at this approaching its FTE ceiling and therefore additional FTE cannot be added under the current 2007 CMP and related approvals. For master planning and academic planning purposes, the California State University System uses the FTE unit of measure to calculate enrollment. One FTE is defined as one student taking 15 course units, which represents a full course load. Students taking fewer course units are considered to constitute a fraction of a FTE. Whereas headcount is the total number of students enrolled. Headcount is the unit used for the purpose of conducting various types of analysis in this Final EIR. For this reason, Table 3-1, below, shows the change in campus total population since the 2007 CMP EIR base year using headcount rather than FTE. As shown in Table 3-1, total headcount has been flat since the base year given that the number of full-time students has been increasing and the number of part-time students has been declining.

Table 3-1
SF State Campus Population (Headcount) Since CMP EIR Base Year

<table>
<thead>
<tr>
<th>Year (Fall Semester)</th>
<th>Students</th>
<th>Faculty</th>
<th>Staff</th>
<th>Total Campus Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006–2007</td>
<td>29,628</td>
<td>1,783</td>
<td>1,615</td>
<td>33,026</td>
</tr>
<tr>
<td>2007–2008</td>
<td>30,125</td>
<td>1,818</td>
<td>1,669</td>
<td>33,612</td>
</tr>
<tr>
<td>2008–2009</td>
<td>30,014</td>
<td>1,727</td>
<td>1,699</td>
<td>33,440</td>
</tr>
<tr>
<td>2009–2010</td>
<td>30,469</td>
<td>1,506</td>
<td>1,670</td>
<td>33,645</td>
</tr>
<tr>
<td>2011–2012</td>
<td>29,541</td>
<td>1,602</td>
<td>1,536</td>
<td>32,679</td>
</tr>
<tr>
<td>2012–2013</td>
<td>30,500</td>
<td>1,724</td>
<td>1,503</td>
<td>33,727</td>
</tr>
<tr>
<td>2013–2014</td>
<td>29,905</td>
<td>1,724</td>
<td>1,519</td>
<td>33,148</td>
</tr>
<tr>
<td>2014–2015</td>
<td>29,465</td>
<td>1,683</td>
<td>1,551</td>
<td>32,699</td>
</tr>
<tr>
<td>2015–2016</td>
<td>30,256</td>
<td>1,728</td>
<td>1,579</td>
<td>33,563</td>
</tr>
<tr>
<td>CMP EIR 2020 (Projected)</td>
<td>32,113</td>
<td>4,139</td>
<td></td>
<td>36,251</td>
</tr>
</tbody>
</table>

Source: SF State 2016

Note: 2020 projections are from the 2007 CMP EIR (SF State 2007).
The Project would not result in substantial increases in SF State campus population over existing 2015–2016 levels reported in Table 3-1, above. The student housing/mixed-use building would serve existing students that are currently commuting to campus. Given that the campus has already reached its FTE ceiling (25,000 FTE students) the Creative Arts replacement building and the concert hall would not result in enrollment growth or associated faculty growth. The concert hall would result in the hiring of four new staff to support the event activities in that building. The Project would not result in any other increases in students, faculty or staff.

3.4 PROJECT OBJECTIVES

CEQA indicates that the statement of a project’s objectives should be clearly written to define the underlying purpose of a project in order to permit development of a reasonable range of alternatives and aid the lead agency in making findings when considering a project for approval. The objectives of the adopted 2007 CMP originate in the obligation SF State has to meet its educational mission as defined by the California Education Code. The Project objectives that are drawn from the CMP are based on the physical planning principles derived from the long-term vision for the SF State campus, consistent with SF State’s strategic plan. The CMP objectives and Project-specific objectives are provided below.

3.4.1 Campus Master Plan Objectives

1. Provide facilities for expansion of academic programs and administrative functions to support the proposed [now adopted] enrollment ceiling increase to 25,000 FTEs, required by the CSU [California State University] and California Education Code.

2. Provide student, faculty, and staff housing to aid in recruitment and retention.

3. Implement the planning principles provided in the proposed [now adopted] Campus Master Plan, as follows:

 - A vibrant on-campus community:
 - Reinforce the academic core and extend it westward.
 - Integrate residential properties to create a unified campus.
 - Provide more close-in, affordable housing that enables faculty, staff, and students to walk to school and work.
 - Redefine Holloway Avenue and Buckingham Way as “college main streets” offering neighborhood retail and services.
• Strong connections to the surrounding city:
 o Strengthen the University’s connections to Lake Merced and the surrounding neighborhoods.
 o Work with neighbors, the City of San Francisco, and other entities to improve public transportation and other services that benefit the entire district.

• Emphasis on the pedestrian and alternative transportation:
 o Cluster development around high-frequency transit connections to encourage transit use.
 o Establish bicycle and pedestrian networks that provide safe, direct and attractive connections to work and school.
 o Develop the 19th Avenue edge as a transit-, bicycle-, and pedestrian-friendly parkway.
 o Implement Transportation Demand Management strategies to reduce parking demand.
 o Decentralize campus parking over time from the current central garage to a series of smaller perimeter parking facilities to disperse traffic and parking impacts, claim the campus core for pedestrians and bicycles, and allow for the eventual removal of the central parking garage from the valley.

• Recognition in the city and region:
 o Position semi-public uses at the corners of campus, creating icons that redefine the University’s external identity and engage the larger community.
 o Create an identifiable and inviting campus perimeter.

• A continuous greenbelt between 19th Avenue and Lake Merced:
 o Establish the valley as the central open space of campus.
 o Provide expanded recreational fields.
 o Restore ecological landscapes in the valley.

• Universal design and access:
 o Ensure that all aspects of the campus physical environment—notably primary circulation routes and main building entrances—are comfortably usable by and inviting to the widest group of people possible.
 o Organize and design primary pathways and graphic signage to facilitate wayfinding, using a combination of visual, tactile, and auditory cues.
Establish strong north/south connections across the valley and Buckingham Way and Holloway Avenue that link the University to its residential districts and to the surrounding neighborhoods.

Establish clear east/west functional and visual connections across campus and to the surrounding district.

- A campus that models sustainability:
 - Develop transportation and land use patterns that encourage greater use of transit, walking, and bicycle commuting and reduce dependence on automobiles.
 - Make efficient use of redevelopment sites.
 - Promote sustainability through green building and site design, native landscape, natural stormwater management, alternative transportation, higher-density housing, and walkable neighborhood retail.

3.4.2 Project-Specific Objectives

1. Replace significant portions of the existing Creative Arts building, which has various deficiencies and no longer supports the academic program, and construct a new concert hall with recording and broadcast capability to provide hands-on learning for BECA students and support SF State and community programs.

2. Reinforce the academic core and extend it westward to create a contiguous, uninterrupted academic core. The Creative Arts replacement building and concert hall would occupy a pivotal location at Holloway Avenue and Font Boulevard, in proximity to residential mixed-use development and adjacent to College of Liberal and Creative Arts facilities to provide for programmatic collaboration.

3. Position semi-public uses, such as the concert hall, at the corners or edges of campus, creating icons that redefine SF State’s external identity and engage the larger community.

4. Provide for the most efficient and effective use of the West Campus Green and the Tapia Triangle for planned future Creative Arts programs.

5. Provide new on-campus student housing to aid in recruitment and retention of students and to provide close-in housing that enables students to walk to school, thereby reducing commute trips to campus and associated greenhouse gas (GHG) emissions.

6. Begin to integrate and make efficient use of more recently acquired residential properties located along the southern edge of the campus.

7. Locate new student housing, neighborhood retail, and support services in proximity to the existing Muni M line and bus lines and to the future planned underground Muni M
line and station and to planned 19th Avenue bicycle and pedestrian facilities. Additionally, locate the above uses in immediate proximity to the academic core of the campus, where pedestrian access to the core is readily available.

8. Locate higher-density student housing with ground-floor neighborhood retail and services along Holloway Avenue to redefine Holloway Avenue as a “college main street.”

9. Ensure that new construction achieves LEED (Leadership in Energy and Environmental Design) Gold or equivalent performance and energy efficiency beyond California Energy Commission Title 24 requirements. LEED Platinum certification (or an equivalent rating under WELL or another green building rating system) and ZNE (zero net energy) should be targeted, and the Project should meet other CMP and Climate Action Plan (SF State 2010) sustainability objectives.

3.5 PROJECT COMPONENTS

The Project would include construction of new housing, neighborhood-serving retail, and student support services on the south side of Holloway Avenue, and construction of the Creative Arts replacement building and concert hall on the north side of the Holloway Avenue/Font Boulevard intersection. The Project would also include preparation and implementation of design guidelines, transportation and parking improvements, utility connections, storm drainage improvements, landscaping, lighting, and the implementation of applicable CMP mitigation measures adopted as part of the CMP Mitigation Monitoring and Reporting Program. As described in Section 3.3.1, a revision to the existing Master Plan map would be required to allow for the proposed uses on the identified sites, as shown in Figures 3-4 and 3-5. All elements of the Project are further described below and summarized in Table 3-2.
Table 3-2
Project Summary

<table>
<thead>
<tr>
<th>Project Element</th>
<th>Existing Project Site Conditions</th>
<th>Proposed Project Site Conditions</th>
<th>Net Change on Project Site</th>
<th>Campus-wide Development Allowed Under 2007 CMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student housing (Block 6)</td>
<td>173 beds (Blocks 1 & 6) 7 units (Block 1)</td>
<td>550 beds</td>
<td>355 beds</td>
<td>1,198 units2 (approximately 2,995 beds)</td>
</tr>
<tr>
<td>Neighborhood-serving retail/student support services (Block 6)</td>
<td>None</td>
<td>33,000 25,000 gross square feet (GSF)</td>
<td>33,000 25,000 GSF</td>
<td>CMP calls for neighborhood retail on Holloway Avenue, but specific square footage or location on Holloway Avenue is not identified.</td>
</tr>
<tr>
<td>Parking facilities</td>
<td>53 auto spaces3 9 motorcycle spaces3</td>
<td>72 20 parking spaces</td>
<td>0 parking spaces4</td>
<td>No net increase in parking</td>
</tr>
<tr>
<td>Creative Arts replacement building (Block 1)</td>
<td>None</td>
<td>75,000 76,350 GSF</td>
<td>75,000 76,350G5 GSF</td>
<td>133,500 GSF Creative Arts 149,000 GSF Classroom/Faculty Offices6</td>
</tr>
<tr>
<td>Concert hall (Block 1)</td>
<td>None</td>
<td>60,000 GSF 800 seats</td>
<td>60,000 GSF 800 seats</td>
<td>Square footage included in Creative Arts space above</td>
</tr>
</tbody>
</table>

Source: Data compiled by SF State in 2016.
1 The seven units are occupied by approximately 3.1 people per unit which is equivalent to 22 beds.
2 CMP EIR Table 3-3 (Final EIR, Chapter 3, Changes to the Draft EIR).
3 Parking located on Tapia Drive.
4 Parking would be removed elsewhere on campus to provide for no net increase in parking with the Project.
5 22,000 11,000 GSF of the total space would be for general classroom space.
6 CMP EIR Table 3-2 (Final EIR, Chapter 3, Changes to the Draft EIR).

3.5.1 Housing

The existing residential block on the south side of Holloway Avenue between Varela and Cardenas Avenues (Block 6) contains 27 residential units, which would be demolished and replaced with a multiple-story, mixed-use building with a maximum height of 90 feet. The proposed building would include apartment-style student housing. Redevelopment of the block would allow for a more compact configuration to increase the supply of on-campus housing in conformance with the 2007 CMP’s objectives (see Section 3.4.1, above). This development pattern is also in alignment with the City-approved Parkmerced redevelopment plan, which calls for increasing the density of existing housing in multi-story buildings. Figures 3-6 through 3-8 provide a conceptual site plan, typical housing floor, and massing for the student housing/mixed-use building. See Section 3.5.4 for additional information about height limits in the adjacent Parkmerced area.

The existing residential block at Tapia Triangle (Block 1) contains 27 residential units, which would be demolished and replaced with the Creative Arts replacement building and the concert hall (see Section 3.5.3, below). As listed in Table 3-2, accounting for the loss of existing housing units on the two parcels, the net increase in housing would be 355 beds, which is well within
the increase in housing allowed under the 2007 CMP. Most of the 54 units in Block 1 and Block 6 are currently occupied by students and licensed as bed space; however, approximately seven units are currently licensed as apartments to SF State affiliates and non-affiliates.

Given that the Project would involve demolition of existing housing, SF State would comply with the California Relocation Assistance Act (California Government Code 7260 et seq.), which applies to state entities that may displace residents and businesses. This act generally requires that public entities provide relocation assistance to persons who are displaced as the result of the acquisition of property for a public use. Since the acquisition of University Park South by SF State, the number of legacy tenants has declined substantially. Any remaining legacy tenants would be offered relocation assistance, as required by law. SF State would provide displaced non-university affiliates with the option to relocate to units in other campus housing.

3.5.2 Retail and Student Support Services

Up to 33,000 square feet of neighborhood-serving retail and student support services space would be provided with the Project (see Figure 3-6). The area of retail would be primarily confined to building frontages accessible from Holloway Avenue and Varela Avenue and linked to the future retail corridor along Crespi Drive, described in the future Parkmerced vision (Maximus Real Estate Partners 2016). This space would provide for uses such as neighborhood-serving retail, student support services, bike storage, study rooms, a copy center, and retail dining. The retail and student support services would be intended to serve SF State and neighbors in the immediate vicinity. Proposed retail would not have a regional draw that would attract people from outside the Project vicinity.

The 2007 CMP envisioned Holloway Avenue as a campus main street; the Project would be designed to contribute to main street character. Project design would include a gateway presence, including a street that prioritizes pedestrians and bicycles. Where possible, “green” infrastructure would be incorporated in the streetscape design to manage stormwater runoff. The new campus main street character would be reinforced by including retail and/or student support services along Holloway Avenue and Varela Avenues.

3.5.3 Creative Arts Replacement Building and Concert Hall

The 2007 CMP included a new Creative Arts complex located on Lot 41, at the intersection of Font and Lake Merced Boulevards. A Master Plan revision approved by the Trustees of the California State University in 2014 relocated the Creative Arts complex, consisting of four replacement buildings housing academic and performance space, to the West Campus Green on Font Boulevard and the Tapia Triangle (Block 1). The 1.7-acre Block 1 site, located on the north side of Font Boulevard and Holloway Avenue, currently contains 27 residential units. The Creative Arts replacement building would accommodate the relocation of the existing BECA
program from the existing Creative Arts building, but does not include an increase in enrollment or full-time employees beyond the total campus enrollment increase to 25,000 FTE students analyzed in the 2007 CMP EIR (see Section 3.3.2, above). A concert hall would be located adjacent to the Creative Arts replacement building. Figures 3-9 and 3-10 provide a conceptual site plan and massing for the two buildings on this site. These two buildings are further described below.

Creative Arts Replacement Building

The Creative Arts replacement building would be approximately 51,000 assignable square feet/75,000 GSF, and would include instructional and support space and faculty office space. It would be located on the north side of the Tapia Triangle site, across from the existing Humanities Building (see Figure 3-9). The new Creative Arts replacement building would be two to three stories over a basement, with a maximum height of 90 feet, which is within the height limit of up to 100 feet identified for Creative Arts buildings in the 2007 CMP. The building would house two full-height television studios; a television newsroom; a radio station; video post-production space; audio recording; production and post-production space; and related classroom space for the BECA program. The building would also house interdisciplinary lecture classrooms.

The building would likely be steel-frame construction with concrete, glass, and exterior cladding. Exterior circulation located on the north side of the building would reinforce east/west circulation between the academic core and the new Mashouf Wellness Center at Font Boulevard and Lake Merced Boulevard, and future academic buildings planned to the west.

Concert Hall

An 800-seat concert hall would be located adjacent to the Creative Arts replacement building on the southeast portion of the Tapia Triangle (see Figure 3-9). The concert hall would have recording and broadcast capabilities that would provide hands-on learning for BECA students, and would serve as a performance venue and state-of-the-art recording studio for chamber orchestras, choral/vocal music, instrumental ensembles, and music groups. It also could host and simulcast lecture series, film festivals, and debates. Events may be open only to the campus community or to the neighborhood and larger community, similar to SF State’s current program of performing arts and lectures housed in McKenna and Knuth Theaters.

The concert hall would be approximately 40,000 assignable square feet/60,000 GSF, and would have a maximum height of 90 feet, which is within the height limit of up to 100 feet identified for Creative Arts buildings in the 2007 CMP. The building likely would be steel-frame construction with concrete, glass, and exterior cladding, using materials complementary to the Creative Arts replacement building. Glass would provide views into the building’s lobby and
gathering spaces. Located at the intersection of Holloway Avenue and Font Boulevard, the concert hall with its south-facing glass lobby would clearly identify an important entry into the campus from these two major streets.

3.5.4 Design Guidelines

The Project includes design guidelines that would apply to Project development. These design guidelines build on the CMP design guidelines and also ensure compatibility with the adjacent Parkmerced complex, as specified in CMP EIR Mitigation AES-3 (SF State 2007). These guidelines were prepared for compatibility, consistency, where relevant, to the Parkmerced Design Standards and Guidelines (SOM 2014), and include building massing, design, exterior treatments and design details, and building heights as specified by CMP EIR Mitigation AES-3.

The student housing/mixed-use building on Block 6 is likely the first in a series of development projects along the Holloway Avenue corridor that would define the southern edge of the campus, as envisioned in the 2007 CMP and contemplated in the future vision for the campus beyond the 2007 CMP 2020 horizon. As the farthest east site, it would also provide a gateway presence at the southern end of the campus near the busy 19th Avenue and Holloway Avenue San Francisco Municipal Transportation Agency Metro stop.

Height Limits

After adoption of the 2007 CMP, Parkmerced’s development plan received City approval. The Parkmerced plan includes significantly higher density and height limits than the conditions that existed when SF State’s CMP and EIR were approved. Given the anticipated changes at Parkmerced and SF State’s interest in providing student housing responsive to demand, the proposed building height would be greater than the 50-foot height limit referenced in the 2007 CMP for residential buildings in UPS, but would not exceed 90 feet. This additional height would also allow for the possibility of a rooftop-mounted solar array to support the goals of zero net energy.

The maximum height of 90 feet, inclusive of parapets and mechanical equipment, is compatible with the Parkmerced Design Standards and Guidelines (SOM 2014) and the City’s Parkmerced Special Use District (CCSF 2011a), which allows for mid-rise buildings of 85 to 145 feet, excluding parapets and mechanical equipment, as well as lower-rise buildings. Adjacent to the SF State campus’s southern edge, future Parkmerced mid-rise buildings likely range from 85 feet to 130 feet, according to Parkmerced’s maximum height plan (SOM 2014).

The Creative Arts replacement building and concert hall would not exceed 90 feet, which is within the height limit of up to 100 feet identified for Creative Arts buildings in the 2007 CMP.
Building Design

Building placement and orientation is critical to enhancing a development's character and promoting a vibrant and walkable lifestyle. Adherence to build-to lines creates a consistent, but permeable, edge that defines and shapes the public realm. Defining a common setback also reinforces the desired urban development pattern.

As envisioned in the 2007 CMP, the intention is to develop Holloway Avenue as a mixed-use corridor with sufficient frontage to form a consistent streetscape. Thus, the building would abut the property line along at least half of the length of the block on Holloway Avenue. Recessed plazas may mark points of entry or activity. Bay windows may project above and beyond this street wall in classic San Francisco patterns to take advantage of views up and down the street. Arcades may be employed to hold the street wall, but also to expand the public realm and create opportunities for outdoor seating, merchandise displays, or protection from the elements. Along side streets and Serrano Drive, the building line may be more variable.

Arcades, portals, parklets, and courtyards would be used to provide shade, rain protection, and places to gather. Building entrances would be bright and easy to find, and the transparency would also bring daylighting to interior spaces.

Building roofs might include usable terraces, providing additional open space; these terraces might be planted to reduce heating and cooling loads and reduce stormwater runoff. Roofing material would be light in color to reduce heat gain, and roofs may be used for the placement of solar photovoltaic arrays to reduce the amount of purchased power necessary to operate the buildings. These strategies can be used in combination.

Lighting and Ventilation

Natural ventilation would be used for all spaces wherever possible. Mechanical ventilation would be provided where required by code. Because of SF State's temperate climate and wind patterns, occupant comfort can be achieved primarily through natural ventilation.

Interior corridors would be naturally lit and could provide exterior views or vistas at changes in direction; corridors without natural light are discouraged. Vertical circulation would be placed according to code requirements, with a focus on providing universal access to the buildings. Common areas would be located adjacent to shared amenities or along primary vertical circulation paths, would take advantage of views, and would and be naturally lit and ventilated where possible.

Daylighting as the primary means of illumination is encouraged. Exterior lighting would adhere to LEED–New Construction (NC) guidelines for light pollution reduction and energy efficiency, per CMP EIR Mitigation AES-4 (SF State 2007), and would be Dark-Sky Friendly. Additionally,
reflective metal, mirrored glass, or any other reflective building materials shall not be used as primary building materials for facades, consistent with CMP EIR Mitigation Measure AES-4B and the City’s *Design Guide Standards for Bird-Safe Buildings* (CCSF 2011b).

Building Materials

Poured-in-place concrete, natural stone, and unit pavers would be used, with distinctive visual and tactile changes to highlight areas of importance and help with wayfinding. Permeable paving options would be explored and used, if effective.

Construction of the Project would use locally sourced materials with recycled content when possible, whether raw materials or manufactured items, and maximize their use as a means of limiting the environmental impacts of transporting goods. Construction of the Project would explore the possibility of reused construction and demolition materials and maximize their use as a means of limiting the environmental impacts of extracting and manufacturing new materials. Building materials that minimize or avoid chemicals that are harmful to humans or the environment would be used.

3.5.5 Transportation Improvements

Closure of Tapia Drive

SF State is applying to the City to “vacate” or close Tapia Drive. This would allow SF State to incorporate the street right-of-way into the Project site and to integrate the site into the academic core and overall campus. SF State owns the property on both sides of Tapia Drive, and closing the street is consistent with the 2007 CMP, which envisioned a major east/west walkway connecting the central academic core with sites to the west, including the Mashouf Wellness Center. Some vehicular access would be required for loading at the existing Creative Arts and Humanities buildings, but the area currently occupied by the street right-of-way would be developed as part of the site for the proposed Creative Arts replacement building and concert hall, and would be used primarily by pedestrians. (See Loading Facilities below for additional information.)

Any modification of the public right-of-way that deviates from the City’s *Public Works Standard Plans and Specifications* may require an *Encroachment Permit* or Major Encroachment Permit from the City Bureau of Street Use and Mapping. Street vacation requests are subject to City Planning Department review for conformity with the City’s General Plan and Better Streets Plan. SF State has submitted an application for street vacation and has determined that no an *Encroachment Permit* or Major Encroachment Permit would may be required. See Appendix A, Attachment A-2, Tapia Drive Street Vacation Policy Conformity Analysis, for preliminary information about the conformance of the street vacation with relevant plans. The ultimate
determination of conformance would be made by the City during its consideration of the street vacation application.

Automobile Parking

The addition of housing and neighborhood retail services supports SF State’s goal to minimize drive-alone auto trips to reduce traffic congestion and GHG emissions. Consistent with the SF State transportation demand management (TDM) plan (Nelson/Nygaard 2009), new residential and retail development should use strategies that minimize the need for parking, such as car sharing, bike facilities, and access to transit. See the section below for additional information about TDM measures.

Parking would be provided in the basement of the proposed student housing/mixed-use building on Block 6 to serve neighborhood retail, concert hall events, and visitors to campus. Student residential parking would be limited to accessible spaces. Consistent with the 2007 CMP, parking in the new student housing/mixed-use building on Holloway Avenue would relocate a portion of the campus parking supply to the perimeter of campus, removing existing parking along Tapia Drive and from elsewhere on campus, such that the Project would result in no net increase in the overall campus parking supply, as shown in Table 3-2.

The absence of available parking spaces, the available alternatives to vehicular travel (transit, bicycling, and walking), and the dense pattern of urban development would induce many drivers to seek other modes of travel or change their overall travel behavior. Any such resulting shifts to transit service in particular would be in keeping with the City’s “Transit First” policy. The City’s Transit First Policy (CCSF 2007) provides that parking policies for areas well-served by public transit, such as the SF State campus, be designed to encourage travel by public transportation and alternative transportation.

Pedestrian Improvements

The Project would include direct pedestrian access from Block 1 to paths accessing the campus core by reallocating street space on Tapia Drive to the pedestrian realm and adding outdoor active space to the site at Block 6 (see Closure of Tapia Drive, above). The Project would also provide for bulb outs and wider sidewalks consistent with the Better Streets Plan, improved crosswalks and new access ramps on streets within the Project site.

Varela Avenue, adjacent to the student housing/mixed-use building site, is envisioned as a shared-street pedestrian oriented street. The Project would be designed to connect to the future Parkmerced transit station by adding pedestrian amenities on the Project site and a courtyard that opens towards the transit hub. The alignment of the courtyard to this potential transit hub would promote movement of visitors through the courtyard from the new transit hub, ultimately connecting pedestrians to the SF State campus via Holloway Avenue. The
Project would also include improved pedestrian crossings on Varela Avenue. The final design of the Project’s proposed modifications in the public right-of-way, including pedestrian crossings, would be completed in consultation with City staff as part of the Project’s approval process for a street improvement permit and sidewalk legislation through the City. Once the future transit hub is being designed and implemented by the City, completed, Varela Avenue may be restricted to shuttles and Muni buses. Additional pedestrian amenities and improvements could be considered as part of that future project such that pedestrians would be prioritized and the courtyard would act as an extension of the transit hub on the opposite side of the street. Improvements would include eliminating parking on Varela Avenue, a strategy to modify and reduce curbs so that ease of movement is promoted across Varela Avenue, and pavers that strengthen the pedestrian connection as well as provide a safe street crossing.

Transportation Demand Management Measures

Consistent with the SF State TDM plan (Nelson/Nygaard 2009), new residential and retail development should use strategies that minimize the need for parking, such as bike facilities, car sharing, and access to transit. The new student housing/mixed-use building at the southeast corner of Holloway Avenue and Varela Avenue would include secure, covered bicycle storage on the first floor of the building. Approximately 185 Class 1 secure, covered bicycle storage spaces would be provided in the building. Approximately 12 Class II bicycle parking spaces would also be provided in the vicinity of the Creative Arts replacement building and concert hall and would be in a visible location, easily accessible to the buildings. These spaces are part of a campus-wide planning effort to improve bicycle infrastructure and access to campus, addressing routes, safety, and centralized bike parking areas that include a mix of racks and secure facilities.

The Project is directly accessible to 19th Avenue and the M Line as well as Routes 28/28R, 29 and 57. Other TDM measures implemented as part of the Project include car sharing and pedestrian amenities (discussed above). Additionally, the Project is by nature a TDM strategy to reduce vehicle trips as it relocates students who would otherwise live off-campus into on-campus housing.

Loading Facilities

The existing commercial loading zone located on Tapia Drive for the College of Liberal and Creative Arts—the existing Creative Arts and Humanities buildings would remain, with access through the bollard or sign controlled pedestrian zone via Holloway Avenue. Therefore, the Project would not change the existing commercial loading access for College of Liberal and Creative Arts—the existing buildings accessed from Tapia Drive. Commercial loading for the Creative Arts replacement building and concert hall would occur on the vacated Tapia Drive and would typically include delivery of materials for the Creative Arts building or preparing
for concerts at the concert hall, which would occur throughout the day. Based on delivery activity at the existing Creative Arts and Humanities buildings it is anticipated that deliveries along Tapia Drive would occur two to three times per week during the semester and less frequently during the summer. SF State’s Shipping and Receiving Department would also provide delivery service. However, these deliveries occur along Centennial Way, using an off-street cart or fork lift for heavier objects. It is anticipated that these types of deliveries would occur one to two times per day.

The new pedestrian plaza would be designed to accommodate the commercial loading trucks, providing a clear pathway from Holloway Avenue to the loading zone and from the loading zone to Font Boulevard, including adequate curb radii. This would be similar to other loading facilities on campus where the loading zone is located within a shared loading and pedestrian/bicycle zone, such as for the McKenna Theater. Commercial loading access from Holloway Avenue to the Creative Arts replacement building and concert hall would be controlled with bollards or signage similar to the designs of other mixed commercial loading and pedestrian spaces on campus. Additionally, signage regarding deliveries would be in place to warn pedestrians of potential deliveries. Access to these loading zones would conform to SF Planning Code and Better Streets Plan.

Passenger loading for the concert hall should be provided on Font Boulevard. The passenger loading zone would need to be similar in size to the existing passenger loading zone on Holloway Avenue in front of the McKenna theatre, which is approximately 100 feet. This passenger loading zone would be subject to San Francisco Metropolitan Transportation Agency approval because of its location in the public right-of-way.

Residential loading (deliveries and passenger loading) would be accommodated within the existing commercial loading zone on Cardenas Avenue and the new parking garage in the proposed student housing/mixed-use building. In addition, there are existing passenger loading zones along Holloway Avenue, as shown in Figure 4.5-1 (see Chapter 4.5, Transportation).

Emergency and Accessible Access

Emergency and accessible access would be provided via the main building entrances at street level. Emergency access could also be provided via the loading and service areas identified above.

3.5.6 Utilities and Energy Use

Water

The Project would include installation of new potable water infrastructure to support the new buildings. Several 2-inch-diameter lateral pipes would be installed to connect to the existing 8-inch-diameter line along Holloway Avenue and Font Boulevard; 3- to 4-inch-
diameter fire service lateral pipes would also be installed to provide fire water services to the buildings. The exact size of these lateral pipes could vary contingent upon pressure and flow requirements and have not undergone final engineering analysis. Any connections with SFPUC mains would be consistent with City standards. Such consistency would provide for adequate fire suppression reliability and capacity.

The Project would aim to include installation of recycled water infrastructure to accept the supply of recycled water from the City when available and SF State would explore other water reuse strategies for the Project. Targeted strategies could include ultra-water-efficient bathroom fixtures, dual plumbing to allow use of recycled water for toilet and urinal flushing, and recycled water infrastructure for irrigation. The use of non-potable water during construction for soil compaction and dust control would also be considered, if feasible.

Wastewater

The Project would involve installation of new 8-inch-diameter wastewater infrastructure to support the new buildings. A connection to the existing wastewater pipeline located on the north side of Holloway Avenue and Font Boulevard would be installed.

Stormwater

The Project would be located in a City combined sewer area. To minimize impacts of the Project on the combined sewer system, SF State would implement a stormwater management approach compatible with the City’s Stormwater Management Requirements and Design Guidelines (CCSF 2016). The Project site has an impervious area greater than 50%. Accordingly, the Project would implement a stormwater management approach that reduces the existing stormwater runoff flow rate and volume by 25% for a 2-year, 24-hour design storm. The Project would minimize disruption of natural hydrology by implementing low-impact design approaches such as reduced impervious cover, reuse of stormwater, or increased infiltration. The actual design of the stormwater management system would be developed as the design process proceeds, but it is expected that the following types of features would be evaluated to achieve the above criteria: infiltration zones/dry wells, permeable pavement, planted roof, cistern, and bio-retention zones.

By implementing these design criteria, the Project would surpass the requirements of the 2007 CMP, calling for no net increase in storm flow discharge from the campus to the combined sewer system. The stormwater management plan for the Project would be consistent with LEED credit SS 6.1 (as described by the U.S. Green Building Council) and would be compatible with the City’s Stormwater Management Requirements and Design Guidelines (CCSF 2016).
Energy
Project buildings would be connected to the existing electrical and natural gas system on campus, though efforts would be made to minimize or eliminate the use of natural gas. New buildings would be designed to achieve at least LEED Gold or equivalent performance, and energy efficiency beyond Title 24 requirements. LEED Platinum and zero net energy would be targeted using a combination of advanced green building and energy efficiency measures, onsite renewable energy, district energy strategies, and/or renewable energy credits. Onsite renewable energy could include roof-mounted solar arrays. The efficiency measures to be incorporated could include high efficiency HVAC equipment, daylight harvesting, highly insulated wall assemblies, high-performance glazing, and similar strategies.

An emergency generator would be provided as required by the California Building Code to power the elevators and emergency lighting in the case of a power outage. No optional standby power is planned for the Project.

Solid Waste
All proposed buildings would be provided with traditional trash, composting, and recycling services and associated receptacles.

3.5.7 Landscaping
The Project would incorporate water-efficient landscape. The selected plant species would require zero or minimal irrigation after plants are established, and would reflect the landscape zones and plant list detailed in the 2016 San Francisco State University Landscape Framework and Forest Management Plan. In low areas and natural collection points, stormwater management zones would capture, convey, and detain stormwater runoff within vegetated bio-detention landscape elements.

Construction of the Project would likely include the removal of all existing on-site trees, but the Project would replace some trees and provide other planting on the site, as described above. If the Project would result in tree removal in the City’s right-of-way, SF State would comply with the permitting requirements of the City’s tree protection legislation.

3.5.8 CMP EIR Mitigation Monitoring & Reporting Program
As part of the 2007 CMP approval, the Trustees of the California State University adopted a Mitigation Monitoring and Reporting Program. The mitigation measures included in this program are already being implemented as part of the CMP, the certified CMP EIR, and the Project and therefore they are considered to be part of the Project and do not need to be readopted. The applicable mitigation measures from the Mitigation Monitoring and Reporting
Program are included in Chapter 4 and Appendix A, Attachment A-1 of this EIR. If additional mitigation measures are required to address project-level impacts, those measures are identified in Chapter 4 of this EIR.

3.6 DEMOLITION AND CONSTRUCTION

Demolition of the existing housing on the Tapia Triangle would be anticipated to occur in late summer 2017. Demolition of existing housing at the southeast corner of Holloway Avenue and Varela Avenue would likely occur somewhat later than the demolition on the Tapia Triangle.

Construction staging would occur on the Project site in areas not proposed to support the new buildings. Construction workers would access the construction site primarily via Holloway Avenue and Font Boulevard.

Construction of the Creative Arts replacement building and concert hall would take approximately 24 months to complete, beginning in fall 2017, with completion in fall 2019. Construction of the student housing building would take approximately 24 months, beginning somewhat later than the Creative Arts buildings, with completion in 2019/2020. There could be up to a 24-month overlap in the construction schedules for the Creative Arts buildings and the student housing building.

Construction would be performed by qualified contractors. Plans, specifications, and construction contracts would incorporate stipulations regarding standard California State University requirements and acceptable construction practices, including abatement of hazardous building materials per regulatory requirements and best building practices prior to demolition, grading and demolition, safety measures, vehicle operation and maintenance, excavation stability, erosion control, drainage alteration, groundwater disposal, traffic circulation, public safety, dust control, and noise generation.

In particular, in accordance with CMP EIR Mitigation HAZ-5A, a construction traffic control plan would be prepared by SF State and/or the construction contractors to address potential lane closures, construction vehicle access routes and parking, hours of construction, etc. The traffic control plan would comply with the City’s Encroachment Permit and/or Construction Major Encroachment Permit requirements, if applicable. Given that Phase 1 of the Parkmerced Project would be under construction at the same time as the Project, SF State’s traffic control plan would be coordinated with the traffic control plan for that project to minimize temporary effects on

1 Hazardous building materials include, but are not limited to, asbestos building materials, lead-based paint, and other regulated materials such as fluorescent lights and electrical ballasts. Termiticides, which are not regulated, are also considered to be hazardous and any building materials treated with termiticides, such as chlordane, would also be properly abated before building demolition, per applicable Department of Toxics Substances Control guidance.
vicinity roadways. Traffic control would not encroach onto the State right-of-way on 19th Avenue and therefore an encroachment permit from Caltrans would not be required for the Project.

3.7 PROJECT APPROVALS

This section describes actions required for Project approval by state, regional and local agencies. Discretionary approvals include certification of the EIR under CEQA; approval and adoption of the proposed revision to the Master Plan map; and approval of schematic plans for the Creative Arts replacement building, concert hall, and student housing/mixed-use building by the Trustees of the California State University, as summarized in Table 3-3. Other approvals could also be necessary by the Responsible Agencies noted below.

Table 3-3
Project Approvals

<table>
<thead>
<tr>
<th>Authorizing Jurisdiction or Agency</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final EIR</td>
<td>Certification</td>
</tr>
<tr>
<td>San Francisco State University Master Plan Map Revision</td>
<td>Approval and Adoption</td>
</tr>
<tr>
<td>Amendment to the Self-Support Capital Outlay Program</td>
<td>Approval and Adoption</td>
</tr>
<tr>
<td>Schematic Plans for the Creative Arts Replacement Building, Concert Hall, and Student Housing/Mixed-Use Building and other related actions and approvals, as necessary.</td>
<td>Approval</td>
</tr>
<tr>
<td>Board of Trustees of the California State University</td>
<td></td>
</tr>
<tr>
<td>Division of the State Architect</td>
<td>Approval</td>
</tr>
<tr>
<td>Accessibility Compliance</td>
<td>Approval</td>
</tr>
<tr>
<td>State Fire Marshal</td>
<td>Approval</td>
</tr>
<tr>
<td>Facility Fire and Life Safety Compliance</td>
<td>Approval</td>
</tr>
<tr>
<td>Regional Water Quality Control Board</td>
<td>Approval/Enforcement</td>
</tr>
<tr>
<td>National Pollutant Discharge Elimination System Permit (NPDES) – Storm Water Pollution Prevention Plan (SWPPP) and Notice of Intent to Comply with NPDES Construction Permit</td>
<td>Approval/Enforcement</td>
</tr>
<tr>
<td>Bay Area Air Quality Management District</td>
<td>Approval</td>
</tr>
<tr>
<td>Authority to Construct and/or Permits to Operate Hazardous Materials Removal and Asbestos Demolition</td>
<td>Approval</td>
</tr>
<tr>
<td>Rule Compliance</td>
<td></td>
</tr>
<tr>
<td>City and County of San Francisco</td>
<td>Review/Verification</td>
</tr>
<tr>
<td>Fire Flow and Hydrants – San Francisco Fire Department</td>
<td>Approval</td>
</tr>
<tr>
<td>Tapia Drive Vacation and Street/Sidewalk Improvements – Department of Public Works Bureau of Street-Use and Mapping in coordination with other City departments, including San Francisco Metropolitan Transportation Agency (SFMTA), Bureau of Urban Forestry, and others</td>
<td>Approval</td>
</tr>
<tr>
<td>Water and Sewer Connections/Services/Encroachment – Department of Public Works and San Francisco Public Utilities Commission</td>
<td>Approval</td>
</tr>
</tbody>
</table>
3.8 REFERENCES

FIGURE 3-2
Project Location
FIGURE 3-3

Project Site Location

Source: Bing Maps (Accessed 2016); Dudek (2016)

San Francisco State Creative Arts & Holloway Mixed-Use Project EIR
INTENTIONALLY LEFT BLANK
INTENTIONALLY LEFT BLANK
FIGURE 3-6

Holloway Student Housing/Mixed-Use Site Plan (Block 6)

SOURCE: Gould Evans (2016)
INTENTIONALLY LEFT BLANK
Holloway Student Housing/Mixed-Use Typical Housing Floor (Block 6)
FIGURE 3-8
Conceptual Massing for Holloway Mixed-Use Building
INTENTIONALLY LEFT BLANK
INTENTIONALLY LEFT BLANK
Conceptual Massing for Creative Arts Building

FIGURE 3-10

SOURCE: Mark Cavagnero Associates Architects (2016)
CHAPTER 4
ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION MEASURES

4.0 INTRODUCTION

This section of the Focused Tiered Final EIR presents potential environmental impacts of the Creative Arts & Holloway Mixed-Use Project (Project). The scope of the analysis and key attributes of the analytical approach are presented below to assist readers in understanding the manner in which the impact analysis was conducted.

Preparation of this Focused Tiered Final EIR was preceded by the Tiered Initial Study for the Project (included in Appendix A), which, along with public scoping comments received (included in Appendix B), determined that a Focused Tiered EIR would be prepared to consider potential Project impacts to aesthetics, air quality, greenhouse gas emissions, historical resources, and transportation. All other environmental topics were adequately addressed in the 2007 Campus Master Plan (CMP) EIR pursuant to CEQA Guidelines Section 15152(f)(3), as described in the Revised Tiered Initial Study included in Appendix A and summarized in Chapter 1, Summary, of this EIR.

This chapter examines potential impacts related to aesthetics, air quality, greenhouse gas emissions, historical resources, and transportation, presenting the environmental setting, standards of significance, methodology of the analysis, impacts of the Project on the environment, and proposed measures to mitigate significant impacts. This analysis was conducted to determine if there are any new significant impacts not previously identified in the 2007 CMP EIR, substantially more severe impacts over those previously identified, and/or additional Project-specific mitigation that would eliminate or reduce the Project’s contribution to previously identified significant impacts. Additional information about the analysis is provided below.

4.0.1 Tiering

This EIR is tiered to the 2007 CMP EIR, which is a Program EIR under CEQA Guidelines Section 15168. Given that, the focus of the environmental analysis in this Focused Tiered EIR is to determine whether substantial changes in the Project, the circumstances under which the Project would be undertaken, or the presence of new information of substantial importance could result in the identification of new significant effects not discussed in the CMP EIR, or result in substantially more severe impacts over those previously evaluated, based on CEQA Guidelines Sections 15168(c) and 15162(a).
4.0.2 Definition of Baseline

The CMP EIR baseline was 2006. Conditions existing in that year are considered the baseline against which changes that would result from the 2007 CMP were evaluated. When considering whether there is “new information of substantial importance” under CEQA, the current environmental setting is considered in this EIR. The current environmental setting is the physical environmental conditions at the time the Notice of Preparation for this Focused Tiered EIR was released in July 2016. Much of the setting information in this document is incorporated by reference and summarized from the 2007 CMP EIR, from which this EIR is tiered. However, updated 2016 information is provided, as needed, to determine whether new significant impacts or substantially more severe impacts could occur over those identified in the 2007 CMP EIR.

4.0.3 Definition of the Study Area

For each topic area of analysis, the study area evaluated consists of both the local Project area around the Project site and the area that could be potentially affected by impacts in each resource topic. The study area for each environmental resource area is defined in the pertinent resource sections in this chapter.

4.0.4 Basis of Impact Analysis

The analysis of impacts in this Final EIR is based on the location and magnitude of the physical effects that are projected to occur as a result of implementation of the Project. Impacts are evaluated in terms of changes to existing conditions that would be caused by the Project and that would be distinct from those identified for the 2007 CMP EIR. Changes in conditions with the Project are compared to CMP EIR standards of significance to determine whether new significant impacts or substantially more severe impacts would occur compared to those identified for the 2007 CMP EIR.

Standards of significance are identified for each environmental topic based on those standards provided in the CMP EIR. These standards are the thresholds used to determine whether implementing the Project would result in a significant environmental impact. Impacts are presented for each environmental topic, and a significance determination is provided at the end of each impact discussion. A significant impact is defined under CEQA as a substantial adverse change to the physical environment. Additionally, the impact discussion identifies whether new or substantially more severe impacts would occur compared to those identified in the 2007 CMP EIR. Additional information about the methodology used to assess impacts is provided in each environmental resource area.
4.0.5 Year of Impact Analysis

CMP EIR impacts were evaluated in terms of changes due to the CMP as compared to existing conditions, and updated, where relevant, from the 2007 CMP EIR (see Definition of Baseline, above). For each resource area, the conditions that would result at the end of the planning horizon of the 2007 CMP (2019–2020) are compared to baseline conditions to characterize the anticipated change in conditions. For simplicity, this EIR uses “2020” throughout to refer to the 2019–2020 academic year.

A planning horizon beyond 2020 is not considered in this EIR, as the EIR is tiered to the CMP EIR, which has a horizon of 2020. Additionally, a planning horizon beyond 2020 is not considered given that San Francisco State University does not have an adopted CMP that covers growth and development beyond 2020, and, therefore, projecting growth on the campus beyond 2020 would be speculative.

4.0.6 Cumulative Impacts

CEQA requires that, in addition to project impacts, an EIR must discuss cumulative impacts. According to Section 15355 of the CEQA Guidelines, cumulative impacts refer to two or more individual effects that, when considered together, are considerable or that compound or increase other environmental impacts. The individual effects may be changes resulting from a single project or a number of separate projects. The cumulative impact from several projects is the change in the environment that results from the incremental impact of the project when added to other closely related past, present, and reasonably foreseeable probable future projects. Cumulative impacts can result from individually minor but collectively significant projects taking place over a period of time.

CEQA Section 15130(a) also indicates that an EIR should not discuss cumulative impacts to which the project would not contribute. If the combined cumulative impact (impacts from other projects combined with the impact from a proposed project) is not significant, then the EIR should briefly indicate why the impact is not significant, and no further evaluation is necessary. If the combined cumulative impact is significant, the EIR also must indicate whether the project’s contribution to that significant cumulative impact will be “cumulatively considerable.” According to Section 15065, “cumulatively considerable” means the incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects as defined in CEQA Section 15130.

Pursuant to Section 15130 of the CEQA Guidelines, the discussion of cumulative impacts must reflect the severity of the impacts and their likelihood of occurrence, but the discussion need not provide as much detail as is provided for the effects attributable to the project alone. The
discussion should be guided by the standards of practicality and reasonableness, and should focus on the cumulative impacts to which the identified other projects contribute rather than the attributes of other projects that do not contribute to the cumulative impact.

Section 15130(b) of the CEQA Guidelines provides additional guidance with respect to how an adequate cumulative impact analysis might be completed. Such an analysis can be based on (1) a list of past, present, and probable future projects producing related or cumulative impacts, including, if necessary, those projects outside the control of the agency, or (2) a summary of projections contained in an adopted general plan or related planning document, or in a prior environmental document that has been adopted or certified that describe or evaluate regional or area-wide conditions contributing to the cumulative impact.

The 2007 CMP EIR cumulative analysis used both of the above methods for the cumulative topics evaluated. For example, the CMP EIR used growth forecasts of population and housing for 2020 in the population and housing analysis, and used a list of reasonably foreseeable future projects in the vicinity of the campus for the aesthetics analysis. The transportation analysis used a combination of the two approaches by basing the analysis on both an annual growth rate in traffic volumes and a list of reasonably foreseeable future projects in the vicinity of the campus.

The 2007 CMP EIR evaluated the cumulative environmental impacts of campus programs and initiatives, development of new facilities, and population growth that would occur through the 2020 academic year under the 2007 CMP, together with the impacts from other reasonably foreseeable growth and development. As the Project is consistent with the CMP building program, it was considered in the project and cumulative analyses previously included in the CMP EIR. This Focused Tiered EIR reviews the prior cumulative analysis provided in the CMP EIR for aesthetics, air quality, historical resources, and transportation to determine whether new significant cumulative impacts or substantially more severe cumulative impacts could occur with the Project. As the CMP EIR did not evaluate greenhouse gas emissions, a cumulative assessment of this topic is provided in this Focused Tiered EIR.

4.0.7 References

4.1 AESTHETICS

This section of the Focused Tiered Final EIR presents potential aesthetic impacts of the Creative Arts and Holloway Mixed-Use Project (Project). Preparation of this Focused Tiered Final EIR was preceded by the Tiered Initial Study, which determined that an EIR would be prepared to consider the potential for the Project to result in new significant impacts related to aesthetics or substantially more severe impacts compared to those identified in the Campus Master Plan (CMP) EIR. Section 4.1 of the 2007 CMP Draft EIR (SF State 2007a) addresses the aesthetic effects of campus growth under the 2007 CMP (SF State 2007b).

This section presents the environmental setting, impacts of the Project on the environment, and proposed measures to mitigate any identified significant impacts. Information is incorporated by reference from the 2007 CMP EIR, from which this EIR is tiered, as described in Chapter 2.

Public and agency comments related to aesthetics were received during the public scoping period in response to the Notice of Preparation, and are summarized below:

- The EIR need not consider the aesthetics of a project in determining if a project has the potential to result in significant effects, if it meets the definition of a Transit-Oriented Project in accordance with CEQA Statutes Section 21099.1
- SF State should have iconic buildings that are beautiful and inviting, and that impress young minds.
- See also Section 6, Alternatives, for additional scoping comments related to aesthetic impacts and alternatives.

To the extent that issues identified in public comments involve potentially significant effects on the environment according to the California Environmental Quality Act (CEQA), and/or were raised by responsible and trustee agencies, they are identified and addressed in this EIR. For a complete list of public comments received during the public scoping period refer to Appendix B.

4.1.1 Environmental Setting

Section 4.1 of the 2007 CMP EIR addresses the existing environmental setting for aesthetics (SF State 2007a). The following discussion summarizes information presented in the “Environmental

1 CEQA Statutes Section 21099 applies to “transit-oriented infill projects” that meet particular criteria. This Project does not fully meet the criteria for a transit-oriented infill project under CEQA and, therefore, the provisions of this section were not applied to the Project. As a result, aesthetics impacts of the Project are considered in this EIR.
Setting” subsection of Section 4.1 of the 2007 CMP EIR, updated with current and site-specific information as necessary.

Study Area

The study area for the aesthetics analysis includes the southern portion of the San Francisco State (SF State) campus near the Project site and the areas within 0.5 mile of the southern portion of the campus in all directions from which the Project site is visible. The term “campus” refers to the 144-acre main campus (see Figure 3-3 in Chapter 3). See Chapter 3 for further description of the 144-acre campus. The existing SF State campus is located in the southwestern corner of the City and County of San Francisco, in California (see Figure 3-2 in Chapter 3). The campus lies within an urban context along the 19th Avenue corridor. Mostly dense urban and suburban development lies to the north, south, and east of the campus and mostly open space uses lie to the west of the campus toward the Pacific Ocean.

The approximately 3.6-acre Project site is located in the south campus, with one parcel (Block 6) on the south side of Holloway Avenue between Cardenas and Varela Avenues, and one parcel (Block 1), referred to as the Tapia Triangle, bounded by Tapia Drive, Holloway Avenue, and Font Boulevard (see Figure 3-1 in Chapter 3). The Project site is part of University Park South, which was purchased by SF State between 2000 and 2005 and includes a portion of the original Parkmerced development, which extends beyond the campus boundaries to the south. Block 1 and Block 6 are composed primarily of two-story housing around the perimeter of the block, with an interior courtyard.

Visual Character of SF State near the Project Site

Campus Context

The campus is composed of more than 50 buildings that were built between 1939 and the present. The existing buildings range in size from fairly small (less than 1,000 gross square feet \((\text{gsf})\)) to fairly large (more than 600,000 gsf). Most academic and residential buildings on the SF State campus are two to six stories tall. However, there are a few notable exceptions, including: The Towers at Centennial Square just south of the parking garage (17 stories), Hensill and Thornton halls near 19th Avenue (eight and nine stories), and the apartment towers in University Park North (10 stories). Residential buildings in the University Park North area are generally low-lying two- to three-story apartment buildings and 10-story apartment towers, as noted above. Residential buildings in the University Park South (UPS), including those on the Project site, are two stories.

In general, campus land uses are grouped geographically. Academic buildings, library, and administration building surround the Quad and make up the academic core of the campus, which is north of the Project site. Groups of residential buildings lie to the north, west, and
south of the academic core, such as UPS, which is located south of the academic core. Student, administrative and support services are spread throughout the campus.

One of the major campus entrances is located at the intersection of 19th and Holloway Avenues, just northeast of Block 6. Additionally, a major pedestrian circulation corridor exists along the east-west connection provided primarily on Holloway Avenue and Font Boulevard, adjacent the Project site.

The campus landscaping is dominated by mature stands of Monterey Cypress, Monterey Pine, and Eucalyptus located in and around the Quad and the campus core, which are north of the Project site. These trees, which dictated the location and footprint of many of the campus buildings, formerly stood amid agricultural fields and constitute the only surviving pre-campus vegetation. Along Holloway Avenue, near Block 6, and Tapia Drive and Font Boulevard, near Block 1, only street trees and other developed landscaping exist. The West Campus Green is located just northwest of Block 1.

Visual Character of Project Site

The visual character of the campus near the Project site, on the east-west corridor along Holloway Avenue and Font Boulevard consists of the original edge of the campus. Former Parkmerced residential development now owned by the campus is located mostly along the south side of this corridor, with the exception of Block 1, and other campus development is located along the north side of the corridor. The campus buildings along this corridor have key character features consistent with a mid-century modern architectural style popular in the 1950s when the original campus buildings were constructed, many of which still remain. These features include flat roofs, long horizontal groupings of windows with raised frames and eyebrow overhangs, and smooth plain wall surfaces of painted concrete or stucco. Newer buildings, like the J. Paul Leonard Library, while representative of modern construction, have incorporated some of these key features.

Former Parkmerced garden apartments, including those on the Project site, are located mostly on the south side of the east-west corridor along Font Boulevard and Holloway Avenue. The exception to this pattern is the Block 1 portion of the Project site, which is located north of this corridor on Tapia Drive. This site is also referred to as the Tapia Triangle. SF State acquired the northernmost blocks of the original Parkmerced development (north of Serrano Drive and Pinto Avenue) for student housing. Although these blocks are not part of the current Parkmerced complex, they continue to relate visually, architecturally, and spatially more to the Parkmerced complex than to the SF State campus (CCSF 2010). Photographs of the garden apartments on the SF State campus are provided in Chapter 4.4.
As documented in the Parkmerced Project EIR (CCSF 2010), the two-story (up to 40-foot-tall) garden apartments are attached, concrete or stucco-clad, rectangular volumes lining the perimeter of the residential blocks. Substantial jogs in the block façade articulate separate smaller-scaled volumes to provide visual interest in a play of volumes and light and shadows. This effect is accentuated on each block by a palette of alternating colors. The garden apartment buildings are all simple rectilinear volumes embellished with Colonial Revival-inspired architectural elements, including hipped and gabled roof lines, dormers and cupolas, porticos, columns, decorative railings, and pedimented door surrounds to mark the entrances to the buildings. The overall effect of the garden apartment blocks is to provide some variety in what are otherwise similar, repetitive, cohesive buildings. Most garden apartment blocks include a laundry courtyard, interior courtyards, and one or two attached carports in the interior of the block.

The circulation plan of Parkmerced contributes to its visual character (CCSF 2010). The streets of Parkmerced are laid out in a hierarchical radial pattern centered on an elliptical central plaza (the Common) ringed by a central circular hub street (Juan Bautista Circle). Broad landscaped drives (Font Boulevard, Crespi Drive, Bucareli Drive, and Grijalva Drive) radiate from (or converge at) the Commons. The broad landscaped drives intersect, via roundabouts, with a network of secondary streets that provide access to residential blocks and shared open spaces. From the secondary streets, automobiles are led into carports, garages, and areas of designated street parking. Pedestrian circulation through the site is provided by a system of concrete and asphalt sidewalks. Pedestrian circulation is organized in much the same way as vehicular circulation, progressing through a hierarchy of public and semi-public spaces to individual apartment courtyards, terraces, and units. The Project site, including Block 1 and Block 6 of the original Parkmerced area, is located on the northern edge of this circulation system.

The vegetation associated with the Parkmerced complex consists of a relatively limited palette of cultivated California native and non-native species (CCSF 2010). The vegetation includes mature specimen trees, geometrically-shaped lawns, and a variety of shrubs and ornamental plantings. The overall landscape design includes the careful siting of specimen trees, shrubs, and ornamental plantings within broad areas of lawn, along landscaped drives, around exterior block façades, in shared open spaces, and in interior courtyards, such as those within Block 1 and Block 6.

Visual Character of Surrounding Area

East of the SF State campus and Project site lies 19th Avenue (State Route 1), a major six-lane roadway corridor, which includes a San Francisco Muni rail line down the center median. This route is a north-south connector between Interstate 280 and Highway 101. This route is typically congested, especially during the morning and evening commute periods. The Ingleside neighborhood, composed of one- and two-story single-family residential homes, is also east of
the SF State campus and Project site. Those homes closest to the campus and Project site along 19th Avenue face away from the roadway corridor and the campus. Back yard fence lines are visible along this portion of roadway corridor. On Holloway Avenue, east of the campus and Project site, the elevations rise toward Twin Peaks.

West of the SF State campus and Project site lies Lake Merced Boulevard, Lake Merced, and the Harding Park Municipal Golf Course. Lake Merced is composed of four lakes, including: North Lake, South Lake, East Lake, and Impound Lake. East Lake is the portion of Lake Merced that is in proximity to the SF State campus, and is also visible from the intersection of Lake Merced Boulevard and Winston Drive. Lake Merced is also an important recreational resource, providing for boating, fishing, golfing, jogging, bicycling, and other activities. The Harding Park Municipal Golf Course is located immediately adjacent to Lake Merced Boulevard, and is visible through the trees that line the boulevard.

South of the SF State campus and the Project site lays the remainder of the original Parkmerced neighborhood. See the description under “Visual Character of Project Site,” above.

Scenic Views and Vistas

Views from the Campus and Project Site

Ground-level views from the campus of off-site locations are available mainly from the periphery of the campus boundaries, such as near the Project site located along the southern edge of the campus, and consist primarily of short- to mid-range views of adjacent areas. From the eastern boundary of the campus on 19th Avenue near Block 6, short- to mid-range views are available to the north and south along the 19th Avenue corridor. These views are of a major six-lane roadway corridor, which includes a San Francisco Muni rail line down the median, with residential development to the east.

From the southern boundary of the campus and Project site, which runs from east to west along Holloway Avenue, Serrano Drive, Font Boulevard, Pinto Avenue, Arballo Drive, and Vidal Drive, short-range views are available of adjacent residential development in the Parkmerced area.

None of these ground-level views from the campus and Project site of off-site locations constitute scenic views or vistas, as they are not expansive, unique, or of particularly high quality. Long-range views in various directions may be available from high-rise buildings on campus, but typically are not afforded from publicly accessible vantage points. No other long-range views of off-site locations are available from public vantage points on the campus or Project site, due to topography and/or adjacent development, which blocks such views.
Views from Off-Campus

As indicated in the CMP EIR, a scenic vista or view is defined as an expansive view of a unique or highly valuable landscape that is observable from a vantage point that is accessible to the public.

Views of the campus from off-site locations are available mainly from areas immediately adjacent to the campus and consist primarily of short- to mid-range views of the campus. From areas to the east of the campus, short-range views of the campus are available primarily along the 19th Avenue corridor and from the residences along this roadway. These views are of two- to eight-story campus buildings and stands of Monterey cypress and pine trees, which are immediately adjacent to the roadway. The trees somewhat screen and/or soften the appearance of campus development from these locations. The Project site is not visible from immediately east of the campus, such as from 19th Avenue, due to intervening buildings and trees.

Longer-range views toward the Pacific Ocean are available further to the east as the elevations rise toward Twin Peaks. Expansive scenic views that include the Project site and the Pacific Ocean beyond are available from some public vantage points, such as public parks within the west-facing hills and foothills of the San Francisco Peninsula Coastal Range that run generally north to south, east of the Project site. These views, especially at higher elevations, are more expansive and consist of urban development in the fore- and mid-ground with the open spaces around Lake Merced and the Pacific Ocean in the background. From these longer-range views, the campus is distinguishable from other urban development in this portion of San Francisco by its taller trees and buildings. Tall buildings also exist to the south of the campus in the Parkmerced area, which is also visible from these locations farther east of the campus. Figure 4.1-1, View Looking West from Brooks Park, shows the view from Brooks Park to the east of the campus with public views looking west toward SF State campus, Parkmerced and the Pacific Ocean. Twin Peaks to the east of the campus is designated as an important vista point to be protected in the San Francisco General Plan. The campus is not distinguishable from Twin Peaks. There are no other prominent, publicly accessible vantage points with views of the SF State campus, including the Project site, to the east of the campus.

From areas to the south, short- and mid-range views of the campus and Project site are available from adjacent residential areas in Parkmerced. These views are of the two-story UPS residential buildings and of other campus buildings (ranging in height from two to six stories) and trees along Holloway Avenue and Font Boulevard. Longer-range views of the campus and Project site from the south are not available due to intervening development and trees. None of the available views of the campus and Project site from the south are considered scenic views or vistas, as they are not expansive, unique, or of particularly high quality.

From areas to the west, short-range views of the campus are available along Lake Merced Boulevard and intermittent mid-range views of the campus are available from the eastern side
of the Harding Park Municipal Golf Course through the trees along Lake Merced Boulevard. These views are of two- to six-story campus buildings and groves of trees in the valley on campus. Longer-range views of the campus from the west, such as from John Muir Drive, Skyline Boulevard, and the pedestrian path along the west side of Lake Merced, are not available due to intervening topography and trees associated with the Harding Park Municipal Golf Course. None of the available views of the campus from the west are considered scenic views or vistas, as they are not expansive, unique, or of particularly high quality. Additionally, the Project site is not visible from the west of the campus due to intervening development.

As the Project site is not visible from the north of the campus, views from these off-campus vantage points are not described in this EIR.

Scenic Resources

The only scenic resource on the SF State campus identified in the CMP EIR is a small grove of Monterey Cypress and Monterey Pine located in and around the Quad, located north of the Project site. Views of this small grove from the Project site are limited and consist of views between buildings from Block 6, such as near the Administration Building on Holloway Avenue. There may be other locations along Holloway Avenue, Font Boulevard, and Tapia Drive where the grove is visible above buildings.

There are no designated scenic roads in the vicinity of the campus and Project site. The CMP EIR indicated that there are no other scenic resources on or immediately adjacent to the SF State campus.

Light and Glare

Sources of light and glare on and adjacent to the campus and Project site are generally limited to the interior and exterior lights of buildings, lighting visible through windows, parking lot and path lighting, and lighting along campus and city streets. These sources of light are typical of those in a developed urban area. In addition, cars and trucks traveling to, from, and within the area, as well as parked cars, represent another source of glare.

Campus Design Review Process

The California State University System uses a design review process at all of its campuses. This process involves the appointment of an outside master plan architect by the president of each campus. The architect reviews new construction projects for appropriateness of design and quality based on guidelines established in the current master plan for the campus, which for SF State is the 2007 CMP. The 2007 CMP provides architectural and urban design standards, and landscape and site design guidelines. At SF State, the outside architectural review is then evaluated and interpreted by the Deputy Building Official on campus, who has the ultimate
4.1 – AESTHETICS

responsibility for determining how the review will affect the ultimate design of a new building project. Schematic designs are then reviewed and approved by the Board of Trustees of the California State University.

Chapter 3, Project Description, also provides design guidelines that would apply to Block 6 to ensure compatibility with the adjacent Parkmerced complex, as specified in CMP EIR Mitigation AES-3 (SF State 2007a). These guidelines were prepared for compatibility, consistency, where relevant, to the Parkmerced Design Standards and Guidelines (SOM 2014) and the Parkmerced Special-Use District (CCSF 2011), and include building massing, design, exterior treatments and design details, and building heights as specified by CMP EIR Mitigation AES-3.

4.1.2 Impacts and Mitigation Measures

2007 CMP EIR Standards of Significance

As indicated in the CMP EIR, the significance criteria used to evaluate the impacts of the Project related to aesthetics are based on Appendix G of the CEQA Guidelines; applicable agency plans, policies, and/or guidelines; and agency and professional standards. Based on the above, a significant impact related to aesthetics would occur if the Project would:

- Have a substantial adverse effect on a scenic vista.
- Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway.
- Substantially degrade the existing visual character or quality of the site and its surroundings.
- Create a new source of substantial light or glare, which would adversely affect day or nighttime views in the area.

Additionally, in San Francisco substantially reducing sunlight or significantly increasing shadows in public open space areas under the jurisdiction of the San Francisco Recreation and Park Commission is typically considered to be a significant impact. San Francisco Planning Code, Section 295 generally prohibits development above a height of 40 feet if it would cause significant new shadow on open space under the jurisdiction of the San Francisco Recreation and Park Commission between 1 hour after sunrise and 1 hour before sunset, at any time of year, unless conditions under Section 295 are met. Although SF State is not subject to local regulations for activities on state land, the 2007 CMP and the Project would not result in increased shadows on public open space areas under the jurisdiction of the San Francisco Recreation and Park Commission, as there are no such open spaces adjacent to the Project site that could be impacted by Project development.
Analytical Method

Section 4.1.1, Environmental Setting, provides a description of the physical setting on and surrounding the SF State campus and the Project site to illustrate the backdrop against which impacts of the Project are evaluated. Aesthetics are, by definition, subjective and open to interpretation by decision makers and members of the public. A proposed project would be considered to have a significant adverse effect on visual quality under CEQA only if it would cause a substantial and demonstrable negative change.

As indicated in Section 4.1.1, a scenic vista or view is defined as an expansive view of a unique or highly valuable landscape that is observable from a vantage point that is accessible to the public. The CMP EIR determined that there are no scenic views or vistas of or from the SF State campus that meet this criterion. Therefore, this topic was not evaluated further in the CMP EIR. As there may be such scenic views available from more distant locations to the east of the campus, this EIR includes an evaluation of this topic to determine whether there could be new significant or substantially more severe impacts compared to those identified in the CMP EIR (see Project Impact AES-0, below).

The analysis of whether the Project would substantially degrade the existing visual character or quality of the campus and its surroundings takes into consideration the scale of proposed development in the context of existing campus development and surrounding off-campus development. This analysis does not consider the visual impacts of specific building designs because that information is not fully known given that the design process is currently underway. However, as described in Campus Design Review Process, above, the campus design review process would be implemented for the Project. Visual simulations were also not prepared for the aesthetics analysis given that building design information is not yet available. However, conceptual massings for the Project are included in Chapter 3, Project Description (see Figures 3-8 and 3-10 in Chapter 3).

CMP EIR Mitigation Measures Included in Project

The adopted mitigation measures included in the 2007 CMP EIR that are applicable to the Project are presented below. These measures are already being implemented as part of the CMP and the adopted CMP EIR Mitigation Monitoring and Reporting Program, and therefore they are considered to be part of the Project, as described in Chapter 3.

CMP Mitigation AES-3: Expand the proposed Campus Master Plan to provide for appropriate architectural and urban design guidelines that apply specifically to the proposed redevelopment of a portion of the existing University South Park (UPS) buildings. These guidelines will require that any proposed new structures in UPS respect the existing visual characteristics of the adjacent
Villas Parkmerced neighborhood. The guidelines should consider building color and design, exterior treatments and design details, and building heights such that the proposed new development is visually compatible with the adjacent Villas Parkmerced neighborhood.

CMP Mitigation AES-4A: New campus lighting will be consistent with the most recent LEED-NC [Leadership in Energy and Environmental Design] guidelines for light pollution reduction. These guidelines require that directional and other lighting methods be used to minimize light trespass from buildings and outdoor areas. Available methods include but are not limited to: directional and design methods to reduce spillage, automatically controlled turn off of interior spaces during non-business hours, lighting exterior areas only for safety and comfort, and using lower intensity lights.

CMP Mitigation AES-4B: Reflective metal, mirrored glass or any other reflective building materials shall not be used as primary building materials for facades.

Impacts and Mitigation Measures

Tiered Initial Study Results

As described in the Tiered IS (Appendix A), the 2007 CMP EIR determined that the impacts of CMP buildout on scenic vistas and scenic resources would be less than significant. The impacts related to visual character and light and glare were determined to be less than significant with identified mitigation measures.

The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus: the Creative Arts replacement building and the concert hall on Block 1 also referred to as the Tapia Triangle, and the student housing/mixed use building on Block 6, located on the south side of Holloway Avenue. Although the proposed uses are included in the CMP building program, the student housing/mixed-use building would be substantially taller than contemplated in the 2007 CMP and CMP EIR. Additionally, there is information in the Parkmerced Project EIR (SCH No. 2009052073) (CCSF 2010) about the visual characteristics of Parkmerced buildings that was not previously available during preparation of the 2007 CMP EIR. Given the above, the Tiered IS concluded that the EIR will evaluate potential aesthetic impacts related to scenic vistas, scenic resources, visual character, and light and glare to
determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR. This analysis is provided below.

Project and Cumulative Impacts

For each impact presented below, the CMP EIR impact is presented first in gray text for easy reference to the CMP EIR’s prior impact conclusions. The Project impact is presented second and emphasizes whether new significant or substantially more severe impacts would result with the Project.

However, there is only a Project impact presented for impacts on scenic vistas, as the CMP EIR determined that there are no scenic views or vistas of or from the SF State campus that meet the stated criterion that could be impacted and therefore scenic vistas were not evaluated further in the CMP EIR. As there may be such scenic views available from more distant locations to the east of the campus, this EIR includes an evaluation of this topic (see Project Impact AES-0, below).

Project Impact AES-0: The Project would not have a substantial adverse impact on a scenic vista (Less-than-significant impact / New impact).

As indicated in Section 4.1.1, Environmental Setting, expansive scenic views that include the Project site and the Pacific Ocean beyond are available from some public vantage points, such as public parks, within the west-facing hills and foothills of the San Francisco Peninsula Coastal Range that run generally north to south, east of the SF State campus and Project site. These views, such as from Brooks Park, consist of urban development in the fore- and mid-ground with the open spaces around Lake Merced and the Pacific Ocean in the background (see Figure 4.1-1).

Buildout of the Project on two blocks in the southern portion of the SF State campus would increase the scale and density of development on the Project site. Two-story residential apartments with interior courtyards would be replaced with three, multi-story buildings, including the Creative Arts replacement building and the concert hall on Block 1, and the student housing/mixed-use building on Block 6. The buildings would be up to 90 feet in height, which would be substantially taller than the existing residential buildings on these blocks, but similar in height to other SF State buildings in the southern portion of the campus, such as the new administration building and the new J. Paul Leonard library.

From Brooks Park and other longer-range public vantage points to the east, the visual character of the Project site would appear somewhat denser, more urban, and similar to other campus development in the southern portion of the campus along Holloway Avenue and Font Boulevard (see Figure 4.1-1). Project buildings would not block scenic views from public vantage
points to the east. From public parks, such as from Brooks Park, or other prominent public vantage point to the east of the Project site, expansive distant views toward the Pacific Ocean would continue to be available with implementation of the Project. There are no other prominent, publicly accessible vantage points with views of the SF State campus, including the Project site, to the north, south, or west of the campus.

As the Project would not substantially obstruct or detract from an expansive scenic view from a public vantage point, the impact would be less than significant. This is considered to be a new less-than-significant impact, as the CMP EIR did not identify any scenic vistas near the campus from which campus development would be visible.

Project Mitigation AES-0: Mitigation not required.

CMP Impact AES-1: Development under the Campus Master Plan would not substantially damage the small groves of Monterey Cypress and Monterey Pine located in and around the Campus Core landscape zone that constitute scenic resources on the campus (*Less-than-significant impact*).

Project Impact AES-1: The Project would not substantially damage the small groves of Monterey Cypress and Monterey Pine or otherwise substantially damage a scenic resource (*Less-than-significant impact / No new impact*).

The Project would not directly or indirectly damage the small grove of Monterey Cypress and Monterey Pine located in and around the Quad, identified as a scenic resource in the CMP EIR. The Project site is located south of this resource and would not otherwise damage or degrade this resource. There are no designated scenic roads or other scenic resources on or immediately adjacent to the SF State campus, including the Project site. Therefore, the Project would not substantially damage a scenic resource and the impact would be less than significant. The Project would not result in new or increased impacts to scenic resources compared to those identified in the CMP EIR.

Project Mitigation AES-1: No additional mitigation required.

CMP Impact AES-2: Development under the Campus Master Plan would not substantially degrade the existing visual character of the existing SF State campus (*Less-than-significant impact*).
Project Impact AES-2: The Project would not substantially degrade the existing visual character of the existing site or SF State campus surroundings (Less-than-significant impact / No new impact).

The Project would not substantially degrade the existing visual character of the SF State campus surroundings on and near the Project site. The Project provides for the replacement of older residential buildings in UPS, and construction of the Creative Arts buildings and the student housing/mixed-use building. Overall, the scale and density of development on the Project site would increase. However, this increase in scale and density would not substantially degrade the existing visual character of the SF State campus, as (1) the amount of open space on campus would be similar; (2) the existing and planned pattern of development would be maintained; (3) the building heights of new development would be compatible with other existing and planned campus development; and (4) other design standards and guidelines of the 2007 CMP and this Project, would maintain or further enhance the existing visual character of campus lands.

Urban Open Space. Students living in the new housing, as well as local visitors to the neighborhood retail, would be able to use the urban open spaces planned for Block 6, including an open-air interior courtyard with tables and seating and an exterior plaza with benches. The Tapia Drive street vacation would also create open space for pedestrian and bicycle use, as it would result in a major east/west walkway connecting the central academic core with sites to the west. While the existing open spaces on the Project site consisting of interior courtyards in the garden apartments on Block 1 and Block 6 would be removed, the overall amount of open space would be similar with the Project.

Land Use Pattern. Compatibility between adjacent existing and future campus buildings was taken into consideration in identifying and locating development in the 2007 CMP. The pattern of existing and planned campus development consists of a centrally located academic core that surrounds the central Quad with groups of residential buildings located to the north, west, and south of the academic core. The Project would maintain this land use pattern. New campus housing with the Project would be sited is an area of existing housing in UPS. Additionally, the Creative Arts building and concert hall would be located within the academic core to the west of other academic development on a site designated for academic development. The extension of the academic core to the west would not substantially degrade the visual character of this portion of the campus.

Height Limits. The Project includes design guidelines that would apply to Project development. These design guidelines build on the CMP design guidelines. Given the anticipated changes at Parkmerced to the south and SF State’s interest in providing student housing responsive to demand, the proposed building height would be greater than the 50-foot height limit referenced in the 2007 CMP for residential buildings in UPS, but would not exceed 90 feet.
This additional height would also allow for the possibility of a rooftop-mounted solar array to support the goals of zero net energy. The Creative Arts replacement building and concert hall would not exceed 90 feet, which is within the height limit of up to 100 feet identified for Creative Arts buildings in the 2007 CMP.

The 90-foot height would be substantially taller than the existing residential buildings on the Project site, but similar in height to other SF State buildings in the southern portion of the campus, such as the new Administration building and the new J. Paul Leonard library.

Other Design Standards. Implementation of other design standards provided for in the 2007 CMP and elaborated on for the Project would help to maintain or further enhance the existing visual character of the campus. See Chapter 3 for further information about the design guidelines for the Project.

In conclusion, Project development would not substantially degrade the visual character of the existing SF State campus. The impact of the Project on the visual character of the campus would be less than significant, as concluded in the CMP EIR. The Project would not result in new or increased impacts compared to those identified in the CMP EIR.

See Impact AES-3 below for an analysis of the effect of the Project on the existing visual character of the adjacent Parkmerced area.

Project Mitigation AES-2: Mitigation not required.

CMP Impact AES-3: Development of new housing in University Park South under the Campus Master Plan could potentially degrade the existing visual character of the adjacent Parkmerced neighborhood, if not properly designed (Potentially significant impact / Less than significant with mitigation).

Project Impact AES-3: The Project would not substantially degrade the existing visual character of the adjacent Parkmerced area given the implementation of design guidelines and compatibility with approved plans for Parkmerced (Less-than-significant impact / No new impact).

The Project would not substantially degrade the existing visual character of the Parkmerced area to the south of the campus and Project site. The Project would provide for the replacement of older residential buildings in UPS, and construction of the Creative Arts buildings and the student
housing/mixed-use building. Overall, the scale and density of development on the Project site would increase. However, this increase in scale and density would not substantially degrade the existing visual character of the Parkmerced area to the south.

The use of Block 6, south of Holloway Avenue, for student housing/mixed-uses is compatible with the housing and mixed-uses planned for in the City and County of San Francisco (City)—approved Parkmerced project to the south. After adoption of the 2007 CMP, Parkmerced’s development plan received City approval. The Parkmerced plan includes significantly higher density and height limits than the conditions that existed when SF State’s CMP and EIR were approved. Given the anticipated changes at Parkmerced and SF State’s interest in providing student housing responsive to demand, the proposed building height for Block 6 would be greater than the 50-foot height limit referenced in the 2007 CMP for residential buildings in UPS, but would not exceed 90 feet. This additional height would also allow for the possibility of a rooftop-mounted solar array to support the goals of zero net energy.

The use of Block 1, north of Font Boulevard, for academic uses is consistent with the most current 2014 Master Plan map for the campus and other adjacent academic uses on the SF State campus. The new Creative Arts replacement building would be two to three stories over a basement, with a maximum height of 90 feet, which is within the height limit of up to 100 feet identified for Creative Arts buildings in the 2007 CMP.

The maximum height of 90 feet for Project buildings, inclusive of parapets and mechanical equipment, is compatible with the Parkmerced Design Standards and Guidelines (SOM 2014) and the City’s Parkmerced Special Use District (CCSF 2011), which allows for mid-rise buildings of 85 to 145 feet, excluding parapets and mechanical equipment, as well as lower-rise buildings. Adjacent to the SF State campus’s southern edge, future Parkmerced mid-rise buildings likely range from 85 feet to 130 feet, according to Parkmerced’s maximum height plan (SOM 2014).

Additionally, the Project includes design guidelines that would apply to Project development. These design guidelines build on the CMP design guidelines and also ensure compatibility with the adjacent Parkmerced complex, as specified in CMP EIR Mitigation AES-3, shown above. These guidelines were prepared for compatibility, consistency, where relevant, to the Parkmerced Design Standards and Guidelines (SOM 2014), and include building massing, design, exterior treatments and design details, and building heights as specified by CMP EIR Mitigation AES-3.

As the proposed scale and height of development would conform with the approved Parkmerced project and Parkmerced Special-Use District, and would implement design guidelines compatible with the Parkmerced Design Standards and Guidelines, the Project would
not substantially degrade the visual character of the Parkmerced area to the south. The impact of the Project on the visual character of the Parkmerced area would be less than significant, as concluded in the CMP EIR. The Project would not result in new or increased impacts compared to those identified in the CMP EIR.

Project Mitigation AES-3: No additional mitigation required.

CMP Impact AES-4: Development under the Campus Master Plan would not create new sources of substantial light or glare on campus that could adversely affect daytime or nighttime views in the area (Less-than-significant impact).

Project Impact AES-4: The Project would not create new sources of substantial light or glare on or adjacent to campus that could adversely affect daytime or nighttime views in the area (Less-than-significant impact / No new impact).

Upward-directed lighting and excess site lighting can contribute to atmospheric light pollution that can hinder observation and enjoyment of the night sky. New sources of glare can also affect nearby residents, pedestrians, and passing motorists.

The CMP EIR indicated that new light sources associated with new development under the CMP could include streetlights, illuminated signage, exterior safety and wayfinding lighting, and light emitted from building windows. New lighting would be installed with proposed new Project development, but this lighting would not create a new source of substantial nighttime. This is because the campus is already fully developed and is located within an area with surrounding urban development. Therefore, the existing night lighting on and adjacent to the campus is typical of a developed urban area. New campus lighting, including that associated with the Project, would not change these nighttime conditions. Moreover, the 2007 CMP lighting standards require that Leadership in Energy and Environmental Design for New Construction (LEED-NC) guidelines for light pollution reduction be followed. These guidelines require that directional and other lighting methods be used to minimize light trespass from buildings and outdoor areas. Available methods include but are not limited to: directional and design methods to reduce spillage, automatically controlled turn off of interior spaces during non-business hours, lighting exterior areas only for safety and comfort, and using lower intensity lights. CMP EIR Mitigation AES-4A, incorporated into the Project as indicated above, would require that these lighting standards are implemented with the Project, which would further reduce the impact.
The CMP EIR also indicated that the growth and development under the 2007 CMP could also increase glare from reflective building materials that would have the potential to affect nearby residents, pedestrians, and passing motorists. However, architectural standards provided in the 2007 CMP and included in CMP EIR Mitigation AES-4B, incorporated into the Project, would ensure that Project buildings would not use reflective building surfaces as the primary materials for building facades.

The Project would not create new sources of substantial light or glare that could adversely affect daytime or nighttime views in the area and the impact is less than significant. The Project would not result in new or increased impacts related to light and glare compared to those identified in the CMP EIR.

Project Mitigation AES-4: No additional mitigation required.

CMP Impact AES-5: Development under the Campus Master Plan, in conjunction with other vicinity development, would not result in significant cumulative impacts due to substantial degradation of the existing visual character of the area (Less-than-significant impact).

Project Impact AES-5: The Project, in conjunction with other vicinity development, would not result in significant cumulative impacts due to substantial degradation of the existing visual character of the area (Less-than-significant impact / No new impact).

The geographical setting for the discussion of cumulative impacts related to aesthetics consists of the southern edge of the SF State campus near the Project site and the Parkmerced area to the south. Reasonably foreseeable cumulative projects that may impact aesthetics in the immediate area of the Project site include the following:

- The approved Parkmerced project, including redevelopment of all of the two-story garden apartment buildings and removal of all of the interior landscaping on the Parkmerced Investors LLC property.
- Future redevelopment of Parkmerced’s eastern 2.75-acre commercial shopping center owned by Yousef Realty.
- Development contemplated under the 2007 CMP building program and most recently revised Master Plan map. In the southern portion of the campus, this includes the current redevelopment project of the former Parkmerced recreation area to construct the Mashouf Wellness Center and development on the West Campus Green, on Font Boulevard.
• The probable future build out of University Park South, as contemplated in the future vision included in the 2007 adopted Campus Master Plan, including redevelopment of all SF State garden apartment blocks in University Park South.²

As described under Impact AES-0, above, the Project would not substantially obstruct or detract from an expansive scenic view from a public vantage point. The Project would not contribute to a cumulative obstruction or degradation of expansive scenic views over the Project site, when considered with other anticipated development in the vicinity of the Project site. Project development along with other CMP development would be viewed within the context of a distant dense cluster of approved mid-rise and high-rise towers in the adjacent Parkmerced area. The visual gap located between the Parkmerced development and the more visible portions of the SF State campus, as seen from Brooks Park and other public vantage points to the east, would fill in somewhat and appear to be more densely developed with the Project and other cumulative campus development (see Figure 4.1-1). Cumulative development would not substantially obstruct or detract from an expansive scenic view from a public vantage point, such as that available from Brooks Park. Therefore, the impact of cumulative development on scenic vistas to the east would be less than significant. The Project would not contribute to a significant cumulative impact on scenic views.

The proposed scale and height of cumulative development would be compatible with the Parkmerced Special-Use District and such development would implement compatible design guidelines, as indicated in Impact AES-3. Although cumulative development would change the visual character of the Project vicinity, it would not substantially degrade the visual character of this area. The impact of the cumulative development on the visual character of the Project vicinity would be less than significant, as concluded in the CMP EIR. The Project would not contribute to a significant cumulative impact on visual character, nor would it result in new or increased cumulative impacts compared to those identified in the CMP EIR.

Project Mitigation AES-5: Mitigation not required.

4.1.3 References

² The adopted 2007 CMP and map do not include future buildout of UPS during the buildout horizon for the CMP and there are no approved or adopted plans for such buildout. However, the CMP future vision beyond 2020 and the CMP objectives do consider development in this area. While the ultimate demolition of existing development in this area is reasonably foreseeable, the proposed land use, and scale and density of building is not reasonably foreseeable and therefore is not considered in the cumulative analysis above.

INTENTIONALLY LEFT BLANK
San Francisco State Campus
Project Site
Parkmerced Area

View Looking West from Brooks Park

FIGURE 4.1-1
San Francisco State Creative Arts & Holloway Mixed-Use Project EIR

SOURCE: Square One Productions (2010); Turnstone Consulting (2010)
4.2 AIR QUALITY

This section of the Focused Tiered Final EIR presents potential air quality impacts of the Creative Arts and Holloway Mixed-Use Project (Project). Preparation of this Final EIR was preceded by the Tiered Initial Study, which determined that an EIR would be prepared to consider the potential for the Project to result in new significant impacts on air quality or substantially more severe impacts compared to those identified in the Campus Master Plan (CMP) EIR. Section 4.2 of the Draft CMP EIR (SF State 2006) and Section 2.2.2 of the Final CMP EIR (SF State 2007a) address the air quality effects of campus growth under the 2007 CMP (SF State 2007b).

This section presents the environmental setting, impacts of the Project on the environment, and proposed measures to mitigate any identified significant impacts. Where relevant, information is incorporated by reference from the 2007 CMP EIR, from which this EIR is tiered, as described in Chapter 2. To determine the potential for impacts beyond those evaluated in the CMP EIR, additional modeling and evaluation of air quality impacts was performed for this EIR. Appendix C provides the modeling results that support this evaluation.

There were no public or agency comments related to air quality received during the public scoping period in response to the Notice of Preparation. For a complete list of public comments received during the public scoping period, refer to Appendix B.

4.2.1 Environmental Setting

Section 4.2 of the Draft CMP EIR addresses the existing environmental setting for air quality (SF State 2006). The following discussion summarizes information presented in the “Environmental Setting” subsection of Section 4.2 of the Draft CMP EIR, updated with current information as necessary.

Study Area

The Project site is located in the City and County of San Francisco (City), within the boundaries of the San Francisco Bay Area Air Basin (SFBAAB). The SFBAAB encompasses all of Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, and Santa Clara Counties, and the southern portions of Solano and Sonoma Counties.

Air pollutants are emitted by a variety of sources, including mobile sources (vehicles), area sources (hearth, consumer product use, architectural coatings, and landscape maintenance equipment), energy sources (natural gas), and stationary sources (generators or other stationary equipment). Some air pollutants need to be examined at the local level, and others are predominately an issue at the regional level. For instance, ozone (O₃) is formed in the atmosphere in the presence of sunlight by a series of chemical reactions involving oxides of...
nitrogen (NO\textsubscript{x}) and reactive organic gas (ROG) (also termed volatile organic compounds). Because these reactions are broad-scale in effects, O\textsubscript{3} is typically analyzed at the regional level (i.e., in the Air Basin) rather than the local level. On the other hand, air pollutants such as coarse particulate matter (PM\textsubscript{10}), fine particulate matter (PM\textsubscript{2.5}), carbon monoxide (CO), and toxic air contaminants (TACs) are a potential concern in the immediate vicinity of the pollutant source because the pollutants are emitted directly by or are formed close to the source. Therefore, the study area for emissions of PM\textsubscript{10}, PM\textsubscript{2.5}, CO, and TACs is the local area near the source, such as in the vicinity of the Project site, and the study area for regional pollutants such as NO\textsubscript{x} and ROGs is the entire SFBAAB.

Regional Climatology

Air quality is a function of the rate and location of pollutant emissions under the influence of meteorological conditions and topographic features that influence pollutant movement and dispersal. Atmospheric conditions such as wind speed, wind direction, atmospheric stability, and air temperature gradients interact with the physical features of the landscape to determine the movement and dispersal of air pollutants, and consequently affect air quality.

The climate of the SFBAAB is determined largely by a high-pressure system that is almost always present over the eastern Pacific Ocean off the west coast of North America. During winter, the Pacific high-pressure system shifts southward, allowing more storms to pass through the region. During summer and early fall, when few storms pass through the region, emissions generated within the Bay Area can combine with abundant sunshine under the restraining influences of topography and subsidence inversions to create conditions that are conducive to the formation of photochemical pollutants, such as O\textsubscript{3}, and secondary particulates, such as nitrates and sulfates.

The Project site is located in the SFBAAB peninsula climatological subregion that extends from northwest San Jose to the Golden Gate Bridge. Specific topographic and climatological conditions for the subregion are described in the Bay Area Air Quality Management District’s (BAAQMD) California Environmental Quality Act Air Quality Guidelines (BAAQMD 2012). The Santa Cruz Mountains run up the center of the peninsula, with elevations exceeding 2,000 feet at the southern end and decreasing to 500 feet in South San Francisco. In this area, marine air traveling through the San Bruno Gap (extending from Fort Funston on the coast to the San Francisco Airport) and the Crystal Springs Gap (between Half Moon Bay and San Carlos) is a dominant weather factor. The air pollution potential in this subregion is highest at the northern end (from motor vehicle congestion) and in the southeast, which is protected from the high winds and fog of the marine layer (BAAQMD 2012).

The prevailing winds along the peninsula's coast are from the west, although individual sites can show significant differences as a result of local topographic features. Annual average wind
speeds range from 5 to 10 miles per hour (mph) throughout the peninsula, with higher wind speeds usually found along the coast. Winds on the eastern side of the peninsula are often high in certain areas, such as near the San Bruno Gap and the Crystal Springs Gap. San Francisco is at the northern end of the peninsula subregion, where pollutant emissions are high, particularly from motor vehicle congestion, but winds are generally fast enough to carry the pollutants away before they can accumulate (BAAQMD 2012). The San Francisco State University (SF State) campus is located within San Francisco’s fog belt. Ocean fog and associated low clouds are prominent features of the campus, particularly during summer. Cool, damp westerly winds and fog can persist for extended periods of time, especially between May and August.

Air Quality Standards and Regulations

Criteria Air Pollutants

Criteria air pollutants are defined as pollutants for which the United States Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have established ambient air quality standards, or criteria, for outdoor concentrations to protect public health. The federal and state standards have been set, with an adequate margin of safety, at levels above which concentrations could be harmful to human health and welfare. These standards are designed to protect the most sensitive people from illness or discomfort. Pollutants of concern include O₃, nitrogen dioxide (NO₂), CO, sulfur dioxide (SO₂), PM₁₀, PM₂.₅, and lead. In California, sulfates, vinyl chloride, hydrogen sulfide, and visibility-reducing particles are also regulated as criteria air pollutants.

Federal. The federal Clean Air Act, passed in 1970 and last amended in 1990, forms the basis for the national air pollution control effort. The EPA is responsible for implementing most aspects of the Clean Air Act, including setting National Ambient Air Quality Standards (NAAQS) for major air pollutants; setting hazardous air pollutant standards; approving state attainment plans; setting motor vehicle emissions standards; issuing stationary source emissions standards and permits; and establishing acid rain control measures, stratospheric O₃ protection measures, and enforcement provisions. Under the Clean Air Act, NAAQS are established for the following criteria pollutants: O₃, CO, NO₂, SO₂, PM₁₀, PM₂.₅, and lead.

The NAAQS describe acceptable air quality conditions designed to protect the health and welfare of citizens of the nation. The NAAQS (other than for O₃, NO₂, SO₂, PM₁₀, PM₂.₅, and those based on annual averages or arithmetic mean) are not to be exceeded more than once per year. NAAQS for O₃, NO₂, SO₂, PM₁₀, and PM₂.₅ are based on statistical calculations over 1- to 3-year periods, depending on the pollutant. The Clean Air Act requires the EPA to reassess the NAAQS at least every 5 years to determine whether adopted standards are adequate to protect public health based on current scientific evidence. States with areas that exceed the
NAAQS must prepare a state implementation plan that demonstrates how those areas will attain the standards within mandated time frames.

State. The federal Clean Air Act delegates the regulation of air pollution control and the enforcement of the NAAQS to the states. In California, the task of air quality management and regulation has been legislatively granted to CARB, with subsidiary responsibilities assigned to air quality management districts and air pollution control districts at the regional and county levels. CARB, which became part of the California Environmental Protection Agency in 1991, is responsible for ensuring implementation of the California Clean Air Act of 1988, responding to the federal Clean Air Act, and regulating emissions from motor vehicles and consumer products.

CARB has established California Ambient Air Quality Standards (CAAQS), which are generally more restrictive than the NAAQS. The CAAQS describe adverse conditions; pollution levels must be below these standards before a basin can attain the standard. Air quality is considered “in attainment” if pollutant levels are continuously below the CAAQS and violate the standards no more than once each year. The CAAQS for O₃, CO, SO₂ (1-hour and 24-hour), NO₂, PM₁₀, PM₂.₅, and visibility-reducing particles are values that are not to be exceeded. All others are not to be equaled or exceeded.

An area is designated as “in attainment” when it is in compliance with the federal and/or state standards. The NAAQS, CAAQS, and attainment classifications for the criteria pollutants are outlined in Table 4.2-1.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standards</th>
<th>National Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standard</td>
<td>Attainment Status</td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>1 hour</td>
<td>0.09 ppm</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>8 hour</td>
<td>0.07 ppm</td>
<td>N</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>1 hour</td>
<td>20 ppm</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>8 hour</td>
<td>9 ppm</td>
<td>A</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>1 hour</td>
<td>0.18 ppm</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.030 ppm</td>
<td>NA</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>1 hour</td>
<td>0.25 ppm</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>24 hour</td>
<td>0.04 ppm</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Particulate Matter (PM₁₀)</td>
<td>24 hour</td>
<td>50 µg/m³</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>20 µg/m³</td>
<td>N</td>
</tr>
</tbody>
</table>

⁹ Marginal.
Table 4.2-1
State and Federal Ambient Air Quality Standards and Attainment Status

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standards</th>
<th>National Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standard</td>
<td>Attainment Status</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM_{2.5})</td>
<td>24 hour</td>
<td>NA</td>
<td>35 μg/m³</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>12 μg/m³</td>
<td>N</td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 hour</td>
<td>25 μg/m³</td>
<td>A</td>
</tr>
<tr>
<td>Lead</td>
<td>30 day</td>
<td>1.5 μg/m³</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Cal. Quarter</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Rolling 3-Month Average</td>
<td>NA</td>
<td>0.15 μg/m³</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>1 hour</td>
<td>0.03 ppm</td>
<td>U</td>
</tr>
<tr>
<td>Visibility-Reducing Particles</td>
<td>8 hour</td>
<td>See Note "f"</td>
<td>U</td>
</tr>
</tbody>
</table>

Source: BAAQMD 2016a.

μg/m³ = micrograms per cubic meter; mg/m³ = milligrams per cubic meter; PM_{10} = particulate matter with an aerodynamic diameter less than or equal to 10 microns; PM_{2.5} = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; ppm = parts per million by volume; A = Attainment; N = Nonattainment; U = Unclassified; NA = Not Applicable (no applicable standard)

a California standards for O\textsubscript{3}, CO, SO\textsubscript{2} (1-hour and 24-hour), NO\textsubscript{2}, suspended particulate matter (PM\textsubscript{10}, PM\textsubscript{2.5}), and visibility-reducing particles are values that are not to be exceeded. All others are not to be equaled or exceeded. CAAQS are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.

b National standards shown are the “primary standards” designed to protect public health. NAAQS (other than O\textsubscript{3}, NO\textsubscript{2}, SO\textsubscript{2}, particulate matter, and those based on annual averages or annual arithmetic mean) are not to be exceeded more than once per year. The O\textsubscript{3} standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over 3 years, is equal to or less than the standard. For PM\textsubscript{10}, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 μg/m³ is equal to or less than 1. For PM\textsubscript{2.5}, the 24-hour standard is attained when 98% of the daily concentrations, averaged over 3 years, are equal to or less than the standard.

c On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm. An area will meet the standard if the fourth-highest maximum daily 8-hour ozone concentration per year, averaged over three years, is equal to or less than 0.070 ppm. EPA will make recommendations on attainment designations by October 1, 2016, and issue final designations October 1, 2017. Nonattainment areas will have until 2020 to late 2037 to meet the health standard, with attainment dates varying based on the ozone level in the area.

d On January 9, 2013, the EPA issued a final rule to determine that the Bay Area attains the 24-hour PM_{2.5} national standard. This EPA rule suspends key SIP requirements as long as monitoring data continues to show that the Bay Area attains the standard. Despite this EPA action, the Bay Area will continue to be designated as “nonattainment” for the national 24-hour PM_{2.5} standard until such time as the BAAQMD submits a “redesignation request” and a “maintenance plan” to EPA, and EPA approves the proposed redesignation.

e In December 2012, the EPA strengthened the annual PM_{2.5} NAAQS from 15.0 to 12.0 μg/m³. In December 2014, EPA issued final area designations for the 2012 primary annual PM_{2.5} NAAQS. Areas designated “unclassifiable/attainment” must continue to take steps to prevent their air quality from deteriorating to unhealthy levels. The effective date of this standard is April 15, 2015.

f Statewide visibility reducing particle standard (except Lake Tahoe Air Basin): Particles in sufficient amount to produce an extinction coefficient of 0.23 per kilometer when the relative humidity is less than 70%. This standard is intended to limit the frequency and severity of visibility impairment due to regional haze and is equivalent to a 10-mile nominal visual range.

In summary, the SFBAAB is designated as a nonattainment area for federal and state O\textsubscript{3} and PM_{2.5} standards. The SFBAAB is also designated as a nonattainment area for the state PM_{10} standard. The SFBAAB is designated as “unclassified” or “attainment” for all other criteria air pollutants. Notably, “unclassified” areas cannot be classified based on available information as meeting or not meeting the ambient air quality standard for the pollutant.
Local. The BAAQMD is the regional agency responsible for the regulation and enforcement of federal, state, and local air pollution control regulations in the SFBAAB, where the Project is located. The clean air strategy of the BAAQMD includes the preparation of plans for the attainment of ambient air quality standards, adoption and enforcement of rules and regulations concerning sources of air pollution, issuance of permits for stationary sources of air pollution, inspection of stationary sources of air pollution and response to citizen complaints, monitoring of ambient air quality and meteorological conditions, and implementation of programs and regulations required by the federal and California Clean Air Acts.

The BAAQMD adopted the Bay Area 2010 Clean Air Plan (BAAQMD 2010a) in cooperation with the Metropolitan Transportation Commission and the Association of Bay Area Governments (ABAG). It sets forth a plan to reach compliance with the state's 1-hour air quality O₃ standard. The Clean Air Plan is a comprehensive strategy to reduce air pollution from stationary and mobile sources. The plan outlines strategies to reduce O₃ precursors, as well as particulate matter, TACs, and greenhouse gas emissions, to meet the goal of reducing air pollution to attain air quality standards and protect public health. Currently, the BAAQMD, the Metropolitan Transportation Commission, and ABAG are working on the 2016 Clean Air Plan/Regional Climate Protection Strategy, which is an update to the current Clean Air Plan (BAAQMD 2016b).

The BAAQMD establishes and administers a program of rules and regulations to attain and maintain state and national air quality standards.

Toxic Air Contaminants

A substance is considered toxic if it has the potential to cause adverse health effects in humans, including increasing the risk of cancer upon exposure, or acute and/or chronic noncancer health effects. A toxic substance released into the air is considered a TAC. TACs are identified by federal and state agencies based on a review of available scientific evidence. Examples include certain aromatic and chlorinated hydrocarbons, certain metals, and asbestos. TACs are generated by a number of sources, including stationary sources such as dry cleaners, gas stations, combustion sources, and laboratories; mobile sources such as automobiles; and area sources such as landfills. Adverse health effects associated with exposure to TACs may include carcinogenic (i.e., cancer-causing) and noncarcinogenic effects. Noncarcinogenic effects typically affect one or more target organ systems and may be experienced from short-term (acute) or long-term (chronic) exposure to a given TAC.

Federal. At the federal level, TACs are identified as Hazardous Air Pollutants (HAPs). The 1977 federal Clean Air Act amendments required the EPA to identify National Emission Standards for Hazardous Air Pollutants to protect public health and welfare. HAPs include certain volatile organic chemicals, pesticides, herbicides, and radionuclides that present a tangible hazard based on scientific studies of exposure to humans and other mammals. Under
the 1990 federal Clean Air Act Amendments, which expanded the control program for HAPs, 189 substances and chemical families were identified as HAPs.

State. The state Air Toxics Program was established in 1983 under Assembly Bill (AB) 1807 (Tanner). The California TAC list identifies more than 700 pollutants, of which carcinogenic and noncarcinogenic toxicity criteria have been established for a subset of these pollutants pursuant to the California Health and Safety Code. In accordance with AB 2728, the state list includes the federal HAPs. The Air Toxics “Hot Spots” Information and Assessment Act of 1987 (AB 2588) seeks to identify and evaluate risk from air toxics sources; however, AB 2588 does not regulate air toxics emissions. TAC emissions from individual facilities are quantified and prioritized. “High-priority” facilities are required to perform a health risk assessment, and if specific thresholds are exceeded, are required to communicate the results to the public in the form of notices and public meetings.

In 2000, CARB approved a Diesel Risk Reduction Plan to reduce diesel emissions from new and existing diesel-fueled vehicles and engines. The regulation is anticipated to result in an 80% decrease in statewide diesel health risk by 2020 compared with to the diesel risk in 2000. Additional regulations apply to new trucks and diesel fuel, including the On-Road Heavy Duty Diesel Vehicle (In-Use) Regulation, the On-Road Heavy Duty (New) Vehicle Program, the In-Use Off-Road Diesel Vehicle Regulation, and the New Off-Road Compression-Ignition (Diesel) Engines and Equipment program. All of these regulations and programs have timetables by which manufacturers must comply and existing operators must upgrade their diesel powered equipment (CARB 2000). Several Airborne Toxic Control Measures aim to reduce diesel emissions, including In-Use Off-Road Diesel-Fueled Fleets (13 California Code of Regulations (CCR) 2449 et seq.) and In-Use On-Road Diesel-Fueled Vehicles (13 CCR 2025).

Local. The BAAQMD is responsible for administering federal and state regulations related to TACs, primarily through establishment of rules and regulations. The BAAQMD also requires performance of a TAC screening analysis as part of permit applications for non-exempt new or modified facilities that emit TACs. The BAAQMD will grant a permit for a new or modified stationary source if the source meets either of the following impact criterion: (1) the estimated incremental cancer risk from the project is less than 1 in 1 million, or (2) the estimated incremental risk is less than 10 in 1 million, and the toxics best available control technology, which are standards to reduce TAC emissions, will be implemented.

Ambient Air Quality

Criteria Air Pollutants

CARB, air districts, and other agencies monitor ambient air quality at approximately 250 air quality monitoring stations across the state. The Project site’s local ambient air quality is monitored by the
BAAQMD. Air quality monitoring stations usually measure pollutant concentrations 10 feet above ground level; therefore, air quality is often referred to in terms of ground-level concentrations. The most recent background ambient air quality data from 2013 to 2015 are presented in Table 4.2-2. The ambient air monitoring station closest to the Project site is the Arkansas Street monitoring station, located at 10 Arkansas Street, approximately 6 miles northeast of the Project site. The data collected at this station are considered representative of the air quality experienced in the Project vicinity. Air quality data for O₃, NO₂, CO, PM₁₀, and PM₂.₅ from the Arkansas Street monitoring station are provided in Table 4.2-2.

Table 4.2-2

Local Ambient Air Quality Data – Arkansas Street Station

<table>
<thead>
<tr>
<th>Concentration or Exceedances</th>
<th>Ambient Air Quality Standard</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm)</td>
<td>0.09 ppm (state)</td>
<td>0.069</td>
<td>0.079</td>
<td>0.085</td>
</tr>
<tr>
<td>Number of days exceeding state standard (days)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Maximum 8-hour concentration (ppm)</td>
<td>0.070 ppm (state)</td>
<td>0.060</td>
<td>0.069</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>0.070 ppm (federal)</td>
<td>0.059</td>
<td>0.069</td>
<td>0.067</td>
</tr>
<tr>
<td>Number of days exceeding state standard (days)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Number of days exceeding federal standard (days)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm)</td>
<td>0.18 ppm (state)</td>
<td>0.072</td>
<td>0.083</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>0.100 ppm (federal)</td>
<td>0.0726</td>
<td>0.0837</td>
<td>0.706</td>
</tr>
<tr>
<td>Number of days exceeding state standard (days)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Number of days exceeding federal standard (days)</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Annual concentration (ppm)</td>
<td>0.030 ppm (state)</td>
<td>0.013</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>0.053 ppm (federal)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 1-hour concentration (ppm)</td>
<td>20 ppm (state)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>35 ppm (federal)</td>
<td>1.8</td>
<td>ND</td>
<td>1.8</td>
</tr>
<tr>
<td>Number of days exceeding state standard (days)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Number of days exceeding federal standard (days)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Maximum 8-hour concentration (ppm)</td>
<td>9.0 ppm (state)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>9 ppm (federal)</td>
<td>1.4</td>
<td>ND</td>
<td>1.3</td>
</tr>
<tr>
<td>Number of days exceeding state standard (days)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Number of days exceeding federal standard (days)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Coarse Particulate Matter (PM₁₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 24-hour concentration (µg/m³)</td>
<td>50 µg/m³ (state)</td>
<td>44.3</td>
<td>35.9</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
<td>150 µg/m³ (federal)</td>
<td>41.9</td>
<td>34.5</td>
<td>44.7</td>
</tr>
<tr>
<td>Number of days exceeding state standard (days)*</td>
<td>ND (0)</td>
<td>ND (0)</td>
<td>ND (0)</td>
<td></td>
</tr>
<tr>
<td>Number of days exceeding federal standard (days)*</td>
<td>ND (0)</td>
<td>ND (0)</td>
<td>ND (0)</td>
<td></td>
</tr>
</tbody>
</table>

ND (0) indicates no data available.
Table 4.2-2
Local Ambient Air Quality Data – Arkansas Street Station

<table>
<thead>
<tr>
<th>Concentration or Exceedances</th>
<th>Ambient Air Quality Standard</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual concentration (state method) (µg/m³)</td>
<td>20 µg/m³ (state)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM$_{2.5}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum 24-hour concentration (µg/m³)</td>
<td>35 µg/m³ (federal)</td>
<td>48.5</td>
<td>33.2</td>
<td>35.4</td>
</tr>
<tr>
<td>Number of days exceeding federal standard (days)a</td>
<td></td>
<td>2.0 (2)</td>
<td>0.0 (0)</td>
<td>0.0 (0)</td>
</tr>
<tr>
<td>Annual concentration (µg/m³)</td>
<td>12 µg/m³ (state)</td>
<td>ND</td>
<td>7.7</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>12.0 µg/m³ (federal)</td>
<td>10.1</td>
<td>7.7</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Sources: CARB 2016a; EPA 2016.

--- = not available; µg/m³ = micrograms per cubic meter; ND = insufficient data available to determine the value; ppm = parts per million

Data taken from CARB iADAM (http://www.arb.ca.gov/adam) and EPA AirData (http://www.epa.gov/airdata/) represent the highest concentrations experienced over a given year.

a Measurements of PM$_{10}$ and PM$_{2.5}$ are usually collected every 6 days and every 1 to 3 days, respectively. Number of days exceeding the standards is a mathematical estimate of the number of days concentrations would have been greater than the level of the standard had each day been monitored. The numbers in parentheses are the measured number of samples that exceeded the standard.

Toxic Air Contaminants

Air toxics monitoring stations are located throughout California. These stations, maintained either by CARB or the local air district, monitor and record ambient TACs in the air. These stations measure 10 to 15 TACs, depending on the station. The TACs selected for monitoring are those that have traditionally been found in the highest concentrations in ambient air, and, therefore, tend to produce the most significant risk. The nearest TAC monitoring station is located approximately 6 miles northeast of the SF State campus at 10 Arkansas Street. Ambient annual average TAC concentrations and their associated health risks of contracting cancer over a 70-year exposure are summarized in Table 4.2-3. CARB estimates a risk of 75.5 in 1 million from the monitored ambient TACs without considering diesel particulates. In the case of diesel particulate matter (DPM), there is no routine method for monitoring ambient concentrations; therefore, DPM is not monitored at the Arkansas Street station. CARB made preliminary estimates of cancer risk from DPM for the Bay Area using its PM$_{10}$ emissions database and PM$_{10}$ ambient monitoring data, the results of several studies with chemical speciation of ambient data, and receptor modeling techniques. The estimation for DPM-associated cancer risk was last performed in 2000, with an estimated concentration of 1.6 micrograms per cubic meter (µg/m³) and a health risk of 480 in 1 million.
Table 4.2-3
2014 Annual Average Ambient Concentrations of Carcinogenic Toxic Air Contaminants and Health Risk – Arkansas Street Station

<table>
<thead>
<tr>
<th>Chemical Compound</th>
<th>Ambient Concentration</th>
<th>Cancer Risk (Chances in 1 Million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaseous TACs</td>
<td>ppb</td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>0.50</td>
<td>2</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.194</td>
<td>18</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>0.037</td>
<td>14</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>1.28</td>
<td>9</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>0.108</td>
<td>0.4</td>
</tr>
<tr>
<td>Perchloroethylene</td>
<td>0.011</td>
<td>0.4</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>0.010</td>
<td>0.1</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>0.092</td>
<td>24</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.025</td>
<td>0.6</td>
</tr>
<tr>
<td>Particulate TACs</td>
<td>ng/m³</td>
<td></td>
</tr>
<tr>
<td>Chromium (Hexavalent)</td>
<td>0.045</td>
<td>7</td>
</tr>
<tr>
<td>Total Risk for All TACs</td>
<td></td>
<td>75.5</td>
</tr>
</tbody>
</table>

Sources: CARB 2016b.
ng/m³ = nanograms per cubic meter; ppb = parts per billion; TAC = toxic air contaminant

To identify areas of San Francisco most adversely affected by sources of TACs, the City partnered with the BAAQMD to inventory and assess air pollution and exposures from mobile, stationary, and area sources. Areas with poor air quality, termed “Air Pollutant Exposure Zones,” were identified based on two health-protective criteria: (1) excess cancer risk from the contribution of emissions from all modeled sources greater than 100 per 1 million population, and/or (2) cumulative PM$_{2.5}$ concentrations greater than 10 µg/m³. Based on the Citywide Air Pollutant Exposure Zone Map (CCSF 2014), the Project site is not within a modeled “Air Pollutant Exposure Zone” (i.e., where the concentration of PM$_{2.5}$ or the cancer risk exceed the levels specified above).

Sensitive Receptors

Some land uses are considered more sensitive to air pollution than others due to the types of population groups or activities involved. Children, pregnant women, older adults, and people with existing health problems are especially vulnerable to the effects of air pollution. Accordingly, land uses that are typically considered “sensitive receptors” include residences, schools, day care centers, playgrounds, and medical facilities. The nearest sensitive receptors to the Project are located within 100 feet of both Block 1 and Block 6 and consist of on- and off-campus residential uses in University Park South and the adjacent Parkmerced.
4.2 – Air Quality

4.2.2 Impacts and Mitigation Measures

2007 CMP EIR Standards of Significance

As indicated in the CMP EIR, the significance criteria used to evaluate the impacts of the Project related to air quality are based on Appendix G of the CEQA Guidelines; applicable agency plans, policies, and/or guidelines; and agency and professional standards. Based on the above, a significant impact related to air quality would occur if the Project would:

- Conflict with or obstruct implementation of the applicable air quality plan.
- Violate any air quality standard or contribute substantially to an existing or projected air quality violation.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).
- Expose sensitive receptors to substantial pollutant concentrations.
- Create objectionable odors affecting a substantial number of people.

Standards of Significance Changes since 2007 CMP EIR

Appendix G of the CEQA Guidelines (14 CCR 15000 et seq.) indicates that, where available, the significance criteria established by the applicable air quality management district or pollution control district may be relied upon to determine whether a project would have a significant impact on air quality. BAAQMD significance thresholds have been updated since the CMP EIR was prepared and certified (2006/2007).

The BAAQMD adopted updated CEQA Air Quality Guidelines, including new thresholds of significance, in June 2010 (BAAQMD 2010b), and revised them in May 2011. The CEQA Air Quality Guidelines advise lead agencies on how to evaluate potential air quality impacts, including establishing quantitative and qualitative thresholds of significance. The BAAQMD resolutions adopting and revising the significance thresholds in 2011 were set aside by a judicial writ of mandate on March 5, 2012. In May 2012, the BAAQMD updated its CEQA Air Quality Guidelines to continue to provide direction on recommended analysis methodologies, but without recommended quantitative significance thresholds (BAAQMD 2012). On August 13, 2013, the First District Court of Appeal ordered the trial court to reverse the judgment and upheld the BAAQMD’s CEQA thresholds. The BAAQMD has not formally re-instated the thresholds or otherwise responded to this Appellate Court reversal. Although the significance thresholds adopted by the BAAQMD in 2011 are not currently recommended by the BAAQMD, these thresholds are based on substantial evidence identified in BAAQMD’s 2009
Justification Report (BAAQMD 2009), and many lead agencies in the region continue to use them. Therefore, these standards are used herein.

Current BAAQMD significance thresholds are summarized in Table 4.2-4. In general, the BAAQMD significance criteria pollutant (ROG, NO\textsubscript{x}, PM\textsubscript{10}, PM\textsubscript{2.5}, and CO) thresholds address the first three air quality Appendix G CEQA thresholds. The BAAQMD maintains that these criteria pollutant thresholds are intended to maintain ambient air quality concentrations below state and federal standards and to prevent a cumulatively considerable contribution to regional nonattainment with ambient air quality standards. The TAC thresholds (cancer and noncancer risks) and local CO thresholds address the fourth Appendix G threshold, and the BAAQMD odors threshold addresses the fifth Appendix G threshold.

Table 4.2-4

Thresholds of Significance

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction Thresholds</th>
<th>Operational Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Daily Emissions</td>
<td>Average Daily Emissions</td>
</tr>
<tr>
<td></td>
<td>(lbs/day)</td>
<td>(lbs/day)</td>
</tr>
<tr>
<td>ROG</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>82 (exhaust)</td>
<td>82</td>
</tr>
<tr>
<td>PM\textsubscript{2.5}</td>
<td>54 (exhaust)</td>
<td>54</td>
</tr>
<tr>
<td>PM\textsubscript{10}/PM\textsubscript{2.5} (fugitive dust)</td>
<td>Best Management Practices</td>
<td>None</td>
</tr>
<tr>
<td>Local CO</td>
<td>None</td>
<td>9.0 ppm (8-hour average, 20.0 ppm (1-hour average)</td>
</tr>
</tbody>
</table>

Risks and Hazards (Individual Project)

- Compliance with Qualified Community Risk Reduction Plan
- Increased cancer risk of >10.0 in a million
- Increased noncancer risk of >1.0 Hazard Index (Chronic or Acute)
- Ambient PM\textsubscript{2.5} increase >0.3 μg/m3 annual average
- Zone of Influence: 1,000-foot radius from property line of source or receptor

Risks and Hazards (Cumulative)

- Compliance with Qualified Community Risk Reduction Plan
- Cancer risk of >100 in a million (from all local sources)
- Noncancer risk of >10.0 Hazard Index (chronic, from all local sources)
- Ambient PM\textsubscript{2.5} >0.8 μg/m3 annual average (from all local sources)
- Zone of Influence: 1,000-foot radius from property line of source or receptor

Accidental Release of Acutely Hazardous Air Pollutants

- None
- Storage or use of acutely hazardous material located near receptors or new receptors located near stored or used acutely hazardous materials considered significant

Odors

- None
- Five confirmed complaints to BAAQMD per year averaged over 3 years

Source: BAAQMD 2009; BAAQMD 2010

lbs/day = pounds per day; tons/year = tons per year; ppm = parts per million; μg/m3 = micrograms per cubic meter; ROG = reactive organic gases; NO\textsubscript{x} = oxides of nitrogen; PM\textsubscript{10} = particulate matter with an aerodynamic resistance diameter of 10 micrometers or less; PM\textsubscript{2.5} = fine particulate matter with an aerodynamic resistance diameter of 2.5 micrometers or less; CO = carbon monoxide
Analytical Method

Since the certification of the CMP EIR in 2007, the BAAQMD has updated its Clean Air Plan and CEQA Guidelines and associated emissions-based thresholds, as described above and shown in Table 4.2-4 (BAAQMD 2010b, 2012). Additionally, the California Emissions Estimator Model (CalEEMod) is the land use and air quality model now in use to estimate construction and operational emissions of proposed projects. As such, the analytical method applied in the 2007 CMP EIR has been updated accordingly for the Project. Assumptions and methodology for construction and operational air pollutant emissions are described below.

Construction

Emissions from the construction phase of the Project were estimated using CalEEMod, Version 2013.2.2. Construction scenario assumptions, including phasing, equipment mix, building square-footage to be demolished, soil cut/fill, and vehicle trips, were based on information provided by SF State and CalEEMod default values when Project specifics were not known.

For purposes of estimating Project emissions, it is assumed that construction of the Project would commence in August 2017 and would last approximately 29 months, ending in December 2019. The analysis contained herein is based on the following assumptions (duration of phases is approximate):

- Demolition: 1.5 months (August 2017–September 2017)
- Site Preparation: 0.5 month (September 2017)
- Grading and Utilities: 1.5 months (September 2017–November 2017)
- Building Construction: 24 months (November 2017–November 2019)
- Paving: 1 month (November 2019)
- Application of Architectural Coatings: 1 month (December 2019)

For the analysis, it was generally assumed that heavy construction equipment would be operating at the site for approximately 8 hours per day, 5 days per week (22 days per month), during Project construction.

Construction-worker and vendor-truck trip estimates by construction phase were based on CalEEMod default values. Haul-truck trips during the grading phase were based on estimated earthwork quantities for the underground parking (Block 6) and building basements (Block 1). Grading is currently estimated to involve 32,600 cubic yards of soil for export. Assuming a haul-truck capacity of 16 cubic yards per truck, earth-moving activities would result in approximately 4,075 one-way truck trips during the grading phase. Demolition of the existing buildings and
hardscape is estimated to result in an additional 440 one-way haul-truck trips. CalEEMod default trip length values were used for the distances for all construction-related trips.

The construction equipment mix and vehicle trips used for estimating Project-generated construction emissions are shown in Table 4.2-5.

Table 4.2-5
Construction Scenario Assumptions

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>One-Way Vehicle Trips</th>
<th>Equipment</th>
<th>Daily Usage Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Daily Worker Trips</td>
<td>Average Daily Vendor-Truck Trips</td>
<td>Total Haul-Truck Trips</td>
</tr>
<tr>
<td>Demolition</td>
<td>15</td>
<td>0</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Preparation</td>
<td>18</td>
<td>0</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grading and Utilities</td>
<td>18</td>
<td>0</td>
<td>2,575</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Construction</td>
<td>220</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>44</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: See Appendix C for details.

Operations

Emissions from the operational phase of the Project were estimated using CalEEMod for existing uses to be demolished (year 2016) and for the first year of Project operations (year 2020) for mobile, area, and energy sources. Model outputs and assumptions are included in Appendix C.

Mobile Sources. According to the traffic analysis prepared for the Project (Fehr & Peers 2016), trips generated by the Project would consist of vehicle trips (including drive alone,
motorcycle, carpool, and taxi), public transit, and walking and bicycling. Since no additional transit capacity would be needed for the Project, and walking and bicycling would not generate emissions, only the vehicle trips were included in this analysis. CalEEMod was used to estimate emissions associated with existing land use vehicle trips. Notably, the Project would result in a net decrease in daily vehicle trips associated with the housing portion, since the increase in beds available under the Project would allow a greater number of existing students to live on campus, which would reduce vehicle trips to campus. This net decrease in vehicle trips would be representative of non-event days. For event days, the concert hall would result in approximately 251 new vehicle trips. SF State estimated that there could be approximately 65 to 80 events per year at the concert hall, or approximately seven events per month.¹ CalEEMod was used to model a non-event day and an event day for the Project, with annual emissions estimated based on the proportion of non-event days (265 days) and event days (80 days). CalEEMod default data, including temperature, trip characteristics, vehicle mix, variable start information, emissions factors, and trip distances, were conservatively used for the model inputs to estimate daily emissions from proposed vehicular sources. Emissions factors representing the vehicle mix and emissions for 2020 were used to estimate emissions associated with full buildout of the Project.

Area Sources. CalEEMod was used to estimate operational emissions from area sources, including emissions from consumer product use, architectural coatings, and landscape maintenance equipment associated with the Project, and existing uses to be demolished. Emissions associated with natural gas usage in space heating, water heating, and stoves were calculated in the building energy use module of CalEEMod, as described below. Neither the Project nor existing uses include woodstoves or fireplaces (wood or natural gas). As such, area source emissions associated with hearths were not included.

Consumer products in this analysis are chemically formulated products used by household and institutional consumers, including detergents; cleaning compounds; polishes; floor finishes; cosmetics; personal care products; home, lawn, and garden products; disinfectants; sanitizers; aerosol paints; and automotive specialty products. Other paint products, furniture coatings, and architectural coatings are not considered consumer products in this case (CAPCOA 2013). Consumer product ROG emissions were estimated in CalEEMod based on the floor area of residential and nonresidential buildings, and on the default factor of pounds of ROG per building square foot per day. Although the parking garage to be constructed under the Project as part of the student housing/mixed-use building is not anticipated to use the same consumer products as residential and typical nonresidential land uses, ROG emissions associated with parking lot degreaser may occur. As such, the CalEEMod default values for

¹ Provided by SF State staff. These percentages are based on attendance data from existing events at other comparable theaters on campus.
consumer products were assumed, although this results in a likely over-estimate of consumer product ROG emissions.

ROG off-gassing emissions result from evaporation of solvents contained in surface coatings such as in paints and primers used during building maintenance. CalEEMod calculates the ROG evaporative emissions from application of residential and nonresidential surface coatings based on the ROG emissions factor, the building square footage, the assumed fraction of surface area, and the reapplication rate. The model default reapplication rate of 10% of area per year was assumed. Consistent with CalEEMod defaults, it was assumed that the residential surface area for painting equals 2.7 times the floor square footage, with 75% assumed for interior coating and 25% assumed for exterior surface coating. For nonresidential land uses (e.g., concert hall, creative arts building, and retail), it was assumed that the surface area for painting equals 2 times the floor square footage, with 75% assumed for interior coating and 25% assumed for exterior surface coating. For the parking garage, the architectural coating area was assumed to be 6% of the total square footage, consistent with the supporting CalEEMod studies provided as an appendix to the CalEEMod User’s Guide (CAPCOA 2013).

Landscape maintenance would involve use of fuel combustion emissions from equipment such as lawn mowers, rototillers, shredders/grinders, blowers, trimmers, chain saws, and hedge trimmers. Emissions associated from landscape equipment use were estimated based on CalEEMod default values for emissions factors (grams per residential dwelling unit per day and grams per square foot of nonresidential building space per day) and number of summer days (when landscape maintenance would generally be performed) and winter days.

Energy Sources. As represented in CalEEMod, energy sources would include emissions associated with building electricity and natural gas usage (non-hearth). Electricity use would contribute indirectly to criteria air pollutant emissions; however, the emissions from electricity use are only quantified for greenhouse gases in CalEEMod, since criteria pollutant emissions occur at the site of the power plant, which is typically off site.

CalEEMod default values for energy consumption for each land use were applied for the Project analysis, which account for 2008 Title 24 standards. Title 24 of the California Code of Regulations serves to enhance and regulate California’s building standards. The most recent amendments to Title 24, Part 6, referred to as the 2016 standards, will become effective on January 1, 2017. The previous amendments were referred to as the 2013 standards and are currently effective. Buildings constructed in accordance with the 2013 standards will use 25% less energy for lighting, heating, cooling, ventilation, and water heating than the 2008 standards. For the purposes of estimating Project-generated energy emissions, a mitigation measure was applied to CalEEMod to assume a 25% reduction from the 2008 standards (the basis for the default energy usage factors in CalEEMod) to reflect the benefits of compliance.
with the 2013 standards. In addition, it was assumed that the Project would exceed the current Title 24 standard by 20% to achieve at least Leadership in Energy and Environmental Design (LEED) Gold, which was also incorporated into the mitigation in the model. For the existing uses to be demolished, the energy consumption values were based on the “historical” option in CalEEMod, since they were constructed prior to 2005.

CMP EIR Mitigation Measures Included in Project

The adopted mitigation measures included in the 2007 CMP EIR that are applicable to the Project are presented below (SF State 2007). These measures are already being implemented as part of the CMP and the adopted CMP EIR Mitigation Monitoring & Reporting Program, and, therefore, they are considered to be part of the Project, as described in Chapter 3.

CMP Mitigation Air-1: The Campus shall apply the following feasible control measures as required by BAAQMD:

Basic Control Measures – For all construction sites:

- Water all active construction areas at least twice daily, or as needed.
- Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least two feet of freeboard.
- Pave, apply water three times daily, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas and staging areas at construction sites.
- Sweep daily (with water sweepers) all paved access roads, parking areas and staging areas at construction sites.
- Sweep streets daily (with water sweepers) if visible soil material is carried onto adjacent public streets.

Enhanced Control Measures – For sites greater than 4 acres in area:

- All “Basic” control measures listed above.
- Hydroseed or apply (non-toxic) soil stabilizers to inactive construction areas (previously graded areas inactive for ten days or more.)
- Enclose, cover, water twice daily or apply (non-toxic) soil binders to exposed stockpiles (dirt, sand, etc.)
4.2 – Air Quality

- Limit traffic speeds on unpaved roads to 15 mph.
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways.
- Replant vegetation in disturbed areas as quickly as possible.
- Suspend excavation and grading activity when winds (instantaneous gusts) exceed 25 mph.
- Limit the area subject to excavation, grading and other construction activity at any one time.

CMP Mitigation AIR-2A: The SF State campus will work with the ABAG to ensure that campus growth associated with the Campus Master Plan is accounted for in the regional population forecasts.

CMP Mitigation AIR-2B: The SF State campus will work with BAAQMD to ensure that campus growth-related emissions are accounted for in the regional emissions inventory and mitigated in future air quality planning efforts.

Project Impacts and Mitigation Measures

Tiered Initial Study Results

As described in the Tiered Initial Study (Appendix A), the 2007 CMP EIR determined that the impacts of CMP buildout related to potential conflicts with the applicable air plan and construction emissions of PM\(_{10}\) and PM\(_{2.5}\) would be less than significant with identified mitigation measures. The impacts related to the exposure of sensitive receptors to substantial pollutant concentrations and objectionable odors were determined to be less than significant.

The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus: the Creative Arts replacement building and the concert hall on Block 1, also referred to as the Tapia Triangle, and the student housing/mixed-use building on Block 6, located on the south side of Holloway Avenue. As noted above, since certification of the 2007 CMP EIR, the BAAQMD has updated its Clean Air Plan and CEQA Guidelines and associated emissions-based thresholds (BAAQMD 2010b, 2012). In addition, an updated emissions model, CalEEMod, is now the preferred land use and air quality model to estimate construction and operational emissions of proposed projects. Given the above, the Tiered Initial Study concluded that the Focused Tiered EIR should evaluate potential air quality impacts of the Project related to conflicts with the current Clean Air Plan, contributions to air quality violations, exposure of sensitive receptors to substantial pollutant concentrations, and creation of objectionable odors.
to determine whether there may be new or increased impacts compared to those identified in the 2007 CMP EIR. This analysis is provided below.

Project and Cumulative Impacts

For each impact presented below, the CMP EIR impact is presented first in gray text for easy reference to the 2007 CMP EIR’s prior impact conclusions. The Project impact is presented second and emphasizes whether new or increased impacts would result with the Project.

However, there is only a Project impact presented for impacts related to odors, as the CMP EIR did not evaluate odors. This EIR includes an evaluation of odors, as this topic is better addressed at a project-specific level (see Project Impact AIR-5 below).

CMP Impact AIR-1: Construction activities under the Campus Master Plan would result in emissions of PM$_{10}$ and PM$_{2.5}$ on a short-term basis (Potentially significant impact / Less-than-significant with mitigation)

Project Impact AIR-1: The Project would not violate any air quality standard or contribute substantially to an existing or projected air quality violation (Less than significant impact / No new or increased impact)

Construction Impacts. Construction of the Project would result in the temporary addition of pollutants to the local airshed caused by on-site sources (e.g., off-road construction equipment, soil disturbance, and ROG off-gassing) and off-site sources (e.g., on-road haul trucks, vendor trucks, and worker vehicle trips). Construction emissions can vary substantially from day to day, depending on the level of activity; the specific type of operation; and, for dust, the prevailing weather conditions. Therefore, such emissions levels can only be approximately estimated with a corresponding uncertainty in ambient air quality impacts.

As described in the “Analytical Method” discussion above, criteria air pollutant emissions associated with temporary construction activities were quantified using CalEEMod. Construction emissions were calculated for the average daily emissions over the construction period. Construction schedule assumptions, including phase type, duration, and sequencing, were based on information provided by SF State and represent a reasonable scenario based on the best information available. Default values provided in CalEEMod were used where detailed Project information was not available. Detailed model assumptions and outputs are included in Appendix C.
Implementation of the Project would generate air pollutant emissions from entrained dust, off-road equipment, vehicle emissions, architectural coatings, and asphalt pavement application. Entrained dust results from the exposure of earth surfaces to wind from the direct disturbance and movement of soil, resulting in PM$_{10}$ and PM$_{2.5}$ emissions. The BAAQMD does not have a quantitative significance threshold for fugitive dust. The BAAQMD’s CEQA Guidelines recommend that projects determine the significance for fugitive dust through application of best management practices (BMPs). The Project would be required to comply with the BAAQMD BMPs to control dust emissions generated during earthwork activities (CMP Mitigation AIR-1). Implementation of the required fugitive dust control measures would ensure that air quality and fugitive-dust-related impacts associated with construction would remain less than significant.

Internal combustion engines used by construction equipment, vendor trucks (e.g., delivery trucks), and worker vehicles would result in emissions of ROG, NO$_x$, CO, PM$_{10}$, and PM$_{2.5}$. The application of architectural coatings, such as exterior application/interior paint and other finishes, and application of asphalt pavement would also produce ROG emissions. Average daily emissions for Project construction, necessary for comparison to BAAQMD thresholds of significance, were computed by dividing the total construction emissions by the number of construction days. Table 4.2-6 shows Project construction emissions of ROG, NO$_x$, PM$_{10}$ exhaust, and PM$_{2.5}$ exhaust during Project construction.

Table 4.2-6
Average Daily Construction Emissions

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NO$_x$</th>
<th>PM$_{10}$ Exhaust</th>
<th>PM$_{2.5}$ Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pounds per Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017–2019 Construction</td>
<td>8.9</td>
<td>29.7</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>BAAQMD Construction</td>
<td>54</td>
<td>54</td>
<td>82</td>
<td>54</td>
</tr>
<tr>
<td>Thresholds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exceed Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: Appendix C
Note: The values shown are average daily emissions based on total overall construction emissions divided by 632 active work days.
ROG = reactive organic gas; NO$_x$ = oxides of nitrogen; PM$_{10}$ = coarse particulate matter; PM$_{2.5}$ = fine particulate matter

As shown in Table 4.2-6, construction of the Project would not exceed BAAQMD significance thresholds. Construction-generated emissions would be temporary and would not represent a long-term source of criteria air pollutant emissions. Impacts during construction would be less than significant. There are no new or increased impacts compared to the CMP EIR as a result of construction emissions of criteria pollutants generated by the Project.

Operational Impacts. The Project would involve demolition of existing housing units and construction of the Creative Arts replacement building, concert hall, and student housing/mixed-use building. Operation of the Project would generate criteria air pollutant
emissions from mobile sources, including vehicle trips associated with concert hall events; area sources, including the use of consumer products, architectural coatings for repainting, and landscape maintenance equipment; and energy sources, including combustion of fuels used for space and water heating. As described in the “Analytical Method” discussion above, criteria air pollutant emissions associated with long-term operations were quantified using CalEEMod for the existing uses to be demolished and for the Project uses to be developed. CalEEMod was used to model a non-event day and an event day for the Project, with annual emissions estimated based on the proportion of non-event days (265 days) and event days (80 days). Table 4.2-7 summarizes the annual emissions of criteria pollutants that would be generated by development of the Project, and emissions of existing land uses to be demolished. Detailed calculations are presented in Appendix C.

Table 4.2-7

<table>
<thead>
<tr>
<th>Scenario</th>
<th>ROG</th>
<th>NOx</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Project</td>
<td>1.7</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Existing Uses</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Net Increase (Project minus Existing)</td>
<td>1.4</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>BAAQMD Operational Thresholds</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Exceed Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: Appendix C

Notes: The values shown for the Project and existing use scenarios are the combined annual emissions from mobile, area, and energy sources from CalEEMod. Project annual emissions were estimated based on the proportion of non-event days (265 days) and event days (80 days), assuming half the events occur in winter and half the events occur in summer. In addition, Project emissions are based on the “Mitigated” CalEEMod outputs in order to incorporate the 2013 Title 24 standards (i.e., 25% reduction versus 2008 Title 24) and the 20% beyond Title 24 development standard to approximate LEED Gold, even though compliance with these standards would not be considered actual mitigation.

ROG = reactive organic gas; NOx = oxides of nitrogen; PM$_{10}$ = coarse particulate matter; PM$_{2.5}$ = fine particulate matter

As shown in Table 4.2-7, operation of the Project would not result in a net increase of criteria air pollutants that would exceed annual thresholds as established by the BAAQMD. Impacts related to emissions of criteria pollutants during operation would be less than significant. There are no new or increased impacts compared to the CMP EIR as a result of operational emissions of criteria pollutants generated by the Project.

Project Mitigation AIR-I: No additional mitigation required.
4.2 – Air Quality

CMP Impact AIR-2: Campus growth under the Campus Master Plan would result in operational emissions that could hinder the attainment of the Clean Air Plan (Potentially significant impact / Less-than-significant impact with mitigation)

Project Impact AIR-2: The Project would not conflict with or obstruct the implementation of the applicable air quality plan (Less-than-significant impact / No new or increased impact)

The applicable air quality plan is the Bay Area 2010 Clean Air Plan, adopted in September 2010 (BAAQMD 2010b). Projects are considered consistent with, and would not conflict with or obstruct implementation of, the local air quality management plan if the growth in socioeconomic factors (e.g., population, employment) is consistent with the underlying regional plans used to develop local air quality management plans. Demographic growth forecasts for various socioeconomic categories, developed by the Metropolitan Transportation Commission, ABAG, and local and regional agencies were used to estimate future emissions in the 2010 Clean Air Plan.

The 2011 BAAQMD CEQA Guidelines recommend consideration of the following three questions to determine consistency with the relevant air quality plan:

- Does the project support the primary goals of the air quality plan?
- Does the project include applicable control measures from the air quality plan?
- Does the project disrupt or hinder implementation of any Clean Air Plan control measures?

Regarding question number 1, the three primary goals of the Bay Area 2010 Clean Air Plan are to (1) attain air quality standards, (2) reduce population exposure to unhealthy air and protect public health in the Bay Area, and (3) reduce greenhouse gas emissions and protect the climate (BAAQMD 2010a). The BAAQMD adopts Clean Air Plan control measures into the BAAQMD rules and regulations, which are then used to regulate sources of air pollution in the SFBAAB. Therefore, compliance with these requirements would ensure that the Project would not obstruct implementation of the Clean Air Plan.

As discussed in the Tiered Initial Study, Section 4.10, Land Use and Planning, the adopted CMP is the applicable campus land use plan, and the Project, including the CMP revision, would fully conform with the adopted CMP (see Appendix A).

As shown in the analysis for Project Impacts AIR-1, AIR-3, and AIR-4A and -4B, the Project would not create a localized air violation of state or federal air quality standards, expose sensitive receptors to substantial pollution, or cumulatively contribute to any criteria pollutants
to which the region is in nonattainment. The Project would not conflict with the previously stated goals of the Bay Area 2010 Clean Air Plan. Therefore, impacts with regard to BAAQMD CEQA Guidelines question number 1 would be less than significant.

Regarding BAAQMD CEQA Guidelines question number 2, the Clean Air Plan includes 59 control measures related to six primary categories: Stationary Source Measures, Mobile Source Measures, Transportation Control Measures, Land Use and Local Impact Measures, Energy and Climate Measures, and Further Study Measures. Of these measures, 18 address stationary sources and would be implemented by the BAAQMD using its permit authority; therefore, these measures are not suited to implementation through local planning efforts. In addition, 16 other measures are a draft list of measures for further study and are not yet identified as feasible for implementation under the 2010 Clean Air Plan. Although most of the control measures in the Clean Air Plan would not apply to the Project, measures most applicable to the Project are transportation control measures and energy and climate measures. According to the traffic analysis prepared for the Project (Fehr & Peers 2016), the Project would result in a decrease in vehicle commute trips based on increased on-campus student housing, which would shift 355 off-campus students to living on campus. The Project would also locate new student housing in proximity to the existing Muni “M” line and bus lines, and to the future planned underground Muni M line and station and planned 19th Avenue bicycle and pedestrian facilities. In addition, for event days, transit would comprise a substantial portion of total trips based on the availability of transit options. For the energy and climate measures, the Project would be subject to a number of sustainability requirements, including the California CalGreen Code. The Project would be constructed to at least LEED Gold or equivalent performance and energy efficiency beyond Title 24 requirements. Impacts with regard to BAAQMD CEQA Guidelines question number 2 would be less than significant.

Regarding BAAQMD CEQA Guidelines question number 3, the BAAQMD has identified examples of how a plan may cause the disruption or delay of control measures, such as a project that may preclude an extension of a transit line or bike path, or one that proposes excessive parking beyond parking requirements. The Project would not preclude extension of a transit line or bike path, and would result in no net increase in parking. Therefore, the Project would not conflict with or obstruct implementation of control measures delineated in the Clean Air Plan. Impacts with regard to question number 3 would be less than significant.

The Project would not conflict with or obstruct implementation of the 2010 Clean Air Plan, and the impact would be less than significant. The Project would not result in new or increased impacts compared to the CMP EIR related to conflicts with the Clean Air Plan. Although not directly required to reduce this impact, CMP Mitigation AIR-2A and Mitigation AIR-2B (listed above under “CMP EIR Mitigation Measures Included in Project”) pertain to SF State growth and regional air quality planning and would continue to apply with the Project.
4.2 – Air Quality

Project Mitigation AIR-2: No additional mitigation required.

CMP Impact AIR-3: Traffic generated by development under the Campus Master Plan, in conjunction with traffic associated with other regional growth, would result in an increase in local CO concentrations at study area intersections (Less-than-significant impact).

Project Impact AIR-3: The Project would not expose sensitive receptors to substantial pollutant concentrations (Less-than-significant impact / No new or increased impact).

Air Toxics. The BAAQMD has adopted project and cumulative thresholds for three risk-related air quality indicators to sensitive receptors: cancer risks, noncancer health effects, and increases in ambient air concentrations of PM$_{2.5}$. These impacts are addressed on a localized, rather than regional, basis in relation to sensitive receptors identified for the Project. Sensitive receptors are groups of individuals, including children, older adults, the acutely ill, and the chronically ill, that may be more susceptible to health risks due to chemical exposure. Sensitive-receptor population groups are likely to be located at hospitals, medical clinics, schools, playgrounds, childcare centers, residences, and retirement homes. The nearest sensitive receptors to the Project site are located within 100 feet of both Block 1 and Block 6, consisting of on- and off-campus residential uses in University Park South and in the adjacent Parkmerced.

TACs and PM$_{2.5}$ can cause cancer and noncancer chronic and acute health impacts such as birth defects, neurological damage, asthma, bronchitis, and genetic damage, and short-term acute affects such as eye watering, respiratory irritation, running nose, throat pain, and headaches. State law has established the framework for California’s TAC identification and control program, which is generally more stringent than the federal program and aimed at TACs that are a problem in California. The state has formally identified more than 200 substances as TACs, including the federal HAPs, and is adopting control measures for sources of these TACs. CARB has classified DPM as a TAC. The following measures are required by state law to reduce diesel particulate emissions:

- Fleet owners of mobile construction equipment are subject to the CARB Regulation for In-Use Off-Road Diesel Vehicles (13 CCR, Chapter 9, Section 2449) to reduce DPM and criteria pollutant emissions from in-use (existing) off-road diesel-fueled vehicles.
- All commercial diesel vehicles are subject to 13 CCR Section 2485, limiting engine idling time. Idling of heavy-duty diesel construction equipment and trucks during loading and
unloading must be limited to 5 minutes; electric auxiliary power units should be used whenever possible.

The greatest potential for TAC emissions during construction would be DPM emissions from heavy equipment operations and heavy-duty trucks during construction of the Project, and the associated health impacts to sensitive receptors. As shown in Table 4.2-6, average daily particulate matter (PM$_{10}$ or PM$_{2.5}$) exhaust emissions generated by construction equipment operation would be well below the BAAQMD significance thresholds. Moreover, total construction of the Project would last approximately 29 months, after which Project-related TAC emissions would cease.

For demolition activities, structures to be demolished sometimes contain asbestos-containing material (ACM). Demolition of existing buildings and structures would be subject to BAAQMD Regulation 11, Rule 2 (Asbestos Demolition, Renovation, and Manufacturing). BAAQMD Regulation 11, Rule 2 is intended to limit asbestos emissions from demolition or renovation of structures and the associated disturbance of ACM generated or handled during these activities. All ACM found on site would be removed prior to demolition or renovation activity in accordance with BAAQMD Regulation 11, Rule 2, including specific requirements for surveying, notification, removal, and disposal of ACM. The Project is required to comply with BAAQMD Regulation 11, Rule 2, ensuring that ACMs would be removed and disposed of appropriately and safely. Complying with BAAQMD Regulation 11, Rule 2 would minimize the release of airborne asbestos emissions; therefore, demolition activity would result in a less-than-significant impacts to nearby sensitive receptors.

An emergency generator is proposed for the Project to support elevator operations during power outages. However, the generator would be required to go through the BAAQMD permitting process, which includes ensuring that potential health risks to nearby sensitive receptors would be less than significant. As such, no substantial residual TAC emissions and corresponding cancer risk are anticipated after construction, and no long-term non-permitted sources of TAC emissions are anticipated during operation of the Project. Thus, the Project would not result in a long-term (i.e., 9-year, 30-year, or 70-year) source of substantial TAC emissions. Therefore, the exposure of Project-related TAC emission impacts to sensitive receptors would be less than significant. The Project would not result in new or increased impacts compared to the CMP EIR related to TAC emissions.

Local Carbon Monoxide Concentrations

The BAAQMD thresholds of significance for local CO emissions is the 1-hour and 8-hour CAAQS of 20 parts per million and 9 parts per million, respectively. By definition, these represent levels that are protective of public health. According to the 2011 thresholds of the
BAAQMD, a proposed project would result in a less-than-significant impact to localized CO concentrations if the following screening criteria are met:

- Project is consistent with an applicable congestion management program established by the county congestion management agency for designated roads or highways, regional transportation plan, and local congestion management agency plans.
- The project traffic would not increase traffic volumes at affected intersections to more than 44,000 vehicles per hour.
- The project traffic would not increase traffic volumes at affected intersections to more than 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited (e.g., tunnel, parking garage, bridge underpass, natural or urban street canyon, below-grade roadway).

The Project would generate minimal new vehicle traffic trips and would comply with these screening criteria. Based on the BAAQMD’s criteria, Project-related traffic would not exceed CO standards and, therefore, no further analysis was conducted for CO impacts. The CO emissions impact would be less than significant on a Project level and cumulative basis. The Project would not result in new or increased impacts compared to the CMP EIR related to CO emissions.

Cumulative Health Risk

As noted in Section 4.2.1, to identify areas of San Francisco most adversely affected by sources of TACs, the City partnered with the BAAQMD to inventory and assess cumulative air pollution and exposures from mobile, stationary, and area sources within San Francisco. Based on the Citywide Air Pollutant Exposure Zone Map (CCSF 2014), the Project site is not within a modeled “Air Pollutant Exposure Zone” with poor air quality (i.e., where the concentration of PM_{2.5} or the cancer risk exceed 10 µg/m³ or 100 per 1 million population, respectively). Therefore, the Project would not locate sensitive receptors in an area with significant cumulative health risks.

Project Mitigation AIR-3: Mitigation not required.
4.2 – Air Quality

CMP Impact AIR-4: Campus growth under the Campus Master Plan in conjunction with other regional growth in the air basin could potentially result in operational emissions that could hinder the attainment of the Clean Air Plan (*Potentially significant impact / Less-than-significant impact with mitigation*).

Project Impact AIR-4A: The Project would not result in a cumulatively considerable new increase of any criteria pollutant for which the Project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors) (*Less-than-significant impact / No new or increased impact*).

Past, present, and future development projects may contribute to the region’s adverse air quality impacts on a cumulative basis. Per BAAQMD’s CEQA Guidelines, by its nature, air pollution is largely a cumulative impact; no single project is sufficient in size to, by itself, result in nonattainment of ambient air quality standards. In developing thresholds of significance for air pollutants, the BAAQMD considered the emissions levels for which a project’s individual emissions would be cumulatively considerable. If a project exceeds the identified significance thresholds, its emissions would be considered cumulatively considerable, resulting in significant adverse air quality impacts to the region’s existing air quality conditions. Therefore, if the Project’s emissions are below the BAAQMD thresholds, then the Project’s cumulative impact would be less than significant.

Construction Impacts. Thresholds established by the BAAQMD, as shown in Table 4.2-4, are used to evaluate air quality impacts, including cumulative impacts. Thresholds established by the BAAQMD reflect the attainment status of the Project region and provide for the consideration of Project impacts in light of the region’s nonattainment status for certain criteria pollutants. Table 4.2-6 shows that construction of the Project would not exceed BAAQMD construction thresholds for any criteria pollutants; therefore, construction activities would not contribute to existing cumulatively considerable impacts. Cumulative impacts would be less than significant during the temporary construction period.

Operational Impacts. Thresholds of significance for operational emissions of criteria air pollutants and precursors are shown in Table 4.2-4. The thresholds of significance show the levels at which a project’s individual emissions of criteria air pollutants and precursors would have a significant contribution to the region’s existing air quality conditions. As shown in Table 4.2-7, annual net operational emissions of criteria air pollutants generated by the Project would be well below the thresholds of significance established by the BAAQMD. Therefore, cumulative impacts associated with Project operations would be less than significant. The
Project would not result in new or increased impacts compared to the CMP EIR related to cumulative impacts.

Project Mitigation AIR-4A: No additional mitigation required.

Project Impact AIR-4B: The Project would not contribute to cumulative impacts with respect to air quality (*Less-than-significant impact*).

The SFBAAB is designated as a nonattainment area for federal and state O$_3$ and PM$_{2.5}$ standards. The SFBAAB is also designated as a nonattainment area for the state PM$_{10}$ standard. Overall air quality in the SFBAAB results from cumulative emissions from all emissions sources. As discussed previously, construction and operation of the Project would generate ROG and NO$_x$ emissions (which are precursors to O$_3$), and emissions of PM$_{10}$ and PM$_{2.5}$. However, as indicated in Tables 4.2-6 and 4.2-7, Project-generated construction and operational emissions would not exceed the BAAQMD emissions-based significance thresholds for ROG, NO$_x$, PM$_{10}$, or PM$_{2.5}$, and, thus, the Project would not be considered to result in a cumulatively considerable contribution to regional air quality impacts.

Cumulative localized impacts could result if a construction project occurs concurrently with another project. The only known active project in the Project vicinity that could contribute to cumulative localized construction emissions would be Phase 1 of the Parkmerced project, with the nearest development site (300 Arballo) approximately 500 feet from the Block 1 portion of the Project site. Accumulation of cumulative PM$_{10}$ and PM$_{2.5}$ emissions would be minimized based on the substantial distance between the Project and this Parkmerced development site, and because all projects in the BAAQMD jurisdiction are subject to BAAQMD construction BMPs, which set forth general and specific emission reduction requirements for all construction sites in the BAAQMD.

In addition, projects are considered consistent with, and would not conflict with or obstruct implementation of, the local air quality management plan if the growth in socioeconomic factors (e.g., population, employment) is consistent with the regional plans used to develop local air quality management plans. As described in Project Impact AIR-2, the Project would not conflict with the primary goals of the Clean Air Plan or hinder implementation of the Clean Air Plan’s control measures.

As described in Project Impact AIR-3, the Project site is not located within an “Air Pollutant Exposure Zone.” Although the Project would result in short-term TAC emissions during construction, it would not result in a long-term (i.e., 9-year, 30-year, or 70-year) non-permitted source of substantial TAC emissions. The Project’s incremental increase in localized TAC emissions resulting from construction and operation would be minor and would not contribute substantially to cumulative TAC emissions that could affect nearby
sensitive land uses. Therefore, cumulative air quality impacts would be less than significant. The Project would not result in new or increased impacts compared to the CMP EIR related to cumulative impacts.

Project Mitigation AIR-4B: No additional mitigation required.

Project Impact AIR-5: The Project would not create objectionable odors affecting a substantial number of people (*Less-than-significant impact/New impact*).

The 2007 CMP EIR did not evaluate the potential for CMP growth and development to result in objectionable odors. None of the new facilities that would be built on campus under the CMP would involve sources of objectionable odors. A project-level analysis is provided below for the Project.

Odors would be generated from vehicles and/or equipment exhaust emissions during construction of the Project. Odors produced during construction would be attributable to concentrations of unburned hydrocarbons from tailpipes of construction equipment. Such odors are temporary and generally occur at magnitudes that would not affect substantial numbers of people. Therefore, impacts associated with odors during construction would be less than significant.

The BAAQMD has identified typical sources of odor in the BAAQMD CEQA Air Quality Guidelines, a few examples of which include manufacturing plants, rendering plants, coffee roasters, wastewater treatment plants, sanitary landfills, and solid waste transfer stations. Although sources that generate objectionable odors must comply with air quality regulations, the public’s sensitivity to locally produced odors often exceeds regulatory thresholds. The Project would not include uses that have been identified by the BAAQMD as potential sources of objectionable odors. In addition, the Project would not locate new sensitive receptors in proximity to substantial odor-generating sources. This impact would be less than significant.

Project Mitigation AIR-5: Mitigation not required.
4.2 – AIR QUALITY

4.2.3 References

4.2 – AIR QUALITY

INTENTIONALLY LEFT BLANK
4.3 GREENHOUSE GAS EMISSIONS

This section of the Focused Tiered Final EIR presents potential greenhouse gas (GHG) impacts of the Project. The preparation of this Focused Tiered Final EIR was preceded by the Tiered Initial Study, which determined that an EIR would be prepared to consider the potential for the Project to result in significant impacts on GHGs. Notably, the 2007 CMP EIR (SF State 2007) did not analyze potential campus-wide impacts related to GHG emissions, as Appendix G of the CEQA Guidelines at that time did not address GHG emissions and there were no established thresholds. This section presents the environmental setting, impacts of the Project on the environment, and proposed measures to mitigate any identified significant impacts.

Public and agency comments related to GHGs were received during the public scoping period in response to the Notice of Preparation, and are summarized below:

- The City of San Francisco Planning Department noted that the City considers projects that are consistent with the City and County of San Francisco’s Qualified GHG Reduction Strategy to have less-than-significant GHG emissions impacts and suggested San Francisco State University could consider a similar approach with GHG reduction strategies and policies that CSU has adopted.

To the extent that issues identified in public comments involve potentially significant effects on the environment according to CEQA, and/or were raised by responsible and trustee agencies, they are identified and addressed in this EIR. For a complete list of public comments received during the public scoping period refer to Appendix B.

4.3.1 Environmental Setting

Study Area

The Project site is located in the City and County of San Francisco (City), within the boundaries of the San Francisco Bay Area Air Basin (SFBAAB). The SFBAAB encompasses all of Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, and Santa Clara Counties, and the southern portions of Solano and Sonoma Counties. Although there is a broad consensus in the scientific community that human activities are contributing to climate change, there is limited guidance available on how to properly analyze the impact of local development projects with respect to this global effect. Thus, although the Project is located in the SFBAAB, GHG emissions have broader impacts with regards to statewide GHG reduction goals and global climate stabilization.
The Greenhouse Effect

Climate change refers to any significant change in measures of climate, such as temperature, precipitation, or wind patterns, lasting for an extended period of time (decades or longer). A GHG is any gas that absorbs infrared radiation in the atmosphere; in other words, GHGs trap heat in the atmosphere. The greenhouse effect is the trapping and build-up of heat in the atmosphere (troposphere) near the Earth’s surface. The greenhouse effect traps heat in the troposphere through a threefold process as follows: Short-wave radiation emitted by the Sun is absorbed by the Earth, the Earth emits a portion of this energy in the form of long-wave radiation, and GHGs in the upper atmosphere absorb this long-wave radiation and emit it into space and toward the Earth. The greenhouse effect is a natural process that contributes to regulating the Earth's temperature. Without it, the temperature of the Earth would be about 0°F (−18°C) instead of its present 57°F (14°C). If the atmospheric concentrations of GHGs rise, the average temperature of the lower atmosphere will gradually increase. Global climate change concerns are focused on whether human activities are leading to an enhancement of the greenhouse effect.

Greenhouse Gases and Global Warming Potential

GHGs include, but are not limited to, carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), O₃, water vapor, hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). Some GHGs, such as CO₂, CH₄, and N₂O, occur naturally and are emitted to the atmosphere through natural processes and human activities. Of these gases, CO₂ and CH₄ are emitted in the greatest quantities from human activities. Manufactured GHGs, which have a much greater heat-absorption potential than CO₂, include fluorinated gases, such as HFCs, HCFCs, PFCs, and SF₆, which are associated with certain industrial products and processes. A summary of the most common GHGs and their sources is included in the following text.¹

Carbon Dioxide. CO₂ is a naturally occurring gas and a by-product of human activities and is the principal anthropogenic GHG that affects the Earth’s radiative balance. Natural sources of CO₂ include respiration of bacteria, plants, animals, and fungus; evaporation from oceans, volcanic out-gassing; and decomposition of dead organic matter. Human activities that generate CO₂ are from the combustion of coal, oil, natural gas, and wood.

Methane. CH₄ is a flammable gas and is the main component of natural gas. Methane is produced through anaerobic (without oxygen) decomposition of waste in landfills, flooded rice

fields, animal digestion, decomposition of animal wastes, production and distribution of natural gas and petroleum, coal production, and incomplete fossil fuel combustion.

Nitrous Oxide. Sources of N$_2$O include soil cultivation practices (microbial processes in soil and water), especially the use of commercial and organic fertilizers, manure management, industrial processes (such as in nitric acid production, nylon production, and fossil-fuel-fired power plants), vehicle emissions, and the use of N$_2$O as a propellant (such as in rockets, racecars, aerosol sprays).

Fluorinated Gases. Fluorinated gases are synthetic, powerful GHGs that are emitted from a variety of industrial processes. Several prevalent fluorinated gases include the following:

- **Hydrofluorocarbons:** HFCs are compounds containing only hydrogen, fluorine, and carbon atoms. HFCs are synthetic chemicals that are used as alternatives to ozone-depleting substances in serving many industrial, commercial, and personal needs. HFCs are emitted as by-products of industrial processes and are used in manufacturing.

- **Hydrochlorofluorocarbons:** HCFCs are compounds containing hydrogen, fluorine, chlorine, and carbon atoms. HFCs are synthetic chemicals that are used as alternatives to ozone depleting substances (chlorofluorocarbons).

- **Perfluorocarbons:** PFCs are a group of human-made chemicals composed of carbon and fluorine only. These chemicals were introduced as alternatives, along with HFCs, to the ozone depleting substances. The two main sources of PFCs are primarily aluminum production and semiconductor manufacturing. Since PFCs have stable molecular structures and do not break down through the chemical processes in the lower atmosphere, these chemicals have long lifetimes, ranging between 10,000 and 50,000 years.

- **Sulfur Hexafluoride:** SF$_6$ is a colorless gas that is soluble in alcohol and ether and slightly soluble in water. SF$_6$ is used for insulation in electric power transmission and distribution equipment, semiconductor manufacturing, the magnesium industry, and as a tracer gas for leak detection.

Gases in the atmosphere can contribute to climate change both directly and indirectly. Direct effects occur when the gas itself absorbs radiation. Indirect radiative forcing occurs when chemical transformations of the substance produce other GHGs, when a gas influences the atmospheric lifetimes of other gases, and/or when a gas affects atmospheric processes that alter the radiative balance of the Earth (e.g., affect cloud formation or albedo) (EPA 2016b). The Intergovernmental Panel on Climate Change (IPCC) developed the global warming potential (GWP) concept to compare the ability of each GHG to trap heat in the atmosphere relative to another gas. The GWP of a GHG is defined as the ratio of the time-integrated radiative forcing from the instantaneous release of 1 kilogram of a trace substance relative to that of 1 kilogram
of a reference gas (IPCC 2014). The reference gas used is CO₂; therefore, GWP-weighted emissions are measured in metric tons of CO₂ equivalent (MT CO₂E).

CalEEMod assumes that the GWP for CH₄ is 21 (which means that emissions of 1 MT of CH₄ are equivalent to emissions of 21 MT of CO₂), and the GWP for N₂O is 310, based on the IPCC Second Assessment Report (1995). The IPCC has released subsequent assessment reports with updated GWPs, and statewide documents are beginning to transition to the use of the GWPs in the IPCC Fourth Assessment Report. GWP used in EPA’s 2016 Inventory of U.S Greenhouse Gas Emissions and Sinks and CARB’s California 2016 GHG emissions inventory are based on the IPCC Fourth Assessment Report (IPCC 2007), which includes 1 for CO₂, 25 for CH₄, and 298 for N₂O. Nonetheless, the use of the different GWPs would not substantially change the overall Project-generated GHG emissions, which are primarily CO₂. As such, for the purposes of this analysis, it is appropriate to use the hardwired GWP values in CalEEMod from the IPCC Second Assessment Report.

Greenhouse Gas Emissions Inventories

Per the EPA’s Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014 (EPA 2016b), total United States GHG emissions were approximately 6,870.5 million metric tons (MMT) CO₂E in 2014. The primary GHG emitted by human activities in the United States was CO₂, which represented approximately 80.9% of total GHG emissions (5,556.0 MMT CO₂E). The largest source of CO₂, and of overall GHG emissions, was fossil-fuel combustion, which accounted for approximately 93.7% of CO₂ emissions in 2014 (5,208.2 MMT CO₂E). Total United States GHG emissions have increased by 7.4% from 1990 to 2014, and emissions increased from 2013 to 2014 by 1.0% (70.5 MMT CO₂E). Since 1990, United States GHG emissions have increased at an average annual rate of 0.3%; however, overall, net emissions in 2014 were 8.6% below 2005 levels (EPA 2016b).

According to California’s 2000–2014 GHG emissions inventory (2016 edition), California emitted 441.5 MMT CO₂E in 2014, including emissions resulting from out-of-state electrical generation (CARB 2016). The sources of GHG emissions in California include transportation, industry, electric power production from both in-state and out-of-state sources, residential and commercial activities, agriculture, high global-warming potential substances, and recycling and waste. The California GHG emission source categories and their relative contributions in 2014 are presented in Table 4.3-1.
4.3 – GREENHOUSE GAS EMISSIONS

Table 4.3-1
GHG Emissions Sources in California

<table>
<thead>
<tr>
<th>Source Category</th>
<th>Annual GHG Emissions (MMT CO₂E)</th>
<th>Percent of Total(^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>159.53</td>
<td>36%</td>
</tr>
<tr>
<td>Industrial uses</td>
<td>93.32</td>
<td>21%</td>
</tr>
<tr>
<td>Electricity generation(^{b})</td>
<td>88.24</td>
<td>20%</td>
</tr>
<tr>
<td>Residential and commercial uses</td>
<td>38.34</td>
<td>9%</td>
</tr>
<tr>
<td>Agriculture</td>
<td>36.11</td>
<td>8%</td>
</tr>
<tr>
<td>High global-warming potential substances</td>
<td>17.15</td>
<td>4%</td>
</tr>
<tr>
<td>Recycling and waste</td>
<td>8.85</td>
<td>2%</td>
</tr>
<tr>
<td>Totals</td>
<td>441.54</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: CARB 2016.
Notes: Emissions reflect the 2014 California GHG inventory.
MMT CO₂E = million metric tons of carbon dioxide equivalent per year

- Percentage of total has been rounded, and total may not sum due to rounding.
- Includes emissions associated with imported electricity, which account for 36.51 MMT CO₂E annually.

During the 2000 to 2014 period, per capita GHG emissions in California have continued to drop from a peak in 2001 of 13.9 MT per person to 11.4 MT per person in 2014, representing an 18% decrease. In addition, total GHG emissions in 2014 were 2.8 MMT CO₂E less than 2013 emissions. The declining trend in GHG emissions, coupled with programs that will continue to provide additional GHG reductions going forward, demonstrates that California is on track to meet the 2020 target of 431 MMT CO₂E (CARB 2016).

The GHG inventory for San Francisco State University (SF State) was developed for the year 2006. Of the total 61,184 MT CO₂E in 2006, 44.9% were from purchased utilities, 48.5% were generated by on-road vehicle commuting of students and staff, 5.2% from air travel, 1.1% from the SF State fleet, and less than 1% associated with solid waste (SF State 2008).

Potential Effects of Human Activity on Climate Change

Globally, climate change has the potential to affect numerous environmental resources through uncertain impacts related to future air temperatures and precipitation patterns. The 2014 *Intergovernmental Panel on Climate Change Synthesis Report* (IPCC 2014) indicated that warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. Signs that global climate change has occurred include warming of the atmosphere and ocean, diminished amounts of snow and ice, and rising sea levels (IPCC 2014).

In California, climate change impacts have the potential to affect sea-level rise, agriculture, snowpack and water supply, forestry, wildfire risk, public health, and electricity demand and supply (CCCC 2006). The primary effect of global climate change has been a 0.2°C rise in average global tropospheric temperature per decade, determined from meteorological...
measurements worldwide between 1990 and 2005. Scientific modeling predicts that continued emissions of GHGs at or above current rates would induce more extreme climate changes during the twenty-first century than were observed during the twentieth century. A warming of about 0.2°C (0.36°F) per decade is projected, and there are identifiable signs that global warming could be taking place.

Although climate change is driven by global atmospheric conditions, climate change impacts are felt locally. A scientific consensus confirms that climate change is already affecting California. The average temperatures in California have increased, leading to more extreme hot days and fewer cold nights. Shifts in the water cycle have been observed, with less winter precipitation falling as snow, and both snowmelt and rainwater running off earlier in the year. Sea levels have risen, and wildland fires are becoming more frequent and intense due to dry seasons that start earlier and end later (CAT 2010a).

An increase in annual average temperature is a reasonably foreseeable effect of climate change. Observed changes over the last several decades across the western United States reveal clear signals of climate change. Statewide average temperatures increased by about 1.7°F from 1895 to 2011, and warming has been greatest in the Sierra Nevada (CCCC 2012). By 2050, California is projected to warm by approximately 2.7°F above 2000 averages, a threefold increase in the rate of warming over the last century. By 2100, average temperatures could increase by 4.1°F to 8.6°F, depending on emissions levels. Springtime warming—a critical influence on snowmelt—will be particularly pronounced. Summer temperatures will rise more than winter temperatures, and the increases will be greater in inland California, compared to the coast. Heat waves will be more frequent, hotter, and longer. There will be fewer extremely cold nights (CCCC 2012). A decline of Sierra Nevada snowpack, which accounts for approximately half of the surface water storage in California, by 30% to as much as 90% is predicted over the next 100 years (CAT 2006).

Model projections for precipitation over California continue to show the Mediterranean pattern of wet winters and dry summers with seasonal, year-to-year, and decade-to-decade variability. For the first time, however, several of the improved climate models shift toward drier conditions by the mid-to-late twenty-first century in central, and most notably, Southern California. By the late century, all projections show drying, and half of them suggest 30-year average precipitation will decline by more than 10% below the historical average (CCCC 2012).

Wildfire risk in California will increase as a result of climate change. Earlier snowmelt, higher temperatures, and longer dry periods over a longer fire season will directly increase wildfire risk. Indirectly, wildfire risk will also be influenced by potential climate-related changes in vegetation and ignition potential from lightning. However, human activities will continue to be the biggest factor in ignition risk. It is estimated that the long-term increase in fire occurrence
associated with a higher emissions scenario is substantial, with increases in the number of large fires statewide ranging from 58% to 128% above historical levels by 2085. Under the same emissions scenario, estimated burned area will increase by 57% to 169%, depending on the location (CCCC 2012).

Reduction in the suitability of agricultural lands for traditional crop types may occur. While effects may occur, adaptation could allow farmers and ranchers to minimize potential negative effects on agricultural outcomes by adjusting timing of plantings or harvesting and changing crop types.

Public health-related effects of increased temperatures and prolonged temperature extremes, including heat stroke, heat exhaustion, and exacerbation of existing medical conditions, could be particular problems for the elderly, infants, and those who lack access to air conditioning or cooled spaces (CNRA 2009a).

Greenhouse Gas Regulations

Federal

Massachusetts vs. EPA. On April 2, 2007, in Massachusetts v. EPA, the Supreme Court directed the EPA Administrator to determine whether GHG emissions from new motor vehicles cause or contribute to air pollution that may reasonably be anticipated to endanger public health or welfare, or whether the science is too uncertain to make a reasoned decision. In making these decisions, the EPA Administrator is required to follow the language of Section 202(a) of the Clean Air Act. On December 7, 2009, the EPA Administrator signed a final rule with the following two distinct findings regarding GHGs under Section 202(a) of the Clean Air Act:

- The Administrator found that elevated concentrations of GHGs—CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆—in the atmosphere threaten the public health and welfare of current and future generations. This is referred to as the “endangerment finding.”
- The Administrator further found the combined emissions of GHGs—CO₂, CH₄, N₂O, and HFCs—from new motor vehicles and new motor vehicle engines contribute to the GHG air pollution that endangers public health and welfare. This is referred to as the “cause or contribute finding.”

These two findings were necessary to establish the foundation for regulation of GHGs from new motor vehicles as air pollutants under the Clean Air Act.

key measures, the Act would do the following, which would aid in the reduction of national GHG emissions:

1. Increase the supply of alternative fuel sources by setting a mandatory Renewable Fuel Standard (RFS) requiring fuel producers to use at least 36 billion gallons of biofuel in 2022.

2. Set a target of 35 miles per gallon for the combined fleet of cars and light trucks by model year 2020 and directs National Highway Traffic Safety Administration (NHTSA) to establish a fuel economy program for medium- and heavy-duty trucks and create a separate fuel economy standard for work trucks.

3. Prescribe or revise standards affecting regional efficiency for heating and cooling products and procedures for new or amended standards, energy conservation, energy-efficiency labeling for consumer electronic products, residential boiler efficiency, electric motor efficiency, and home appliances.

EPA and NHTSA Joint Final Rules for Vehicle Standards. On April 1, 2010, the EPA and NHTSA announced a joint final rule to establish a national program consisting of new standards for light-duty vehicles model years 2012 through 2016 that is intended to reduce GHG emissions and improve fuel economy. The EPA approved the first-ever national GHG emissions standards under the Clean Air Act, and NHTSA approved Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act (75 FR 25324–25728), which became effective on July 6, 2010. The EPA’s GHG standards require new passenger cars, light-duty trucks, and medium-duty passenger vehicles to meet an estimated combined average emissions level of 250 grams of CO₂ per mile in model year 2016. The Corporate Average Fuel Economy standards for passenger cars and light trucks will be phased in between 2012 and 2016. The rules will simultaneously reduce GHG emissions, improve energy security, increase fuel savings, and provide clarity and predictability for manufacturers. In August 2012, the EPA and NHTSA approved a second round of GHG and Corporate Average Fuel Economy standards for model years 2017 and beyond (77 FR 62624–63200). These standards will reduce motor vehicle GHG emissions for cars and light-duty trucks by model year 2025.

Clean Power Plan and New Source Performance Standards for Electric Generating Units. On October 23, 2015, EPA published a final rule (effective December 22, 2015) establishing the Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units (80 FR 64510–64660), also known as the Clean Power Plan. These guidelines prescribe how states must develop plans to reduce GHG emissions from existing fossil-fuel-fired electric generating units. The guidelines establish CO₂ emission performance rates representing the best system of emission reduction for two subcategories of existing fossil-fuel-fired electric generating units: (1) fossil-fuel-fired electric utility steam-generating units, and (2) stationary combustion turbines. Concurrently, EPA
published a final rule (effective October 23, 2015) establishing Standards of Performance for Greenhouse Gas Emissions from New, Modified, and Reconstructed Stationary Sources: Electric Utility Generating Units (80 FR 64661–65120). The rule prescribes CO$_2$ emission standards for newly constructed, modified, and reconstructed affected fossil-fuel-fired electric utility generating units. Implementation of the Clean Power Plan has been stayed by the U.S. Supreme Court pending resolution of several lawsuits.

State

Title 24. Title 24 of the California Code of Regulations was established in 1978 and serves to enhance and regulate California’s building standards. While not initially promulgated to reduce GHG emissions, Part 6 of Title 24 specifically establishes Building Energy Efficiency Standards that are designed to ensure new and existing buildings in the State of California achieve energy efficiency and preserve outdoor and indoor environmental quality. The California Energy Commission (CEC) is required by law to adopt standards every 3 years that are cost effective for homeowners over the 30-year lifespan of a building. These standards are updated to consider and incorporate new energy efficient technologies and construction methods. As a result, these standards save energy, increase electricity supply reliability, increase indoor comfort, avoid the need to construct new power plants, and help preserve the environment.

The current Title 24 standards are the 2013 standards, which became effective on July 1, 2014. Buildings constructed in accordance with the 2013 standards will use 25% less energy for lighting, heating, cooling, ventilation, and water heating than the 2008 standards (CEC 2012). The 2016 Title 24 building energy efficiency standards, which will be effective January 1, 2017, will further reduce energy used and associated GHG emissions. In general, single-family homes built to the 2016 standards are anticipated to use about 28% less energy for lighting, heating, cooling, ventilation, and water heating than those built to the 2013 standards, and nonresidential buildings built to the 2016 standards will use an estimated 5% less energy than those built to the 2013 standards (CEC 2015). Although the Project would be required to comply with 2016 Title 24 standards because it is anticipated to be constructed during or after 2017, this analysis conservatively does not quantify the increase energy efficiency associated with the more stringent 2016 Title 24 standards.

Title 24 also includes Part 11, known as California’s Green Building Standards (CALGreen). The CALGreen standards took effect in January 2011 and instituted mandatory minimum environmental performance standards for all ground-up, new construction of commercial, low-rise residential and state-owned buildings and schools and hospitals. The mandatory standards require the following (24 CCR Part 11):

- 20% mandatory reduction in indoor water use
- 50% of construction and demolition waste must be diverted from landfills
- Mandatory inspections of energy systems to ensure optimal working efficiency
- Low-pollutant emitting exterior and interior finish materials, such as paints, carpets, vinyl flooring, and particle boards

The CALGreen standards also include voluntary efficiency measures that are provided at two separate tiers and implemented at the discretion of local agencies and applicants. CALGreen’s Tier 1 standards call for a 15% improvement in energy requirements; stricter water conservation, 65% diversion of construction and demolition waste, 10% recycled content in building materials, 20% permeable paving, 20% cement reduction, and cool/solar-reflective roofs. CALGreen’s more rigorous Tier 2 standards call for a 30% improvement in energy requirements, stricter water conservation, 75% diversion of construction and demolition waste, 15% recycled content in building materials, 30% permeable paving, 30% cement reduction, and cool/solar-reflective roofs.

AB 939 and AB 341. In 1989, AB 939, known as the Integrated Waste Management Act (California Public Resources Code Sections 40000 et seq.), was passed because of the increase in waste stream and the decrease in landfill capacity. The statute established the California Integrated Waste Management Board, which oversees a disposal reporting system. AB 939 mandated a reduction of waste being disposed where jurisdictions were required to meet diversion goals of all solid waste through source reduction, recycling, and composting activities of 25% by 1995 and 50% by the year 2000. AB 341 (Chapter 476, Statutes of 2011 (Chesbro)) amended the California Integrated Waste Management Act of 1989 to include a provision declaring that it is the policy goal of the state that not less than 75% of solid waste generated be source-reduced, recycled, or composted by the year 2020 and annually thereafter. In addition, AB 341 required the California Department of Resources Recycling and Recovery (CalRecycle) to develop strategies to achieve the state’s policy goal.

AB 1493. In a response to the transportation sector accounting for more than half of California’s CO₂ emissions, AB 1493 (Pavley) was enacted in July 2002. AB 1493 required CARB to set GHG emission standards for passenger vehicles, light-duty trucks, and other vehicles determined by the state board to be vehicles that are primarily used for noncommercial personal transportation in the state. The bill required that CARB set GHG emission standards for motor vehicles manufactured in 2009 and all subsequent model years. CARB adopted the standards in September 2004. When fully phased in, the near-term (2009–2012) standards will result in a reduction of about 22% in GHG emissions compared to the emissions from the 2002 fleet, while the mid-term (2013–2016) standards will result in a reduction of about 30%.
4.3 – GREENHOUSE GAS EMISSIONS

Senate Bill (SB) 1078. SB 1078 (Sher) (September 2002) established the Renewable Portfolio Standard (RPS) program, which requires an annual increase in renewable generation by the utilities equivalent to at least 1% of sales, with an aggregate goal of 20% by 2017. This goal was subsequently accelerated, requiring utilities to obtain 20% of their power from renewable sources by 2010 (see SB 107, EOs S-14-08, and S-21-09).

Executive Order (EO) S-3-05. EO S-3-05 (June 2005) established the following goals: GHG emissions should be reduced to 2000 levels by 2010, GHG emissions should be reduced to 1990 levels by 2020, and GHG emissions should be reduced to 80% below 1990 levels by 2050. Under EO S-3-05, the California Environmental Protection Agency is directed to report biannually on progress made toward meeting the GHG targets and the impacts to California due to global warming, including impacts to water supply, public health, agriculture, the coastline, and forestry. The Climate Action Team was formed, which subsequently issued the 2006 Climate Action Team Report to Governor Schwarzenegger and the Legislature (CAT 2006).

The 2009 Climate Action Team Biennial Report (CAT 2010a) expands on the policy outlined in the 2006 assessment. The 2009 report identifies the need for additional research in several different aspects that affect climate change in order to support effective climate change strategies. Subsequently, the 2010 Climate Action Team Report to Governor Schwarzenegger and the California Legislature (CAT 2010b) reviews past climate action milestones including voluntary reporting programs, GHG standards for passenger vehicles, the Low Carbon Fuel Standard (LCFS), a statewide renewable energy standard, and the cap-and-trade program.

AB 32. In furtherance of the goals established in EO S-3-05, the legislature enacted AB 32 (Núñez and Pavley), the California Global Warming Solutions Act of 2006 (September 27, 2006). AB 32 requires California to reduce its GHG emissions to 1990 levels by 2020, representing a reduction of approximately 15% below emissions expected under a “business-as-usual” scenario.

AB 32 directs CARB to develop programs and requirements necessary to achieve the AB 32 goals; to adopt regulations requiring the reporting and verification of statewide GHG emissions; and to monitor compliance and enforcing any rule, regulation, order, emission limitation, emission reduction measure, or market-based compliance mechanism adopted. AB 32 also directs Climate Action Team to coordinate the efforts set forth under EO S-3-05 to continue its role in coordinating overall climate policy. Pursuant to AB 32, CARB must adopt regulations to achieve the maximum technologically feasible and cost-effective GHG emission reductions. Reductions in GHG emissions will come from virtually all sectors of the economy and will be accomplished from a combination of policies, planning, direct regulations, market approaches, incentives, and voluntary efforts. These efforts target GHG emission reductions from cars and
trucks, electricity production, fuels, and other sources. The full implementation of AB 32 will help mitigate risks associated with climate change while improving energy efficiency, expanding the use of renewable energy resources and cleaner transportation, and reducing waste.

As required under AB 32, on December 6, 2007, CARB approved the 1990 GHG emissions inventory, establishing the emissions limit for 2020. The 2020 emissions limit was set at 427 MMT of CO$_2$E. In addition to the 1990 emissions inventory, CARB also adopted regulations requiring mandatory reporting of GHGs for the large facilities that account for 94% of GHG emissions from industrial and commercial stationary sources in California. AB 32 requires CARB to develop a scoping plan, which lays out California’s strategy for meeting the goals and which must be updated every 5 years. On December 11, 2008, CARB approved the initial Climate Change Scoping Plan: A Framework for Change (Scoping Plan) (CARB 2008) to achieve the goals of AB 32. The Scoping Plan establishes an overall framework for a suite of measures that will be adopted to sharply reduce California’s GHG emissions. The Scoping Plan evaluates opportunities for sector-specific reductions, integrates all CARB and Climate Action Team early actions and additional GHG reduction measures by both entities, identifies additional measures to be pursued as regulations, and outlines the role of a cap-and-trade program.

The key elements of the Scoping Plan include the following (CARB 2008):

1. Expanding and strengthening existing energy efficiency programs as well as building and appliance standards
2. Achieving a statewide renewable energy mix of 33%
3. Developing a California cap-and-trade program that links with other Western Climate Initiative partner programs to create a regional market system and caps sources contributing 85 percent of California’s GHG emissions
4. Establishing targets for transportation-related GHG emissions for regions throughout California, and pursuing policies and incentives to achieve those targets
5. Adopting and implementing measures pursuant to existing state laws and policies, including California’s clean car standards, goods movement measures, and the Low Carbon Fuel Standard
6. Creating targeted fees, including a public goods charge on water use, fees on high GWP gases, and a fee to fund the administrative costs of the State of California’s long-term commitment to AB 32 implementation

In May 2014, CARB approved the First Update to the Climate Change Scoping Plan Building on the Framework Pursuant to AB 32 – The California Global Warming Solutions Act of 2006 (Scoping Plan Update; CARB 2014), which builds on the initial Scoping Plan with new strategies and
recommendations and identifies opportunities to leverage existing and new funds to further drive GHG emission reductions through strategic planning and targeted low carbon investments. Based on updated information, the Scoping Plan Update revises the 2020 emissions target to 431 MMT CO$_2$E (based on updated GWPs for GHGs) (CARB 2014).

The Scoping Plan Update highlights California's progress toward meeting the near-term 2020 GHG emission reduction goals defined in the initial Scoping Plan, summarizes the latest climate change science, defines CARB’s climate change priorities for the next 5 years, and provides direction on how to achieve the long-term emission reduction goal described in EO S-3-05 and B-16-12 (see EO B-16-12). The Scoping Plan Update identified nine key focus areas, including energy, transportation, agriculture, water, waste management, and natural and working lands, along with short-lived climate pollutants, green buildings, and the cap-and-trade program. The update also recommends that a statewide mid-term target and mid-term and long-term sector targets be established toward meeting the 2050 goal established by EO S-3-05 (i.e., reduce California’s GHG emissions to 80% below 1990 levels), although no specific recommendations are made.

SB 107. SB 107 (Simitian) (September 2006) requires investor-owned utilities, such as Pacific Gas and Electric, Southern California Edison, and San Diego Gas & Electric, to generate 20% of their electricity from renewable sources by 2010. Previously, state law required that this target be achieved by 2017 (see SB 1078).

SB 1368. SB 1368 (September 2006) requires the CEC to develop and adopt regulations for GHG emissions performance standards for the long-term procurement of electricity by local, publicly owned utilities. These standards must be consistent with the standards adopted by the California Public Utilities Commission (CPUC). This effort will help protect energy customers from financial risks associated with investments in carbon-intensive generation by allowing new capital investments in power plants that have GHG emissions that are as low or lower than new combined-cycle natural gas plants. This will be done by requiring imported electricity to meet GHG performance standards in California and by requiring that the standards be developed and adopted in a public process.

EO S-1-07. EO S-1-07 (January 2007) sets a declining LCFS for GHG emissions measured in CO$_2$E gram per unit of fuel energy sold in California. The target of the LCFS is to reduce the carbon intensity of California passenger vehicle fuels by at least 10% by 2020. The carbon intensity measures the amount of GHG emissions in the lifecycle of a fuel, including extraction/feedstock production, processing, transportation, and final consumption, per unit of energy delivered. CARB adopted the implementing regulation in April 2009. The regulation is expected to increase the production of biofuels, including those from alternative sources such as algae, wood, and agricultural waste. In addition, the LCFS would drive the availability of plug-
in hybrid, battery electric, and fuel-cell power motor vehicles. The LCFS is anticipated to replace 20% of the fuel used in motor vehicles with alternative fuels by 2020.

SB 97. SB 97 (Dutton) (August 2007) directs the Governor’s Office of Planning and Research to develop guidelines under CEQA for the mitigation of GHG emissions. The Governor’s Office of Planning and Research was tasked to develop proposed guidelines by July 1, 2009, and the California Natural Resources Agency (CNRA) directed to adopt guidelines by January 1, 2010. On June 19, 2008, the Governor’s Office of Planning and Research issued a technical advisory as interim guidance regarding the analysis of GHG emissions in CEQA documents (OPR 2008). The advisory indicated that a project’s GHG emissions, including those associated with vehicular traffic, energy consumption, water usage, and construction activities, should be identified and estimated. The advisory further recommended that the lead agency determine significance of the impacts and impose all mitigation measures that are necessary to reduce GHG emissions to a less-than-significant level.

On April 13, 2009, the Governor’s Office of Planning and Research submitted to the CNRA its proposed amendments to the CEQA Guidelines relating to GHG emissions. On July 3, 2009, the CNRA commenced the Administrative Procedure Act rulemaking process for certifying and adopting the proposed amendments, starting the public comment period. The CNRA adopted CEQA Guidelines amendments on December 30, 2009, and transmitted them to the Office of Administrative Law on December 31, 2009. On February 16, 2010, the Office of Administrative Law completed its review and filed the amendments with the secretary of state. The amendments became effective on March 18, 2010. The amended guidelines establish several new CEQA requirements concerning the analysis of GHGs, including the following:

- Requiring a lead agency to “make a good faith effort, based to the extent possible on scientific and factual data, to describe, calculate or estimate the amount of GHG emissions resulting from a project” (Section 15064.4(a))
- Providing a lead agency with the discretion to determine whether to use quantitative or qualitative analysis or performance standards to determine the significance of GHG emissions resulting from a particular project (Section 15064.4(a))
- Requiring a lead agency to consider the following factors when assessing the significant impacts from GHG emissions on the environment
 - The extent to which the project may increase or reduce GHG emissions as compared to the existing environmental setting
 - Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project
4.3 – GREENHOUSE GAS EMISSIONS

- The extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of GHG emissions (Section 15064.4(b))

- Allowing lead agencies to consider feasible means of mitigating the significant effects of GHG emissions, including reductions in emissions through the implementation of project features or off-site measures, including offsets that are not otherwise required (Section 15126.4(c))

The amended guidelines also establish two new guidance questions regarding GHG emissions in the Environmental Checklist set forth in CEQA Guidelines Appendix G (14 CCR 15000 et seq.):

- Would the project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?
- Would the project conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

The adopted amendments do not establish a GHG emission threshold and instead allow a lead agency to develop, adopt, and apply its own thresholds of significance or those developed by other agencies or experts. The CNRA also acknowledges that a lead agency may consider compliance with regulations or requirements implementing AB 32 in determining the significance of a project’s GHG emissions.

SB 375. SB 375 (Steinberg) (September 2008) addresses GHG emissions associated with the transportation sector through regional transportation and sustainability plans. Regional GHG reduction targets for the automobile and light-truck sector for 2020 and 2035, as determined by CARB, are required to consider the emission reductions associated with vehicle emission standards (see SB 1493), the composition of fuels (see EO S-1-07), and other CARB-approved measures to reduce GHG emissions. Regional metropolitan planning organizations will be responsible for preparing a Sustainable Communities Strategy (SCS) within their Regional Transportation Plan. The goal of the SCS is to establish a development plan for the region, which, after considering transportation measures and policies, will achieve, if feasible, the GHG reduction targets. If an SCS is unable to achieve the GHG reduction target, a metropolitan planning organization must prepare an Alternative Planning Strategy.

2 “The CEQA Guidelines do not establish thresholds of significance for other potential environmental impacts, and SB 97 did not authorize the development of a statement threshold as part of this CEQA Guidelines update. Rather, the proposed amendments recognize a lead agency’s existing authority to develop, adopt and apply its own thresholds of significance or those developed by other agencies or experts” (CNRA 2009b, p. 84).

3 “A project’s compliance with regulations or requirements implementing AB 32 or other laws and policies is not irrelevant. Section 15064.4(b)(3) would allow a lead agency to consider compliance with requirements and regulations in the determination of significance of a project’s greenhouse gas emissions” (CNRA 2009b, p. 100).
demonstrating how the GHG reduction target would be achieved through alternative development patterns, infrastructure, or additional transportation measures or policies. SB 375 provides incentives for streamlining CEQA requirements by substantially reducing the requirements for “transit priority projects,” as specified in SB 375, and eliminating the analysis of the impacts of certain residential projects on global warming and the growth-inducing impacts of those projects when the projects are consistent with the SCS or Alternative Planning Strategy.

On September 23, 2010, CARB adopted the SB 375 targets for the regional metropolitan planning organizations. CARB set a target of 7% per capita reduction by 2020 and a 15% per capita reduction by 2035 for the Bay Area. The Association of Bay Area Governments (ABAG) and the Metropolitan Transportation Commission, which is the metropolitan planning organization for the Bay Area, adopted the Plan Bay Area: Regional Transportation Plan and Sustainable Communities Strategy for the San Francisco Bay Area 2013 – 2040 (Plan Bay Area) in July 2013 (ABAG and MTC 2013). The Plan Bay Area is a long-range plan for transportation projects within the planning area and established 10 performance targets to achieve the following goals/outcomes: Climate Protection, Adequate Housing, Healthy and Safe Communities, Open Space and Agricultural Preservation, Equitable Access, Economic Vitality, and Transportation System Effectiveness. Two of these targets are mandatory to comply with SB 375, and the Plan Bay Area establishes strategies to achieve 15% reduction per capita in GHG emissions from light-trucks and cars by 2035 (Climate Protection Goal), and plans to house 100% of the region’s projected growth (from a 2010 baseline year) by income level without displacing current low-income residents (Adequate Housing Goal).

EO S-13-08. EO Order S-13-08 (November 2008) is intended to hasten California’s response to the impacts of global climate change, particularly sea-level rise. It directs state agencies to take specified actions to assess and plan for such impacts. It directs the CNRA, in cooperation with the California Department of Water Resources, CEC, California’s coastal management agencies, and the Ocean Protection Council, to request that the National Academy of Sciences prepare a Sea Level Rise Assessment Report by December 1, 2010. The Ocean Protection Council, California Department of Water Resources, and CEC, in cooperation with other state agencies, are required to conduct a public workshop to gather information relevant to the Sea Level Rise Assessment Report. The Business, Transportation, and Housing Agency was ordered to assess within 90 days of issuance of the EO the vulnerability of the state’s transportation systems to sea-level rise. The Governor’s Office of Planning and Research and the CNRA are required to provide land use planning guidance related to sea-level rise and other climate change impacts. The EO also required the other state agencies to develop adaptation strategies by June 9, 2009, to respond to the impacts of global climate change that are predicted to occur over the next 50 to 100 years. A discussion draft adaptation strategies report was released in August 2009, and the final 2009 California Climate Adaptation Strategy report was issued in
December 2009 (CNRA 2009a). To assess the state’s vulnerability, the report summarizes key climate change impacts to the state for the following areas: public health, ocean and coastal resources, water supply and flood protection, agriculture, forestry, biodiversity and habitat, and transportation and energy infrastructure. The report then recommends strategies and specific responsibilities related to water supply, planning and land use, public health, fire protection, and energy conservation.

EO S-14-08. EO S-14-08 (November 2008) focuses on the contribution of renewable energy sources to meet the electrical needs of California while reducing the GHG emissions from the electrical sector. This EO requires that all retail suppliers of electricity in California serve 33% of their load with renewable energy by 2020. Furthermore, the EO directs state agencies to take appropriate actions to facilitate reaching this target. The CNRA, through collaboration with the CEC and California Department of Fish and Wildlife (formerly the California Department of Fish and Game), is directed to lead this effort. Pursuant to a Memorandum of Understanding between the CEC and California Department of Fish and Wildlife regarding creating the Renewable Energy Action Team, these agencies will create a “one-stop” process for permitting renewable energy power plants.

EO S-21-09. EO S-21-09 (September 2009) directed CARB to adopt a regulation consistent with the goal of EO S-14-08 by July 31, 2010. CARB is further directed to work with the CPUC and CEC to ensure that the regulation builds upon the RPS program and is applicable to investor-owned utilities, publicly owned utilities, direct access providers, and community choice providers. Under this order, CARB is to give the highest priority to those renewable resources that provide the greatest environmental benefits with the least environmental costs and impacts on public health and can be developed the most quickly in support of reliable, efficient, cost-effective electricity system operations. On September 23, 2010, CARB adopted regulations to implement a Renewable Electricity Standard, which would achieve the goal of the EO with the following intermediate and final goals: 20% for 2012–2014, 24% for 2015–2017, 28% for 2018–2019, and 33% for 2020 and beyond. Under the regulation, wind; solar; geothermal; small hydroelectric; biomass; ocean wave, thermal, and tidal; landfill and digester gas; and biodiesel would be considered sources of renewable energy. The regulation would apply to investor-owned utilities and public (municipal) utilities.

SB X1 2. SB X1 2 (April 2011) expanded the RPS by establishing a goal of 20% of the total electricity sold to retail customers in California per year by December 31, 2013, and 33% by December 31, 2020, and in subsequent years. Under the bill, a renewable electrical generation facility is one that uses biomass, solar thermal, photovoltaic, wind, geothermal, fuel cells using renewable fuels, small hydroelectric generation of 30 megawatts or less, digester gas, municipal solid waste conversion, landfill gas, ocean wave, ocean thermal, or tidal current, and that meets other specified requirements with respect to its location. In addition to the
4.3 – GREENHOUSE GAS EMISSIONS

retail sellers covered by SB 107, SB X1 2 adds local, publicly owned electric utilities to the RPS. By January 1, 2012, the CPUC is required to establish the quantity of electricity products from eligible renewable energy resources to be procured by retail sellers in order to achieve targets of 20% by December 31, 2013; 25% by December 31, 2016; and 33% by December 31, 2020. The statute also requires that the governing boards for local, publicly owned electric utilities establish the same targets, and the governing boards would be responsible for ensuring compliance with these targets. The CPUC will be responsible for enforcement of the RPS for retail sellers, while the CEC and CARB will enforce the requirements for local publicly owned electric utilities.

EO B-16-12. EO B-16-12 (March 2012) directs state entities under the Governor's direction and control to support and facilitate development and distribution of zero-emission vehicles. This EO also sets a long-term target of reaching 1.5 million zero-emission vehicles on California's roadways by 2025. On a statewide basis, EO B-16-12 also establishes a GHG emissions reduction target from the transportation sector equaling 80% less than 1990 levels by 2050.

EO B-18-12. EO B-18-12 (April 2012) directs state agencies, departments, and other entities under the governor’s executive authority to take action to reduce entity-wide GHG emissions by at least 10% by 2015 and 20% by 2020, as measured against a 2010 baseline. EO B-18-12 also established goals for existing state buildings for reducing grid-based energy purchases and water use.

SB 605. SB 605 (September 2014) requires CARB to complete a comprehensive strategy to reduce emissions of short-lived climate pollutants in the state no later than January 1, 2016. As defined in the statute, short-lived climate pollutant means “an agent that has a relatively short lifetime in the atmosphere, from a few days to a few decades, and a warming influence on the climate that is more potent than that of carbon dioxide” (SB 605). SB 605, however, does not prescribe specific compounds as short-lived climate pollutants or add to the list of GHGs regulated under AB 32. In developing the strategy, the CARB must complete an inventory of sources and emissions of short-lived climate pollutants in the state based on available data, identify research needs to address any data gaps, identify existing and potential new control measures to reduce emissions, and prioritize the development of new measures for short-lived climate pollutants that offer co-benefits by improving water quality or reducing other air pollutants that impact community health and benefit disadvantaged communities. The draft strategy released by CARB in September 2015 focuses on methane, black carbon, and fluorinated gases, particularly HFCs, as important short-lived climate pollutants. The draft strategy recognizes emission reduction efforts implemented under AB 32 (e.g., refrigerant management programs) and other regulatory programs (e.g., in-use diesel engines, solid waste diversion) along with additional measures to be developed.
EO B-29-15. In response to the ongoing drought in California, EO B-29-15 (April 2015) set a goal of achieving a statewide reduction in potable urban water usage of 25% relative to water use in 2013. The term of the EO extended through February 28, 2016, although many of the directives have become permanent water-efficiency standards and requirements. The EO includes specific directives that set strict limits on water usage in the state. In response to EO B-29-15, the California Department of Water Resources has modified and adopted a revised version of the Model Water Efficient Landscape Ordinance that, among other changes, significantly increases the requirements for landscape water use efficiency and broadens its applicability to include new development projects with smaller landscape areas.

EO B-30-15. EO B-30-15 (April 2015) identified an interim GHG reduction target in support of targets previously identified under S-3-05 and AB 32. EO B-30-15 set an interim target goal of reducing GHG emissions to 40% below 1990 levels by 2030 to keep California on its trajectory toward meeting or exceeding the long-term goal of reducing GHG emissions to 80% below 1990 levels by 2050 as set forth in S-3-05. To facilitate achievement of this goal, B-30-15 calls for an update to CARB’s Scoping Plan to express the 2030 target in terms of MMT CO₂E. The EO also calls for state agencies to continue to develop and implement GHG emission reduction programs in support of the reduction targets. Sector-specific agencies in transportation, energy, water, and forestry were required to prepare GHG reduction plans by September 2015, followed by a report on action taken in relation to these plans in June 2016. EO B-30-15 does not require local agencies to take any action to meet the new interim GHG reduction threshold. It is important to note that EO B-30-15 was not adopted by a public agency through a public review process that requires analysis pursuant to CEQA Guidelines Section 15064.4, and that it has not been subsequently validated by a statute as an official GHG reduction target of the State of California. EO B-30-15 itself states it is “not intended to create, and does not, create any rights of benefits, whether substantive or procedural, enforceable at law or in equity, against the State of California, its agencies, departments, entities, officers, employees, or any other person.”

SB 350. SB 350 (October 2015) expands the RPS by establishing a goal of 50% of the total electricity sold to retail customers in California per year by December 31, 2030. In addition, SB 350 includes the goal to double the energy efficiency savings in electricity and natural gas final end uses (such as heating, cooling, lighting, or class of energy uses on which an energy-efficiency program is focused) of retail customers through energy conservation and efficiency. The bill also requires the CPUC, in consultation with the CEC, to establish efficiency targets for electrical and gas corporations consistent with this goal. SB 350 also provides for the transformation of the California Independent System Operator into a regional organization to promote the development of regional electricity transmission markets in the western states and to improve the access of consumers served by the California Independent System Operator to those markets, pursuant to a specified process.
California Air Pollution Control Officers Association. The California Air Pollution Control Officers Association is the association of air pollution control officers representing all 35 air quality agencies throughout California. The California Air Pollution Control Officers Association is not a regulatory body but has been an active organization in providing guidance in addressing the CEQA significance of GHG emissions and climate change, as well as other air quality issues.

Local

The SF State Climate Action Plan (CAP) establishes the campus GHG reduction goals below 1990 levels: 25% by 2020 and 40% by 2030. The CAP outlines the reduction efforts in nine major planning areas, including transportation, energy efficiency, renewable and clean energy, green building, academics, waste and compost, water, procurement, and food service. As noted in the CAP, SF State is in a unique position among Universities since the campus emissions were already 5% below 1990 levels at the time of CAP development (SF State 2010).

4.3.2 Impacts and Mitigation Measures

Standards of Significance

Office of Planning and Research's Guidance and the CEQA Guidelines

The Office of Planning and Research’s Technical Advisory titled CEQA and Climate Change: Addressing Climate Change through California Environmental Quality Act (CEQA) Review (OPR 2008) states that “public agencies are encouraged but not required to adopt thresholds of significance for environmental impacts. Even in the absence of clearly defined thresholds for GHG emissions, the law requires that such emissions from CEQA projects must be disclosed and mitigated to the extent feasible whenever the lead agency determines that the project contributes to “a significant, cumulative climate change impact.” Furthermore, the advisory document indicates that “in the absence of regulatory standards for GHG emissions or other scientific data to clearly define what constitutes a ‘significant impact,’ individual lead agencies may undertake a project-by-project analysis, consistent with available guidance and current CEQA practice” (OPR 2008).

Section 15064.4 of the CEQA Guidelines, Determining the Significance of Impacts from Greenhouse Gas Emissions, states the following:

A. The determination of the significance of greenhouse gas emissions calls for a careful judgment by the lead agency consistent with the provisions in Section 15064. A lead agency should make a good-faith effort, based to the extent possible on scientific and factual data, to describe, calculate or estimate the amount of greenhouse gas emissions
resulting from a project. A lead agency shall have discretion to determine, in the context of a particular project, whether to:

i. Use a model or methodology to quantify greenhouse gas emissions resulting from a project, and which model or methodology to use. The lead agency has discretion to select the model or methodology it considers most appropriate provided it supports its decision with substantial evidence. The lead agency should explain the limitations of the particular model or methodology selected for use; and/or

ii. Rely on a qualitative analysis or performance based standards.

B. A lead agency should consider the following factors, among others, when assessing the significance of impacts from greenhouse gas emissions on the environment:

i. The extent to which the project may increase or reduce greenhouse gas emissions as compared to the existing environmental setting;

ii. Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project.

iii. The extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of greenhouse gas emissions. Such requirements must be adopted by the relevant public agency through a public review process and must reduce or mitigate the project’s incremental contribution of greenhouse gas emissions. If there is substantial evidence that the possible effects of a particular project are still cumulatively considerable notwithstanding compliance with the adopted regulations or requirements, an EIR must be prepared for the project (14 CCR 15064.4).

In addition, Section 15064.7(c) of the CEQA Guidelines specifies that “[w]hen adopting thresholds of significance, a lead agency may consider thresholds of significance previously adopted or recommended by other public agencies, or recommended by experts, provided the decision of the lead agency to adopt such thresholds is supported by substantial evidence.” Similarly, the revisions to Appendix G, Environmental Checklist Form, which is often used as a basis for lead agencies’ selection of significance thresholds, do not prescribe specific thresholds. Rather, the CEQA Guidelines establish two CEQA thresholds related to GHGs, and these will be used to discuss the significance of Project impacts (14 CCR 15000 et seq.):

a. Would the Project generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?

b. Would the Project conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs?
Accordingly, the CEQA Guidelines do not prescribe specific methodologies for performing an assessment, establish specific thresholds of significance, or mandate specific mitigation measures. Rather, the CEQA Guidelines emphasize the lead agency’s discretion to determine the appropriate methodologies and thresholds of significance that are consistent with the manner in which other impact areas are handled in CEQA (CNRA 2009b).

Global climate change is a cumulative impact; a project participates in this potential impact through its incremental contribution combined with the cumulative increase of all other sources of GHGs. There are currently no established thresholds for assessing whether the GHG emissions of a project in the SFBAAB, such as the Project, would be considered a cumulatively considerable contribution to global climate change; however, all reasonable efforts should be made to minimize a project’s contribution to global climate change.

While the Project would result in emissions of GHGs during construction and operation, no guidance exists to indicate what level of GHG emissions would be considered substantial enough to result in a significant adverse impact on global climate. However, it is generally believed that an individual project is of insufficient magnitude by itself to influence climate change or result in a substantial contribution to the global GHG inventory since scientific uncertainty regarding the significance of a project’s individual and cumulative effects on global climate change remains.

Thus, GHG impacts are recognized exclusively as cumulative impacts; there are no noncumulative GHG emission impacts from a climate change perspective (CAPCOA 2008). This approach is consistent with that recommended by the CNRA, which noted in its public notice for the proposed CEQA amendments that the evidence before it indicates that, in most cases, the impact of GHG emissions should be considered in the context of a cumulative impact rather than a project-level impact (CNRA 2009c). Similarly, the Final Statement of Reasons for Regulatory Action: Amendments to the State CEQA Guidelines Addressing Analysis and Mitigation of Greenhouse Gas Emissions Pursuant to SB 97 (CNRA 2009b) confirm that an environmental impact report or other environmental document must analyze the incremental contribution of a project to GHG levels and determine whether those emissions are cumulatively considerable. Accordingly, further discussion of the Project’s GHG emissions and their impact on global climate are addressed in the following section.

Bay Area Air Quality Management District Thresholds

The Bay Area Air Quality Management District (BAAQMD) does not recommend any specific significance thresholds for construction and operational GHG emission impacts pending the conclusion of litigation, which does not involve the question of whether the BAAQMD thresholds are supported by substantial evidence. Instead, the current BAAQMD guidelines suggest that lead agencies have options, including referencing BAAQMD’s CEQA Thresholds.
Options and Justification Report developed by BAAQMD staff in 2009, in selecting the lead agency’s own significance threshold based on substantial evidence. With regard to impacts from GHGs, both BAAQMD and CAPCOA consider GHG impacts to be exclusively cumulative impacts (BAAQMD 2009; CAPCOA 2008); therefore, assessment of significance is based on a determination of whether the GHG emissions from a project represent a cumulatively considerable contribution to the global atmosphere. Separate thresholds of significance are established for operational emissions from stationary sources (such as generators, furnaces, and boilers) and non-stationary sources (such as on-road vehicles). As no threshold has been established for construction-related emissions, the operational emissions thresholds apply. The threshold for stationary sources is 10,000 MT CO$_2$E per year (i.e., emissions above this level may be considered significant). For non-stationary sources, three separate thresholds have been established:

- Compliance with a Qualified Greenhouse Gas Reduction Strategy (i.e., if a project is found to be out of compliance with a Qualified Greenhouse Gas Reduction Strategy, its GHG emissions may be considered significant); or
- 1,100 MT CO$_2$E per year (i.e., emissions above this level may be considered significant); or
- 4.6 MT CO$_2$E per service population per year (i.e., emissions above this level may be considered significant). (Service population is the sum of residents plus employees expected for a development project.)

The threshold of 1,100 MT CO$_2$E annually proposed by BAAQMD in its 2009 Justification Report is applied to this analysis. If the Project construction and operational GHG emissions would exceed this threshold then, consistent with BAAQMD Guidelines, it would be considered to have a cumulatively considerable contribution of GHG emissions and a cumulatively significant impact on climate change.

Analytical Method

Construction

CalEEMod Version 2013.2.2. was used to estimate potential Project-generated GHG emissions during construction. Construction of the Project would result in GHG emissions primarily associated with use of off-road construction equipment, on-road hauling and vendor (material delivery) trucks, and worker vehicles. All details for construction criteria air pollutants discussed in Section 4.2, Air Quality, are also applicable for the estimation of construction-related GHG emissions. As such, see Section 4.2 for a discussion of construction emissions calculation methodology and assumptions.
Operations

GHG emissions from the operational phase of the Project were estimated using CalEEMod for the first year of Project operations (year 2020) and for existing (year 2016) uses to be demolished for vehicular sources, area sources (natural gas combustion and landscape maintenance), electrical generation (including electrical generation associated with water supply and wastewater treatment), and solid waste. Emissions from each category—area sources, energy sources, mobile sources, solid waste, and water supply and wastewater treatment—is discussed in the following text with respect to the Project. For additional details, see Section 4.2, Air Quality, for a discussion of operational emission calculation methodology and assumptions, specifically for area, energy (natural gas), and mobile sources.

SF State has committed to Leadership in Energy and Environmental Design (LEED) Gold certification for the Project, which would, at a minimum, reduce the Project’s energy consumption and water usage, thereby reducing GHG emissions compared to a non-LEED-certified building. A building can earn credits toward LEED certification through performance in five key areas including sustainable sites, water savings, energy and atmosphere, materials and resources, and indoor environmental quality (USGBC 2016).

Mobile Sources. All details for criteria air pollutants discussed in Section 4.2, Air Quality, are also applicable for the estimation of operational mobile source GHG emissions. Regulatory measures related to mobile sources include AB 1493 (Pavley) and related federal standards. AB 1493 required that CARB establish GHG emission standards for automobiles, light-duty trucks, and other vehicles determined by CARB to be vehicles that are primarily used for noncommercial personal transportation in the state. In addition, the NHTSA and EPA have established corporate fuel economy standards and GHG emission standards, respectively, for automobiles and light-, medium-, and heavy-duty vehicles. Implementation of these standards and fleet turnover (replacement of older vehicles with newer ones) will gradually reduce emissions from the Project’s motor vehicles. In addition, the Low Carbon Fuel Standard calls for a 10% reduction in the “carbon intensity” of motor vehicle fuels by 2020. The effectiveness of fuel economy improvements and the Low Carbon Fuel Standard was evaluated by using the CalEEMod emission factors for motor vehicles in 2020 for the Project.

Area Sources. CalEEMod was used to estimate GHG emissions from the Project’s area sources, which include operation of gasoline-powered landscape maintenance equipment, which produce minimal GHG emissions. Consumer product use and architectural coatings result in VOC emissions, which are analyzed in air quality analysis only, and produce little to no GHG emissions.

Energy Sources. The estimation of operational energy emissions was based on CalEEMod land use defaults and units or total area (i.e., square footage) of the Project’s land uses.
Emissions are calculated by multiplying the energy use by the utility carbon intensity (pounds of GHGs per kilowatt-hour for electricity or 1,000 British thermal units for natural gas) for CO₂ and other GHGs. Annual natural gas (non-hearth) and electricity emissions were estimated in CalEEMod using the emissions factors for PG&E, which would be the energy source provider for the Project.

It was assumed that the Project would meet the 2013 California Building Energy Efficiency Standards (24 CCR Part 6). The Project would be required to comply with 2016 Title 24 standards because it is anticipated to be constructed during and after 2017. Conservatively, this analysis does not quantify the increase in energy efficiency associated with the more stringent 2016 Title 24 standards. For the purposes of estimating Project-generated energy emissions, a mitigation measure was applied in CalEEMod to assume a 25% reduction from the 2008 standards (the basis for the default energy usage factors in CalEEMod) to reflect the benefits of compliance with the 2013 standards. In addition, it was assumed that the Project would exceed the current Title 24 standard by 20% in order to achieve at least LEED Gold, which was also incorporated into the mitigation in CalEEMod.

CalEEMod default energy intensity factors (CO₂, CH₄, and N₂O mass emissions per kilowatt hour) for PG&E is based on the value for the utility’s energy mix in 2008. SB XI 2 established a target of 25% and 33% from renewable energy sources for all electricity providers in California by 2016 and 2020, respectively. SB 350 calls for further development of renewable energy, with a target of 50% by 2030. The 25% RPS was accounted for in the modeling for existing land uses to be demolished. The 33% RPS was incorporated in the modeling for the Project GHG emissions.

Solid Waste. The Project would generate solid waste, and therefore, result in CO₂E emissions associated with landfill off-gassing. CalEEMod default values for solid waste generation were used to estimate GHG emissions associated with solid waste. A 50% solid waste diversion was assumed for the existing scenario pursuant to AB 939. Project compliance with the 75% diversion rate by 2020, consistent with AB 341, has been included in the GHG assessment.

Water and Wastewater. Supply, conveyance, treatment, and distribution of water for the Project require the use of electricity, which would result in associated indirect GHG emissions. Similarly, wastewater generated by the Project requires the use of electricity for conveyance and treatment, along with GHG emissions generated during wastewater treatment. Water consumption estimates for both indoor and outdoor water use and associated electricity consumption from water use and wastewater generation were estimated using CalEEMod default values for the Project and existing land uses.
In regards to indoor water use, the Project would install low-flow bathroom and kitchen faucets, low-flow toilets, and low-flow showers. In regards to outdoor water, the Project would use non-potable water for irrigation. It was assumed that the Project would apply a water conservation strategy resulting in a 20% reduction in indoor water use per CALGreen and a minimum 20% reduction in outdoor water use.

Project Impacts and Mitigation Measures

Tiered Initial Study Results

As described in the Tiered IS (Appendix A), the CMP EIR (SF State 2007) did not analyze potential campus-wide impacts related to GHG emissions, as Appendix G of the CEQA Guidelines at that time did not address GHG emissions and there were no established thresholds. The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus: the Creative Arts replacement building and the concert hall on Block 1, also referred to as the Tapia Triangle, and the student housing/mixed use building on Block 6, located on the south side of Holloway Avenue. Given the above, the Tiered IS concluded that the Focused Tiered EIR should quantify the net increase in GHG emissions with the Project and determine whether those emissions could have a significant impact on the environment and whether the Project would conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing GHG emissions to determine whether there may be new impacts related to GHG emissions that were not identified in the 2007 CMP EIR. This analysis is provided below.

Project and Cumulative Impacts

As the CMP EIR did not evaluate GHGs, only Project impacts are presented below.

Project Impact GHG-I: The Project would not generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment (*Less-than-significant impact / New impact*).

Construction Impacts

Construction of the Project would result in GHG emissions, which are primarily associated with use of off-road construction equipment, on-road vendor trucks, and worker vehicles. The total construction GHG emissions were calculated, amortized over 30 years, and added to the total operational emissions for comparison with the BAAQMD GHG significance threshold of 1,100 MT CO₂E per year. The determination of significance, therefore, is addressed in the operational emissions discussion following the estimated construction emissions.
CalEEMod was used to calculate the annual GHG emissions based on the construction scenario described in Section 4.2, Air Quality. Construction of the Project is anticipated to commence in August 2017 and reach completion in December 2019, lasting a total of 29 months. On-site sources of GHG emissions include off-road equipment and off-site sources including vendor trucks and worker vehicles. Table 4.3-2 presents construction emissions for the Project in 2017, 2018, and 2019 from on-site and off-site emission sources.

Table 4.3-2
Estimated Annual Construction GHG Emissions

<table>
<thead>
<tr>
<th>Year</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metric Tons per Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>374.42</td>
<td>0.05</td>
<td>0.00</td>
<td>375.47</td>
</tr>
<tr>
<td>2018</td>
<td>685.29</td>
<td>0.09</td>
<td>0.00</td>
<td>687.15</td>
</tr>
<tr>
<td>2019</td>
<td>586.43</td>
<td>0.08</td>
<td>0.00</td>
<td>588.07</td>
</tr>
<tr>
<td>Total</td>
<td>1,646.14</td>
<td>0.22</td>
<td>0.00</td>
<td>1,650.69</td>
</tr>
</tbody>
</table>

Source: Appendix C

CH₄ = methane; CO₂ = carbon dioxide; CO₂E = carbon dioxide equivalent; N₂O = nitrous oxide

As shown in Table 4.3-2, the estimated total GHG emissions during construction of the Project would be approximately 1,651 MT CO₂E over the construction period. Estimated Project-generated construction emissions amortized over 30 years would be approximately 55 MT CO₂E per year. As with Project-generated construction air quality pollutant emissions, GHG emissions generated during construction of the Project would be short-term in nature, lasting only for the duration of the construction period, and would not represent a long-term source of GHG emissions. Because there is no separate GHG threshold for construction, the evaluation of significance is discussed in the operational emissions analysis in the following section.

Operational Impacts

Operation of the Project would generate GHG emissions through motor vehicle trips to and from the Project site; landscape maintenance equipment operation; energy use (natural gas and generation of electricity consumed by the Project); solid waste disposal; and generation of electricity associated with water supply, treatment, and distribution and wastewater treatment. As described in the “Analytical Method” discussion above, GHG emissions associated with long-term operations were quantified using CalEEMod for the existing uses to be demolished and for the Project uses to be developed. CalEEMod was used to model a non-event day and an event day for the Project, with annual emissions estimated based on the proportion of non-event days (265 days) and event days (80 days). Table 4.3-3 summarizes the annual GHG emissions that would be generated by development of the Project, as well as emissions of existing land uses to be demolished. Detailed calculations are presented in Appendix C.
Table 4.3-3
Estimated Annual Operational GHG Emissions

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂E</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric tons per year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Project</td>
<td>876.44</td>
<td>1.49</td>
<td>0.02</td>
<td>915.25</td>
</tr>
<tr>
<td>Existing Uses</td>
<td>253.08</td>
<td>0.35</td>
<td>0.00</td>
<td>261.95</td>
</tr>
<tr>
<td>Net Increase (Project minus Existing)</td>
<td>623.36</td>
<td>1.14</td>
<td>0.02</td>
<td>653.30</td>
</tr>
<tr>
<td>Amortized Construction Emissions</td>
<td></td>
<td>55.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Increase Operational Emissions + Amortized Construction Total</td>
<td>708.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Appendix C

Notes: The values shown for the Project and existing use scenarios are the combined annual emissions from mobile, area, energy, water/wastewater, and solid waste sources from CalEEMod. Project annual emissions were estimated based on the weighted average of non-event days (265 days) and event day (80 days) emissions. In addition, Project emissions are based on the "Mitigated" CalEEMod outputs in order to incorporate the 2013 Title 24 standards (i.e., 25% reduction versus 2008 Title 24) and the 20% beyond Title 24 development standard to approximate LEED Gold, 20% indoor and outdoor water conservation per CALGreen, and 75% waste diversion pursuant to AB 341 even though compliance with these standards would not be considered actual mitigation. Existing emissions based on the "historical" energy intensity factors in CalEEMod and are also based on the "Mitigated" CalEEMod outputs in order to incorporate 50% waste diversion pursuant to AB 939.

CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂E = carbon dioxide equivalent

Table 4.3-4 indicates that the Project would result in a net GHG emission increase of approximately 708 MT CO₂E per year from all sources, which would be below BAAQMD’s GHG threshold of 1,100 MT CO₂E per year. This would represent a less-than-significant cumulative GHG impact. This is considered to be a new less-than-significant impact, as the CMP EIR did not evaluate GHG emissions.

Project Mitigation GHG-1: Mitigation not required.

Project Impact GHG-2: The Project would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs (Less-than-significant impact / New impact).

SF State adopted a CAP in 2010, which established GHG reduction goals for the campus and outlined strategies to accomplish the goals. Multiple GHG reduction measures would be incorporated into the Project design consistent with the CAP, including increased on-campus student housing that would reduce student commute vehicle trips, at least LEED Gold certification (with a target of LEED Platinum or Zero Net Energy), water conservation strategies such as recycled water use and low-flow toilets and sinks, implementation of transportation demand management strategies to minimize the need for parking, and the use of locally sourced materials with recycled content when possible for construction. However, since the SF State CAP did not go through CEQA review, it is not considered a Qualified Greenhouse Gas Reduction Strategy for purposes of CEQA-streamlining. Thus, at this time, no
mandatory GHG plans, policies, or regulations or finalized agency guidelines would apply to implementation of the Project. Additionally, the City’s GHG Reduction Strategy does not apply to the Project.

The Scoping Plan, approved by CARB on December 12, 2008, provides a framework for actions to reduce California’s GHG emissions and requires CARB and other state agencies to adopt regulations and other initiatives to reduce GHGs. As such, the Scoping Plan is not directly applicable to specific projects. Relatedly, in the Final Statement of Reasons for the Amendments to the CEQA Guidelines, the CNRA observed that “[t]he [Scoping Plan] may not be appropriate for use in determining the significance of individual projects because it is conceptual at this stage and relies on the future development of regulations to implement the strategies identified in the Scoping Plan” (CNRA 2009b). Under the Scoping Plan, however, there are several state regulatory measures aimed at the identification and reduction of GHG emissions. CARB and other state agencies have adopted many of the measures identified in the Scoping Plan. Most of these measures focus on area source emissions (e.g., energy usage, high-GWP GHGs in consumer products) and changes to the vehicle fleet (i.e., hybrid, electric, and more fuel-efficient vehicles) and associated fuels (e.g., LCFS), among others.

The Scoping Plan recommends strategies for implementation at the statewide level to meet the goals of AB 32 and establishes an overall framework for the measures that will be adopted to reduce California’s GHG emissions. Table 4.3-4 highlights measures that have been, or will be, developed under the Scoping Plan and the Project’s consistency with Scoping Plan measures. To the extent that these regulations are applicable to the Project, its inhabitants, or uses, the Project would comply with all regulations adopted in furtherance of the Scoping Plan to the extent required by law.

Table 4.3-4
Project Consistency with Scoping Plan GHG Emission Reduction Strategies

<table>
<thead>
<tr>
<th>Scoping Plan Measure</th>
<th>Measure Number</th>
<th>Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Clean Cars</td>
<td>T-1</td>
<td>The Project’s residents, staff, and event attendees would purchase vehicles in compliance with CARB vehicle standards that are in effect at the time of vehicle purchase.</td>
</tr>
<tr>
<td>Low Carbon Fuel Standard</td>
<td>T-2</td>
<td>Motor vehicles driven by the Project’s residents, staff, and event attendees would use compliant fuels.</td>
</tr>
<tr>
<td>Regional Transportation-Related GHG Targets</td>
<td>T-3</td>
<td>The Project includes transportation demand management features intended to enhance transit usage and encourage non-vehicular mobility to supplement ongoing statewide efforts to increase fuel efficiency standards, promote electric and hybrid vehicles, and promote vehicular fuels from renewable resources. The Project would result in a decrease in vehicle commute trips and GHG emissions based on the increased on-campus student usage.</td>
</tr>
</tbody>
</table>
Table 4.3-4
Project Consistency with Scoping Plan GHG Emission Reduction Strategies

<table>
<thead>
<tr>
<th>Scoping Plan Measure</th>
<th>Measure Number</th>
<th>Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing, which would allow 355 additional off-campus students to live on-campus.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Vehicle Efficiency Measures
1. Tire Pressure
2. Fuel Efficiency Tire Program
3. Low-Friction Oil
4. Solar-Reflective Automotive Paint and Window Glazing | T-4 | Motor vehicles driven by the Project’s residents, staff, and event attendees would maintain proper tire pressure when their vehicles are serviced. The Project’s residents, staff, and event attendees would replace tires in compliance with CARB vehicle standards that are in effect at the time of vehicle purchase and their motor vehicles would use low-friction oils when their vehicles are serviced. The Project’s residents, staff, and event attendees would purchase vehicles in compliance with CARB vehicle standards that are in effect at the time of vehicle purchase. |
| Ship Electrification at Ports (Shore Power) | T-5 | Not applicable. |
| Goods Movement Efficiency Measures
1. Port Drayage Trucks
2. Transport Refrigeration Units Cold Storage Prohibition
3. Cargo Handling Equipment, Anti-Idling, Hybrid, Electrification
4. Goods Movement Systemwide Efficiency Improvements
5. Commercial Harbor Craft Maintenance and Design Efficiency
6. Clean Ships
7. Vessel Speed Reduction | T-6 | Not applicable. |
| Heavy-Duty Vehicle GHG Emission Reduction
1. Tractor-Trailer GHG Regulation
2. Heavy-Duty Greenhouse Gas Standards for New Vehicle and Engines (Phase I) | T-7 | Not applicable. |
| Medium- and Heavy-Duty Vehicle Hybridization Voucher Incentive Project | T-8 | Not applicable. |
| High-Speed Rail | T-9 | Not applicable. |

Electricty and Natural Gas Sector

| Energy Efficiency Measures (Electricity) | E-1 | The Project would comply with current Title 24, Part 6, of the California Code of Regulations energy efficiency standards for electrical appliances and other devices at the time of building construction. In addition, the Project buildings would be certified at least LEED Gold, with the target of LEED Platinum or Zero Net Energy. |
| Energy Efficiency (Natural Gas) | CR-1 | The Project would comply with current Title 24, Part 6, of the California Code of Regulations energy efficiency standards for natural gas appliances and other devices at the time of building construction. In addition, the Project buildings would be certified at least LEED Gold, with the target of LEED Platinum or Zero Net Energy. |
Table 4.3-4
Project Consistency with Scoping Plan GHG Emission Reduction Strategies

<table>
<thead>
<tr>
<th>Scoping Plan Measure</th>
<th>Measure Number</th>
<th>Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Water Heating (California Solar Initiative Thermal Program)</td>
<td>CR-2</td>
<td>Based on information provided by SF State, on-site renewable energy likely would include roof-mounted solar arrays.</td>
</tr>
<tr>
<td>Combined Heat and Power</td>
<td>E-2</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Renewable Portfolios Standard (33% by 2020)</td>
<td>E-3</td>
<td>The electricity used by the Project would benefit from reduced GHG emissions resulting from increased use of renewable energy sources.</td>
</tr>
<tr>
<td>SB 1 Million Solar Roofs (California Solar Initiative, New Solar Home Partnership, Public Utility Programs) and Earlier Solar Programs</td>
<td>E-4</td>
<td>Based on information provided by SF State, on-site renewable energy likely would include roof-mounted solar arrays.</td>
</tr>
</tbody>
</table>

Water Sector

<table>
<thead>
<tr>
<th>Measure Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-1</td>
<td>Water Use Efficiency</td>
</tr>
<tr>
<td></td>
<td>The Project would include installation of recycled water infrastructure and other water reuse strategies. Targeted strategies could include ultra-water-efficient bathroom fixtures, dual plumbing to allow use of recycled water for toilet and urinal flushing, and recycled water infrastructure for irrigation. In regards to outdoor water, the Project would install water-efficient devices and landscaping in accordance with applicable ordinances, including use of drought-tolerant species appropriate to the climate and region.</td>
</tr>
<tr>
<td>W-2</td>
<td>Water Recycling</td>
</tr>
<tr>
<td></td>
<td>The Project includes installation of recycled water infrastructure.</td>
</tr>
<tr>
<td>W-3</td>
<td>Water System Energy Efficiency</td>
</tr>
<tr>
<td></td>
<td>This is applicable for the transmission and treatment of water, but it is not applicable for the Project.</td>
</tr>
<tr>
<td>W-4</td>
<td>Reuse Urban Runoff</td>
</tr>
<tr>
<td></td>
<td>The Project would minimize disruption of natural hydrology by implementing low-impact design approaches such as reduced impervious cover, reuse of stormwater, or increased infiltration. It is expected that the following types of features would be evaluated for inclusion in the Project: infiltration zones/dry wells, permeable pavement, planted roof, cistern, and bio-retention zones.</td>
</tr>
<tr>
<td>W-5</td>
<td>Renewable Energy Production</td>
</tr>
<tr>
<td></td>
<td>Applicable for wastewater treatment systems. Not applicable for the Project.</td>
</tr>
</tbody>
</table>

Green Buildings

1. State Green Building Initiative: Leading the Way with State Buildings (Greening New and Existing State Buildings)
 GB-1
 The Project would be required to be constructed in compliance with state green building standards in effect at the time of building construction.

2. Green Building Standards Code (Greening New Public Schools, Residential and Commercial Buildings)
 GB-1
 The Project’s buildings would meet green building standards that are in effect at the time of design and construction.

3. Beyond Code: Voluntary Programs at the Local Level (Greening New Public Schools, Residential and Commercial Buildings)
 GB-1
 Not applicable

4. Greening Existing Buildings (Greening Existing Homes and Commercial Buildings)
 GB-1
 This is applicable for existing buildings only. It is not applicable for the Project except as future standards may become applicable to existing buildings.
Table 4.3-4

Project Consistency with Scoping Plan GHG Emission Reduction Strategies

<table>
<thead>
<tr>
<th>Scoping Plan Measure</th>
<th>Measure Number</th>
<th>Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Efficiency and Co-Benefits Audits for Large Industrial Sources</td>
<td>I-1</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Oil and Gas Extraction GHG Emission Reduction</td>
<td>I-2</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>GHG Emissions Reduction from Natural Gas Transmission and Distribution</td>
<td>I-3</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Refinery Flare Recovery Process Improvements</td>
<td>I-4</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Work with the local air districts to evaluate amendments to their existing leak detection and repair rules for industrial facilities to include methane leaks</td>
<td>I-5</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Recycling and Waste Management Sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landfill Methane Control Measure</td>
<td>RW-1</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Increasing the Efficiency of Landfill Methane Capture</td>
<td>RW-2</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Mandatory Commercial Recycling</td>
<td>RW-3</td>
<td>During both construction and operation of the Project, the Project would comply with all state regulations related to solid waste generation, storage, and disposal, including the California Integrated Waste Management Act, as amended. During construction, all wastes would be recycled to the maximum extent possible.</td>
</tr>
<tr>
<td>Increase Production and Markets for Compost and Other Organics</td>
<td>RW-3</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Anaerobic/Aerobic Digestion</td>
<td>RW-3</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Extended Producer Responsibility</td>
<td>RW-3</td>
<td>Not applicable (applicable to product designer and producers).</td>
</tr>
<tr>
<td>Environmentally Preferable Purchasing</td>
<td>RW-3</td>
<td>Not applicable (applicable to product designer and producers).</td>
</tr>
<tr>
<td>Forests Sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable Forest Target</td>
<td>F-1</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>High GWP Gases Sector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Vehicle Air Conditioning Systems: Reduction of Refrigerant Emissions from Non-Professional Servicing</td>
<td>H-1</td>
<td>The Project’s residents, staff, and event attendees would be prohibited from performing air conditioning repairs and would be required to use professional servicing.</td>
</tr>
<tr>
<td>SF₆ Limits in Non-Utility and Non-Semiconductor Applications</td>
<td>H-2</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Reduction of Perfluorocarbons in Semiconductor Manufacturing</td>
<td>H-3</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Limit High GWP Use in Consumer Products</td>
<td>H-4</td>
<td>The Project’s residents, staff, and event attendees would use consumer products that would comply with the regulations that are in effect at the time of manufacture.</td>
</tr>
</tbody>
</table>
Table 4.3-4
Project Consistency with Scoping Plan GHG Emission Reduction Strategies

<table>
<thead>
<tr>
<th>Scoping Plan Measure</th>
<th>Measure Number</th>
<th>Project Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioning Refrigerant Leak Test During Vehicle Smog Check</td>
<td>H-5</td>
<td>Motor vehicles driven by the Project’s residents, staff, and event attendees would comply with the leak test requirements during smog checks.</td>
</tr>
<tr>
<td>Stationary Equipment Refrigerant Management Program – Refrigerant Tracking/Reporting/Repair Program</td>
<td>H-6</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Stationary Equipment Refrigerant Management Program – Specifications for Commercial and Industrial Refrigeration</td>
<td>H-6</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>SF6 Leak Reduction Gas Insulated Switchgear</td>
<td>H-6</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

Agriculture Sector

| Methane Capture at Large Dairies | A-1 | Not applicable. |

CARB = California Air Resources Board; CCR = California Code of Regulations; GHG = greenhouse gas; GWP = global warming potential; LEED = Leadership in Energy and Environmental Design; SB = Senate Bill; SF6 = sulfur hexafluoride

Based on the analysis in Table 4.3-4, the Project would be consistent with the applicable strategies and measures in the Scoping Plan.

In regards to consistency with EO B-30-15 (goal of reducing GHG emissions to 40% below 1990 levels by 2030) and EO S-3-05 (goal of reducing GHG emissions to 80% below 1990 levels by 2050), there are no established protocols or thresholds of significance for that future year analysis. However, CARB forecasts that compliance with the current Scoping Plan puts the state on a trajectory of meeting these long-term GHG goals, although the specific path to compliance is unknown (CARB 2014). As discussed previously, the Project is consistent with the GHG emission reduction measures in the Scoping Plan and would not conflict with the state’s trajectory toward future GHG reductions. In addition, since the specific path to compliance for the state in regards to the long-term goals will likely require development of technology or other changes that are not currently known or available, specific additional mitigation measures for the Project would be speculative and cannot be identified at this time. With respect to future GHG targets under the EOs, CARB has also made clear its legal interpretation that it has the requisite authority to adopt whatever regulations are necessary, beyond the AB 32 horizon year of 2020, to meet EO S-3-05’s 80% reduction target in 2050; this legal interpretation by an expert agency provides evidence that future regulations will be adopted to continue the state on its trajectory toward meeting these future GHG targets. Finally, the Project would not exceed the BAAQMD’s threshold of 1,100 MT CO₂E per year (BAAQMD 2009). Because the Project would not exceed the threshold, this analysis provides...
support for the conclusion that the Project would not conflict with EO S-3-05's GHG reduction goals for California.

Based on the preceding considerations, the Project would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs. This impact would be less than significant. This is considered to be a new less-than-significant impact, as the CMP EIR did not evaluate GHG emissions or related plans.

Project Mitigation GHG-2: Mitigation not required.

Project Impact GHG-3: The Project would not result in cumulatively considerable emissions of GHGs (*Less-than-significant impact / New impact*).

GHG impacts are cumulative impacts (BAAQMD 2009; CAPCOA 2008); therefore, assessment of significance is based on a determination of whether the GHG emissions from a project represent a cumulatively considerable contribution to the global atmosphere. If a project exceeds the identified significance thresholds, its contribution of GHG emissions would be cumulatively considerable, resulting in a cumulatively significant impact on climate change. As discussed above, cumulative impacts would be less than significant.

Project Mitigation GHG-3: Mitigation not required.

4.3.3 **References**

4.4 HISTORIC RESOURCES

This section of the Focused Tiered Final EIR presents potential historical resources impacts of the Creative Arts and Holloway Mixed-Use Project (Project). The preparation of this Focused Tiered Final EIR was preceded by the Tiered Initial Study, which determined that an EIR would be prepared to consider the potential for the Project to result in new significant impacts on historic resources or substantially more severe impacts compared to those identified in the Campus Master Plan (CMP) EIR. Section 4.4 of the 2007 CMP Draft EIR (SF State 2006) and Section 3.8 of the Final 2007 CMP EIR (SF State 2007a) address the historical resources effects of campus growth under the 2007 CMP (SF State 2007b).

This section presents the environmental setting, impacts of the Project on the environment, and proposed measures to mitigate any identified significant impacts. Information is incorporated by reference from the 2007 CMP EIR, from which this EIR is tiered, as described in Chapter 2 of this EIR. Additionally, a Historical Resources Technical Report was prepared for the Project by Page & Turnbull (2009) to document and evaluate changed conditions on and adjacent to the Project site, since the certification of the 2007 CMP EIR, related to the eligibility of the Parkmerced area as a historic district. This report is incorporated into this section of the EIR as relevant and contained in its entirety in Appendix D.

Public and agency comments related to historical resources were received during the public scoping period in response to the Notice of Preparation, and are summarized below:

- The EIR should describe the properties evaluated for historic significance on the campus for the 2007 CMP EIR. It should be clear whether Parkmerced was previously evaluated during the CMP EIR. Sufficient information should be provided about the setting and a determination provided about whether updated analysis is required for this EIR.
- Identify the criteria used to determine whether a building may be considered a potential historic resource for purposes of environmental review.
- The EIR analysis should clearly explain the specific impacts associated with buildout of the 2007 CMP and whether impacts are to individually-eligible resources or to a district.
- It should be clear how updated information will be used to supplement the CMP EIR, which is incorporated by reference.
- The EIR should provide for robust documentation of the sites’ history, which should be informed by the research conducted for the Parkmerced project. San Francisco State University (SF State) should coordinate with City and County of San Francisco’s Planning Department historic preservation specialists on the scope of work related to the Historic American Buildings Survey.
• The EIR should review and reference the importance of the landscaped courtyards and the need to document the loss of designed courtyards done by a master-class landscape architect. Documentation should include a 360 degree video, aerial plans, interior and exterior detailing, and courtyard photos showing prior views and design elements.

• See also Chapter 6, Alternatives, for additional scoping comments related to historic resource impacts and alternatives.

To the extent that issues identified in public comments involve potentially significant effects on the environment according to CEQA, and/or were raised by responsible and trustee agencies, they are identified and addressed in this EIR. For a complete list of public comments received during the public scoping period refer to Appendix B.

4.4.1 Environmental Setting

Section 4.4 of the 2007 CMP EIR addresses the existing environmental setting for historical resources (SF State 2006). The following discussion summarizes information presented in the ‘Environmental Setting’ subsection of Section 4.4 of the 2007 CMP EIR, updated with current information as necessary. In particular, the Historical Resources Technical Report (Appendix D) for the Project provides most of the updated information presented below.

Study Area

The Project site is located along the southern edge of the campus in an area that was formerly part of the Parkmerced area to the south. Since the certification of the 2007 CMP EIR, the Parkmerced area has been determined to be an eligible historic district, as further described below. Given that, the study area for historical resources includes the Project site; the southern portion of the campus that contains original Parkmerced blocks along Holloway Avenue, Tapia Drive, and Font Boulevard; and the remainder of the Parkmerced area to the south of the campus that falls within the eligible historic district (see Figure 4.4-1). The full extent of the original Parkmerced development, now divided amongst several owners, was 192 acres.

The Parkmerced blocks owned by SF State include building Blocks 1, 2, 5, 6, 41, 42, the former Parkmerced recreation area (now the site of SF State’s Mashouf Wellness Center), and the medians and traffic circles on a stretch of Font Boulevard between Lake Merced Boulevard and Serrano Drive. The original Parkmerced block numbers listed above are used to discuss the buildings in this section, as that is the identification used in previous historic documentation, and SF State also uses these terms. However, the Parkmerced block numbers correspond to the Assessor’s Parcel Number and other SF State names shown in Table 4.4-1 (see Figure 4.4-2 for locations).
Table 4.4-1
Original Parkmerced Blocks on SF State Campus

<table>
<thead>
<tr>
<th>Parkmerced Block Number</th>
<th>Assessor's Parcel Number</th>
<th>Date of Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1 (Tapia Triangle)</td>
<td>7306-001</td>
<td>1949</td>
</tr>
<tr>
<td>Block 2</td>
<td>7312-001</td>
<td>1944</td>
</tr>
<tr>
<td>Block 5</td>
<td>7313-001</td>
<td>1944</td>
</tr>
<tr>
<td>Block 6</td>
<td>7314-001</td>
<td>1944</td>
</tr>
<tr>
<td>Block 41</td>
<td>7304-001</td>
<td>1949</td>
</tr>
<tr>
<td>Block 42</td>
<td>7307-001</td>
<td>1944</td>
</tr>
</tbody>
</table>

SF State CMP EIR Historic Context

The following historic architectural context was excerpted from the Draft CMP EIR (SF State 2006):

San Francisco State Normal School, a two-year teacher-training college, was founded in 1899. It became a 4-year school in 1930, and received university status in 1972 through the California State University system. The original college was housed in a plain stone structure on Powell Street near Clay, which was destroyed in the 1906 earthquake and fire. While the school reopened at another location on upper Market, it was not until 1939 that 54 acres of land was acquired at the existing campus location. This followed the introduction of the “M” streetcar line along 19th Avenue and the construction of Lake Merced Boulevard. The campus's earliest temporary buildings and athletic fields replaced farmland. The campus remained largely in this form during the first decade.

It was not until 1949 when construction began on the first permanent structures, a stadium and a physical education building. Construction exploded on and around campus after that time. SFSU saw the construction of the campus core, while Villas Parkmerced and Stonestown were fully completed by the end of the 1950s (see further discussion below). New buildings continued to replace the older temporary structures on the campus, as the 1960s and 1970s saw the campus receive its first dormitories, a student center, two library expansions, and a pair of towering new science buildings. Even the valley, a remnant of the former stream canyon, had accumulated several structures. The last 15 years on campus have seen development across all building types, including an expansion in student housing, new academic and student support facilities, and an ongoing program of seismic upgrading of the University’s building stock.
The University Park North (UPN) was recently acquired by SFSU and was previously called the Stonestown apartments. The Western Neighborhoods Project provides a description of the history and architecture of Stonestown, which is summarized as follows (Western Neighborhoods Project 2006). The Stonestown shopping center and the adjacent apartment towers and buildings were built in 1952. “Stonestown” as it was called, was the fourth largest apartment complex/shopping center in the United States at the time. By the early 1980s, the mall still retained a classic 1950s look, but a major renovation took place that added a story of stores, a glass ceiling, and marble floors, creating the “Stonestown Galleria.” The apartments and towers were purchased by SFSU in 2005 and remain much as they were in 1952.

The three blocks of University Park South (UPS) and the Tapia Triangle are part of the larger Villas Parkmerced neighborhood that lies to the south of the campus.

While additional detail about Parkmerced was included in the CMP EIR, this information did not reflect the more recent information that the area is eligible as a historic district.

Parkmerced Historic Context

The following historic context for the Parkmerced area, including the portion that is located on the SF State campus, is based on the Historical Resources Technical Report (see Appendix D) prepared for this Project.

Early Site History

The area around Lake Merced was originally inhabited by the Ramaytush Ohlone tribe of Native Americans, who used the area to fish, hunt, and gather other resources. During the early years of Spanish settlement in San Francisco, the shores of Lake Merced were used as common land for grazing cattle. It was not until 1835 that the land was privatized and granted to a rancher named Jose Antonio Galindo. The current site of Parkmerced formed part of the Rancho Laguna de la Merced.

The Spring Valley Water Company purchased Lake Merced and the surrounding land in 1868 as part of a move to establish a monopoly over San Francisco’s water supply. The company began to sell off some of its land holdings by the 1890s. The future site of Parkmerced became the Ingleside Public Golf Course, one of the many golf courses built on the shores of Lake Merced around the turn-of-the-century.

During the early decades of the twentieth century, the first signs of significant development began moving out across the dunes of the Sunset district and down into the Parkside district towards Lake Merced. As late as 1920, however, the Lake Merced District was still
predominately rural. The 1930s brought significant change. The area around Lake Merced represented one of the largest tracts of undeveloped private land in San Francisco, which enticed the rapidly-expanding San Francisco State College (later renamed San Francisco State University) to purchase land for a new campus from the Spring Valley Water Company in 1937. However, construction for the new campus did not begin until after World War II, and the campus was not occupied until 1953—2 years after the completion of Parkmerced.

Development of Parkmerced: Phase I (1941–1945)

The Parkmerced rental complex was constructed on 192 acres of land previously occupied by the Ingleside Golf Course between 1941 and 1951 as San Francisco’s first all-rental housing community. The community was planned as a self-contained development by the Metropolitan Life Insurance Company (MetLife) as part of a government-supported effort that encouraged direct investment in middle-income housing by insurance companies in the 1940s and 1950s. MetLife’s 1941 proposal was to build 2,500 apartments, which would house approximately 8,000–10,000 residents.

Parkmerced was designed by Leonard Schultze & Associates, who was also the architect of two related housing projects commissioned by MetLife during this period, Parkfairfax in Virginia (1941–1943) and Parklabrea in Los Angeles (1941–1950). Frederick H. Meyer, a prominent San Francisco architect, served as the local architect, while Thomas Church (and other landscape architects from his office) served as the landscape architect for the garden courtyards and public open spaces. Rental units were originally planned to be constructed of high quality, modern materials for the time period, such as reinforced concrete, but wartime shortages of materials dramatically limited the application of these materials. The original plans also included amenities such as modern appliances, parking, landscaped courtyards, playgrounds, and open spaces for recreation. The builders of the project were the New York City firm Starrett Brothers & Eken, who constructed the Empire State Building and several other MetLife housing projects, including Parkchester and Peter Cooper Village.

Schultze’s early plans for the buildings, layout, and grounds of the Parkmerced project showed a complex of two-story apartments and open spaces that were formal and axial. An early site plan and image of the original model for Parkmerced from 1944 showed the overall layout of the site and location of garden apartment blocks and open spaces. The difference between the original model and final site plan upon which construction was carried out was a more finished, urban western edge to the site plan and less open space towards Lake Merced. The early site plan appears to be loosely organized by Beaux Arts and Garden City principles. Evidence of these principles is seen in the overall form of the Parkmerced plan, with a series of landscaped streets radiating from a central common according to a hierarchical circulation system that divides the property into pie-shaped blocks. In addition to the garden apartment blocks, this
early site plan included a small recreational area (tennis courts), a small commercial area with parking, and the Meadow.

Construction of the first phase of clustered garden apartments at Parkmerced began in 1941 and was completed in 1945. The initial phase of construction included all site planning by Schultze, including the layout of open spaces and the pie-shaped block grid, as well as the construction of six blocks (Blocks 28, 32, 33, 34, 35, and 36) of unfinished concrete garden apartments, which were completed by 1944. Original plans called for the construction of all buildings with reinforced concrete, but wartime restrictions on building materials made reinforced concrete unavailable for private enterprise during this time. Although construction was allowed to continue through the war years, the original number of apartments was reduced from 2,500 to 1,700 to accommodate for materials shortages. The remaining garden apartments planned for the first phase of construction were completed in 1945 and constructed of wood frame and stucco (Blocks 2–13, 20–25, 29–31, 38, and 42–45). These include the most of the subject blocks currently owned by SF State.

Landscaping of the Meadow, Common, and drives was completed by 1945, as well as the installation of playgrounds and an elementary school. At the conclusion of the initial construction phase in 1945, the site included 1,687 garden apartment units and associated landscaping within a contained area of low-rise blocks, bounded by Arballo Drive to the west, Holloway Avenue to the north, Cambon Drive to the east, and Brotherhood Way to the south. Two additional small blocks of housing extended beyond Arballo Drive on the west side of the development. The adjacent parcels at the edges of the property were left undeveloped, including the land east of Cambon Drive.

Critics applauded the unity of the whole, seamlessly combining infrastructure, housing, and recreation areas. Also of note were the pie-shaped blocks featuring convenient and designated laundry, play, and private garden space on the interior of each housing cluster.

During the development of the site plan, some of Church’s associates claim that he influenced the site design, while others claim that he was introduced later in the project after Schultze completed the overall site planning. However, these claims seem inaccurate in the face of the historical record, which shows Schultze’s designs and site plans for Parkmerced, which pre-date Church’s involvement.

While Thomas Church’s influence may not have been seen in the earliest site plan (pre-1941), he did design the landscaping of the garden apartment courtyards and open spaces, thus providing landscape interventions into the Project site. As noted by author Marc Treib, Church’s role in the project was one of refinement, not creation, relative to the site plan and landscaping. Church used modern landscape design concepts to optimize the site conditions,
including a focus on the combination of views and spaces instead of the relationship of the landscape to architectural facades. His influence was seen in the landscape elements found within the garden apartment courts, which relate to his other smaller-scale residential work.

Thomas Church used the assistance of landscape architects, contractors, and designers associated with his firm throughout the duration of construction. These individuals included landscape contractors Floyd Gerow and Alec Cattini; landscape architects H. Leland Vaughn (associated with Church from 1931 to 1945); Robert Royston (associated with Church from c.1938 to 1942); June Meehan (associated with Church from 1940 to 1967); Douglas Baylis (associated with Church from 1941 to 1945); and Lawrence Halprin (associated with Church from c. 1944 to 1949).

Each block of attached garden apartments had a series of interior courtyards featuring private terraces, shared laundry areas, and parking. Within each courtyard Church used low walls and plantings to define private outdoor space associated with each living unit, leaving the central open spaces as a semi-private common for the residents of that building. A large section of open space west of the center of the property and bounded by Arballo Drive, Serrano Drive, and Gonzalez Drive, was called “The Meadow,” and was originally designed to feature a series of recreational nodes. A circular area of open space was set aside for a landscaped Common in the center of the site. Schultze's site plan provided access to the property through four vehicle entrances, thereby limiting through-traffic on the property with the intent of increasing pedestrian safety in the enclosed complex.

Development of Parkmerced: Phase II (1948–1951)

In the late-1940s, as a response to the continued demand for housing after World War II, MetLife developed the remaining parcels at Parkmerced to provide greater residential density and site amenities. This second phase of development at Parkmerced took place between 1948 and 1951, and included the addition of four blocks of garden apartments (Blocks 1, 19, 37, and 41), completed between 1948 and 1949, as well as the construction of the Cambon Drive shopping center (specified in the original site plan), an Administration Building (also specified in the original site plan), three underground garages, a Maintenance Building, and eleven mid-rise towers, which were all completed by 1951. All of the buildings constructed between 1948 and 1951 were made of poured-in-place molded concrete with horizontal scoring. The massing, height, and materials of these buildings serve as a clear visual marker of this last phase of construction.

Thomas Church joined Leonard Schultze again on the second phase of design. Church designed the landscaping around the eleven towers and re-designed the Meadow and associated green spaces to accommodate the larger-scale buildings on the project site. An additional 1,769 units
were added to the Parkmerced complex upon the completion of the second phase of construction in 1951, thereby doubling the existing number of rentable units to a total of 3,456.

MetLife owned Parkmerced until 1970, when the property was sold to the Parkmerced Corporation. Property ownership changed again in 1995 and 1999. An 8.2-acre portion of the original Parkmerced property along Brotherhood Way was sold in 1999 and the Cambon Drive shopping center was sold in 2004. The SF State Foundation purchased Blocks 1, 2, 5, and 6 between 2000 and 2005 and subsequently sold them to SF State/CSU. SF State purchased Blocks 41 and 42 directly. Parkmerced Investors purchased the remainder of Parkmerced in 2005.

Current Historic Status of Parkmerced

This section describes the current historic status of the Parkmerced area, including the Project site and other blocks owned by SF State.

National Register of Historic Places

The National Register of Historic Places (National Register) is the nation’s most comprehensive inventory of historic resources. The National Register is administered by the National Park Service and includes buildings, structures, sites, objects, and districts that possess historic, architectural, engineering, archaeological, or cultural significance at the national, state, or local level. National Register criteria are defined in depth in *National Register Bulletin Number 15: How to Apply the National Register Criteria for Evaluation*. There are four basic criteria under which a structure, site, building, district, or object can be considered eligible for listing in the National Register. These criteria are as follows:

- **Criterion A (Event):** Properties associated with events that have made a significant contribution to the broad patterns of our history;
- **Criterion B (Person):** Properties associated with the lives of persons significant in our past;
- **Criterion C (Design/Construction):** Properties that embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant distinguishable entity whose components lack individual distinction; and
- **Criterion D (Information Potential):** Properties that have yielded, or may be likely to yield, information important in prehistory or history.

The University Park South blocks are not listed in the National Register of Historic Places. However, a Historic Resource Evaluation and Cultural Landscape Assessment for Parkmerced prepared in 2009 by Page & Turnbull determined that the entire Parkmerced development, including the property owned by SF State, was found to be significant as a historic district for its
association with community planning and for its mid-century design, with a period of significance from 1941 to 1951. The property was constructed by Metropolitan Life Insurance Company (MetLife), and the majority of the features at Parkmerced retain integrity to MetLife’s period of ownership. Together the buildings, landscapes, and associated features of Parkmerced form a historic district and cultural landscape that reflects the original design and functionality of this planned residential community. The apartment blocks are not considered significant individually. This conclusion was reached through comprehensive research of the property’s history, associated historic contexts, an existing conditions survey, and cultural landscape evaluation.

Parkmerced was determined eligible for the National Register under the following criteria:

- Parkmerced is significant under Criterion A (Events) as a resource that is associated with events that have made a significant contribution to the broad pattern of local history. Specifically, Parkmerced is significant for its association with MetLife’s nationwide housing effort during and after World War II, and for its association with development and growth of middle-income rental housing in San Francisco.

- Parkmerced is also significant under Criterion C (Design/Construction) as a resource that embodies the distinctive characteristics of a type and period, and as a resource that represents the work of a master. Specifically, Parkmerced is significant as one of the last large-scale residential complexes completed by master architect Leonard Schultze and landscape architect Thomas Church. The property is also significant as a mid-century planned community in San Francisco.

If a property is determined eligible for listing in the National Register, it is automatically eligible for listing in the California Register of Historical Resources.

California Register of Historical Resources

The California Register of Historical Resources (California Register) is an inventory of significant architectural, archaeological, and historical resources in the State of California. Resources can be listed in the California Register through a number of methods. State Historical Landmarks and National Register-listed properties are automatically listed in the California Register. Properties can also be nominated to the California Register by local governments, private organizations, or citizens. The evaluative criteria used by the California Register for determining eligibility are closely based on those developed by the National Park Service for the National Register.

The Historic Resource Evaluation and Cultural Landscape Assessment for Parkmerced prepared in 2009 by Page & Turnbull determined the entire Parkmerced development, including the SF State blocks, to be a California Register-eligible historic district in 2009.
California Historical Resource Status Code

Properties listed or under review by the State of California Office of Historic Preservation are assigned a California Historical Resource Status Code (CHRS Code) of “1” to “7” to establish their historical significance in relation to the National Register or California Register. Properties with a Status Code of “1” or “2” are either eligible for listing in the California Register or the National Register, or are already listed in one or both of the registers. Properties assigned Status Codes of “3” or “4” appear to be eligible for listing in either register, but normally require more research to support this rating. Properties assigned a Status Code of “5” have typically been determined to be locally significant or to have contextual importance. Properties with a Status Code of “6” are not eligible for listing in either register. Finally, a Status Code of “7” means that the resource has not been evaluated for the National Register or the California Register, or needs reevaluation.

None of the SF State blocks (or the rest of Parkmerced) appear to have been formally submitted to the California Office of Historic Preservation; they are not listed in the California Historical Resource Information System’s database (most updated version from 2012) with a CHRS Code.

Approved Parkmerced Master Plan

Much of the Parkmerced property owned by Parkmerced Investors, located south of the Project site and other SF State blocks, is entitled to be redeveloped over a 20- to 30-year period beginning in 2016. The Parkmerced project was approved by the City and County of San Francisco Board of Supervisors in May 2011. That project would demolish the garden apartment blocks and build new multi-story residential buildings and other amenities on site.¹ The nine towers, meadow, and Common would remain. When implemented, the project would create a significant unavoidable impact on the eligible Parkmerced Historic District, wherein the historic district in its entirety would no longer be eligible for listing due to loss of integrity. This determination was made in the Parkmerced Project EIR (CCSF 2010).

Parkmerced Remnant Historic District

Site Descriptions

The Project site and SF State’s other blocks in University Park South are located at the south border of the campus at what was originally the northern border of Parkmerced (see Figures 4.4-1 and 4.4-2). Large university buildings, including the Humanities Building (1994), Creative Arts Building (1953), J. Paul Leonard Library (1953; renovation and addition 2012), and Administration Building (1989) are located immediately northeast of Block 1 and across

¹ A full description of the project is located on the San Francisco Planning Department’s (http://sf-planning.org/parkmerced-project).
Holloway Avenue from Blocks 2, 5, and 6. The former Parkmerced recreation area is located immediately north of Block 41, and the Mashouf Wellness Center is currently under construction on this site. The parking garage that was located east of Block 41 and was part of the original Parkmerced development was demolished in August 2015 and is now within the construction zone. Across Vidal Drive to the south of Block 41 and across Arballo Drive to the west of Block 42 are Parkmerced towers 39 and 40.

Natural landscape features include a relatively flat topography and vegetation. Designed landscape features include radial vehicular circulation with traffic circles and planting medians; street and carport parking; pedestrian pathway circulation; the public, semi-private, and private open spaces; views and vistas to the SF State buildings, Parkmerced garden apartments, and Parkmerced towers; and small scale features, such as decorative and functional landscape walls, steps, privacy screens, railings, etc.

While the Parkmerced garden apartments owned by Parkmerced Investor would be demolished and new multi-story housing would be constructed with a new street pattern, the towers would remain within the viewshed of the SF State University Park South blocks. Figure 4.4-3 through Figure 4.4-8 provide photographs of the SF State blocks. Full site descriptions for each block are included in Appendix D.

Eligibility of Remnant Parkmerced Properties

Given the pending approved development at Parkmerced, by Parkmerced Investors, the eligibility of the remaining Parkmerced features on the SF State campus was assessed in the Historic Resources Technical Report for the Project (Appendix D), and is summarized below.

For a property to be eligible for national, state or local designation under one of the significance criteria identified above, the essential physical features, known as character-defining features, that enable the property to convey its historic identity must be evident. A property must clearly contain enough of those characteristics, and these features must also retain a sufficient degree of integrity. Characteristics can be expressed in terms such as form, proportion, structure, plan, style, or materials.

The 2009 Historic Resource Evaluation and Cultural Landscape Assessment provided a list of the Parkmerced Historic District’s character-defining features. In light of the approved project at the greater Parkmerced site that is anticipated to be implemented, the list of character-defining features is assessed below for whether they could still be represented by SF State’s Parkmerced Blocks 1, 2, 5, 6, 41, and 42, along with the towers that would remain on Parkmerced Investors property to the south (see Figure 4.4-9).
Those character-defining features that would still be represented on SF State’s blocks and other areas to remain are noted in italicized font below.

Spatial Organization

- Overall site plan includes street grid, placement of buildings in blocks [at the Towers, Blocks 1, 2, 5, 6, 41, and 42], the Meadow, and Parkmerced “Common.”
- Garden apartment blocks and courtyards (interior, entry, and laundry) [at Blocks 1, 2, 5, 6, 41, and 42]
- Tower arrangement and courtyards

Cluster Arrangement

- Garden apartment blocks [at Blocks 1, 2, 5, 6, 41, and 42]
- Tower clusters

Circulation

- Landscaped drives
 - Font Boulevard
 - Crespi Drive [circulation would remain though the landscaping would change]
 - Bucareli Drive [circulation would remain though the landscaping would change]
 - Grijalva Drive [circulation would remain though the landscaping would change]
- Juan Bautista Circle [circulation would remain though the landscaping would change]
- Traffic circles [At Font Boulevard]
- Aggregate and concrete paths (in courtyards and between buildings)

Topography

- Individual garden apartment courtyard grading

Buildings and Structures

- Garden apartments
- Towers
- Maintenance building
- Administration building
4.4 – Historic Resources

- Carports
- Laundry buildings
- Storage buildings

Vegetation

- Location and rhythm of street trees and plantings along drives and secondary streets, garden courtyard apartments, and towers
- Placement of specimen trees, lawns, and vegetation in courtyards of garden apartments and towers (actual species of vegetation has been altered in certain cases; this character-defining features should be evaluated on case-by-case basis)
- Parkmerced Common plantings
- Ornamental median plantings in traffic circles and along landscaped drives, where remaining.

Landscape Features

- Terrace divider walls in courtyards
- Planters (concrete, wood and brick)
- Low concrete and/or brick site walls
- Courtyard stairs (brick and concrete)

Views and Vistas

- Vistas down landscaped drives (see circulation above)
- Vistas to and from garden apartment courtyard breezeways
- Views to and from the Common
- Views from mid-rise towers to garden apartments and landscape

In addition to the character-defining features listed above located on Parkmerced Investors site, which was the subject of the Historic Resource Evaluation and Cultural Landscape Assessment done in 2009 (Page & Turnbull 2009), the former Parkmerced recreation area (now the site of SF State’s Mashouf Wellness Center), and commercial complex under other ownership are also within the boundary of the original Parkmerced development, and thus are contributing features to the Parkmerced Historic District.

When the approved project at Parkmerced is implemented, most of the character-defining features could be represented through the remaining significant landscaped spaces, the towers, and SF
State’s garden apartment blocks. Of the typologies of garden apartments that were constructed at Parkmerced, wood frame and stucco garden apartments and scored poured-in-place concrete garden apartments would be represented, but not smooth poured-in-place buildings.

The overall site plan would change because many streets in the existing grid would be removed, though primary radial streets from the Parkmerced Common would remain. The maintenance building, administration building, and other storage buildings would be demolished. Most vegetation and landscape features would continue to be represented by the SF State garden apartment blocks. While views and vistas would change due to the construction of new buildings on the Parkmerced site, the general concept of views down the streets framing the SF State garden apartments and from Towers 39 and 40 across the street from Blocks 41 and 42 would be retained.

Thus, while the garden apartments at the Parkmerced site would eventually be demolished, sufficient character-defining features exist in the six garden apartment blocks with laundry and carport facilities, the landscape features that remain at the SF State Parkmerced garden apartment blocks, and the adjacent Towers 39 and 40 to constitute a smaller, contiguous Parkmerced Remnant Historic District (see Figure 4.4-9). Integrity of location, design, materials, workmanship, feeling, and association would be maintained in this remnant district, though integrity of setting would be compromised to an extent due to new construction surrounding the remaining blocks. Overall, this remnant historic district would continue to represent the significant mid-century middle-income housing concept characterized by Parkmerced and the architectural and landscape designs of Leonard Schultze and Associates and Thomas Church. The Parkmerced Remnant Historic District would represent two of three garden apartment construction typologies: scored concrete and wood-frame construction (poured concrete would no longer be represented). The blocks create a line along Holloway Avenue and Font Boulevard west of 19th Avenue such that nearly the full width of the Parkmerced development would be represented.

With the implementation of the approved Parkmerced redevelopment project, the larger identified historic district was found in previous analyses to lose eligibility due to the anticipated change in integrity of the overall Parkmerced site. Intact examples of Metlife and other mid-century housing developments exist elsewhere in the country, including Stuyvesant Town in Manhattan, Parkfairfax in Alexandria, Virginia, and Parkchester in the Bronx. However, in California many of these types of mid-century middle-income developments have been altered or demolished, and a lower threshold of integrity may exist to represent the significant context. In sum, this report finds that Blocks 1, 2, 5, 6, 41, and 42, along with towers 39 and 40 that would remain on the Parkmerced Investors property, constitute as a smaller Parkmerced Remnant Historic District eligible for listing in the California Register that is significant at the state and local levels. Even as a remnant landscape, the remaining components convey enough information about the to-be-demolished Parkmerced development to the south to be eligible on their own.
The Project site and other SF State blocks are not individually significant, as their significance is rooted in the history and design of the larger development.

4.4.2 Impacts and Mitigation Measures

2007 CMP EIR Standards of Significance

As indicated in the 2007 CMP EIR, the significance criteria used to evaluate the impacts of the Project related to historical resources are based on Appendix G of the CEQA Guidelines; applicable agency plans, policies, and/or guidelines; and agency and professional standards. Based on the above, a significant impact related to historical would occur if the Project would:

- Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5.

The CEQA Guidelines Section 15064.5(b) defines a “substantial adverse change” to a historical resource as: “physical demolition, destruction, relocation or alteration of the resource or its immediate surroundings such that the significance of an historical resource would be materially impaired.” The significance of an historical resource is materially impaired when a project demolishes or materially alters in an adverse manner those physical characteristics of an historical resource that convey its historical significance and that justify its inclusion in, or eligibility for inclusion in, the California Register or in registers meeting the definitions in Public Resources Code Section 5020.1(k) or 5024.1(g) (CEQA Guidelines, Section 15064.5(b)), as determined by a lead agency for purposes of CEQA. In other words, a significant impact occurs when demolition or significant alteration renders a historical resource no longer eligible for listing in a historic register. A project may cause changes to a historic resource but still not have a significant adverse effect on the environment as defined by CEQA as long as the impact of the change on the historic resource is determined to be less than significant, negligible, neutral or even beneficial.

A building or district may qualify as a historic resource if it falls within at least one of four categories listed in CEQA Guidelines Section 15064.5(a). The four categories are:

- A resource listed in, or determined to be eligible by the State Historical Resources Commission, for listing in the California Register (Public Resources Code SS5024.1, Title 14 CCR, Section 4850 et seq.).
- A resource included in a local register of historical resources, as defined in Section 5020.1(k) of the Public Resources Code or identified as significant in an historical resource survey meeting the requirements of Section 5024.1(g) of the Public Resources Code, shall be presumed to be historically or culturally significant. Public agencies must
treat any such resource as significant unless the preponderance of evidence demonstrates that it is not historically or culturally significant.

- Any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California may be considered to be an historical resource, provided the lead agency’s determination is supported by substantial evidence in light of the whole record. Generally, a resource shall be considered by the lead agency to be “historically significant” if the resource meets the criteria for listing on the California Register (Public Resources Code SS5024.1, Title 14 CCR, Section 4852).

- The fact that a resource is not listed in, or determined to be eligible for listing in the California Register, not included in a local register of historical resources (pursuant to Section 5020.1(k) of the Public Resources Code), or identified in an historical resources survey (meeting the criteria in Section 5024.1(g) of the Public Resources Code) does not preclude a lead agency from determining that the resource may be an historical resource as defined in Public Resources Code Sections 5020.1(j) or 5024.1.

In general, a resource that meets any of the four criteria listed in CEQA Guidelines Section 15064.5(a) is considered to be a historical resource unless “the preponderance of evidence demonstrates” that the resource is not historically or culturally significant.” Therefore, the smaller Parkmerced Remnant Historic District, which has been found in Appendix D to be eligible for listing in the California Register, would be considered a qualified historic resource under CEQA under the third of the categories listed above.

The above historic resource standard of significance was addressed by CMP Impact CULT-2 and Impact CULT-5. These impacts are further addressed below to incorporate new information available since the CMP EIR was completed. Other cultural resource standards of significance addressing archaeological resources, tribal cultural resources, paleontological resources, and human remains are covered in Appendix A and are adequately addressed by the CMP EIR and the Tiered Initial Study. Therefore, these standards of significance are not further discussed in this section.

Analytical Method

The Historical Resources Technical Report (Appendix D) prepared for the Project documents and evaluates changed conditions on and adjacent to the Project site, since the certification of the 2007 CMP EIR, related to the eligibility of the Parkmerced area as a historic district. The Historic Resources Technical Report provides building descriptions, an abbreviated historic context statement, and an examination of the current historic status of the former Parkmerced
blocks owned by SF State. The report includes a summary significance statement of the blocks’ eligibility for listing in the National Register and the California Register, as summarized above.

Page & Turnbull visited the site in May 2016. All site photographs in Appendix D were taken by Page & Turnbull in May 2016, unless otherwise noted. No primary historic research was conducted for this report, as the blocks have previously been researched and evaluated in the “Parkmerced Historic Resource Evaluation and Cultural Landscape Assessment” (Page & Turnbull 2009) and HABS-HALS Written Report (Page & Turnbull 2016).

A records request was sent to the Northwest Information Center of the California Historical Resources Information System in May 2016. The record search results are summarized in the Current Historic Status section above, along with information from other sources. There was no new information provided by the Northwest Information Center that had not been included in previous documentation about the site or the SF State campus.

CMP EIR Mitigation Measures Included in Project

The adopted mitigation measures for historic resources included in the 2007 CMP EIR and applicable to the Project are presented below. These measures are already being implemented as part of the CMP, the adopted CMP EIR Mitigation Monitoring and Reporting Program, and the Project and therefore they are considered to be part of the Project, as described in Chapter 3 of this EIR. Mitigation measures CULT-2A through CULT-2C are being implemented as part of the preparation of this EIR. Additional mitigation measures, if needed, are provided under Impacts and Mitigation Measures, below, to reduce or minimize identified impacts of the Project.

CMP Mitigation CULT-2A: The campus shall identify all buildings and structures within the project’s area of potential effect that will be 50 years of age or older at the time of project construction. If potentially historic structures are present, Mitigation CULT-2B shall be implemented.

CMP Mitigation CULT-2B: Potential historic structures present within the project’s area of potential effect will be evaluated as follows:

1. Before altering or otherwise affecting a building or structure 50 years old or older, the campus shall retain a qualified architectural historian to record it based on professional standards, and assess its significance under CEQA Guidelines Section 15064.5. The evaluation process shall include the development of appropriate historical background research as
context for the assessment of the significance of the structure in the history of the California State University system, the campus, and/or the region. For historic buildings, structures or features that do not meet the CEQA criteria for a historical resource, no further mitigation is required.

ii. For a building or structure that qualifies as a historic resource, the architectural historian and the campus shall consider measures that would enable the project to avoid direct or indirect impacts to the building or structure. These measures could include preserving a building on the margin of the project site, using it “as is,” or other measures that would not alter the building. If the project cannot avoid modifications to a significant building or structure, the campus shall implement Mitigation CULT-2C.

CMP Mitigation CULT-2C: For a structure or building that has been determined by a qualified architectural historian to qualify as a historical resource, and where avoidance is not feasible, documentation and treatment shall be carried out as described below:

i. If the building or structure can be preserved on site, but remodeling, renovation or other alterations are required, this work shall be conducted in compliance with the “Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings” (Weeks and Grimmer 1995).

ii. If a significant historic building or structure is proposed for major alteration or renovation, or to be moved and/or demolished, the campus shall ensure that a qualified architectural historian thoroughly documents the building and associated landscaping and setting. Documentation shall include still and video photography and a written documentary record of the building to the standards of the Historic American Building Survey (HABS) or Historic American Engineering Record (HAER), including accurate scaled mapping, architectural
4.4 – Historic Resources

descriptions, and scaled architectural plans, if available. A copy of the record shall be deposited with the SF State Library. The record shall be accompanied by a report containing site-specific history and appropriate contextual information. This information shall be gathered through site specific and comparative archival research, and oral history collection as appropriate.

iii. If preservation and reuse at the site are not feasible, the historical building shall be documented as described in item (ii) and, when physically and financially feasible, be moved and preserved or reused.

iv. If, in the opinion of the qualified architectural historian, the nature and significance of the building is such that its demolition or destruction cannot be fully mitigated through documentation, the campus shall reconsider project plans in light of the high value of the resource, and implement more substantial modifications to the proposed project that would allow the structure to be preserved intact. These could include project redesign, relocation or abandonment.

Impacts and Mitigation Measures

Tiered Initial Study Results

As described in the Tiered IS (Appendix A), the 2007 CMP EIR determined that the impacts of CMP buildout related to historic resources could be significant and unavoidable if CMP EIR Mitigation CULT-2C above, requiring documentation of historical resources, would not fully mitigate the effects of demolition of those resources to less than significant. In such cases, CMP EIR Mitigation CULT-2C would reduce the impact to the extent feasible; however, the impact would remain significant and unavoidable.

The Project would involve construction of three buildings on Block 1 and Block 6 in the southern portion of the SF State campus. The existing housing on the two sites, which are former Parkmerced properties, are proposed to be demolished as part of the Project. Since the certification of the CMP EIR in 2007, more is now known about the eligibility of the Parkmerced area as a Historic District, as documented in Section 4.4.1, above. The Parkmerced area is eligible as a Historic District, based on a Historical Resource Evaluation prepared for the Parkmerced area (Page & Turnbull 2009), which included the former Parkmerced properties located on the SF State campus.
Given the above, the Tiered IS concluded that the EIR will evaluate potential historic resource impacts of the Project on the former Parkmerced properties on the campus to determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR. This analysis is provided below and is based on Appendix D.

Project and Cumulative Impacts

For each impact presented below, the CMP EIR impact is presented first in gray text for easy reference to the CMP EIR’s prior impact conclusions. The Project impact is presented second and emphasizes whether new or increased impacts would result with the Project.

CMP Impact CULT-2: Implementation of the Campus Master Plan could cause a substantial adverse change in the significance of a historical building or structure, as a result of alteration, removal or demolition of the building, or alteration of the site associated with project (Significant and unavoidable impact).

Project Impact CULT-2A: The Project would demolish Blocks 1 and 6, which are qualified historic resources as contributors to an identified Parkmerced Historic District. The demolition of Blocks 1 and 6 would erode the integrity of the historic district, but would not materially impair its significance (New less-than-significant impact).

The CMP EIR did not identify or evaluate the impact of campus growth on the Parkmerced historic district, as shown in Figure 4.4-1, as this district was not identified at the time the CMP EIR was prepared. The CMP EIR identified buildings that are currently 50 years old or will be that age by 2020 and may qualify as historic resources under CEQA criteria. These buildings were assumed to be historic resources for the purposes of the CMP EIR analysis. The 2007 CMP EIR determined that the impacts of CMP buildout related to individual historic resources could be significant and unavoidable if CMP EIR Mitigation CULT-2C above, requiring documentation of historical resources, would not fully mitigate the effects of demolition of those resources to less than significant. In such cases, CMP EIR Mitigation CULT-2C would reduce the impact to the extent feasible; however, the impact was determined to be significant and unavoidable if a historical resource cannot be preserved in place, and if the historic values it represents cannot be fully captured through documentation and data recovery.

Demolition is often considered to be a significant adverse impact, since it could materially alter in an adverse manner those physical characteristics of a historic resource that convey its historical significance and that justify its eligibility for inclusion in the National Register or
California Register. In this case, the Parkmerced Historic District includes all of the original Parkmerced development. The demolition of the garden apartment Blocks 1 and 6 in the larger Parkmerced Historic District, which is extant under current conditions, would erode the integrity of the historic district, but would not materially impair the district's significance. The historic district would continue to represent the significant mid-century middle-income housing concept characterized by Parkmerced and the architectural and landscape designs of Leonard Schultze and Associates and Thomas Church. The SF State blocks are not considered significant individually, and the majority of the site plan and blocks within the Parkmerced Historic District would remain. The remaining 28 garden apartment blocks, 11 towers, and landscape features on the Parkmerced Investors site, as well as the other four SF State garden apartment blocks that currently exist, would convey the character-defining features and all characteristic building typologies of the development. The larger Parkmerced Historic District would remain eligible under existing conditions with the implementation of the Project. Thus, the Project would create a new less-than-significant Project-specific impact on the larger historic district. Regardless, CMP Mitigations CULT-2A, -2B, and -2C are included in the Project.

Project Mitigation CULT-2A: No additional mitigation required.

Project Impact CULT-2B: The Project would demolish Blocks 1 and 6, which are qualified historic resources as contributors to an identified Parkmerced Remnant Historic District. The demolition of Blocks 1 and 6 would erode the integrity of the historic district but would not materially impair its significance (New less-than-significant impact).

As indicated above, the CMP EIR did not identify or evaluate the impact of campus growth on the Parkmerced historic district or any remnant district, as no such districts were identified at the time the CMP EIR was prepared. In the event that the approved project at the Parkmerced Investors site is fully implemented, the Parkmerced Remnant Historic District identified in this report and shown in Figure 4.4-9—composed of six garden apartment blocks with laundry and carport facilities, and two adjacent towers—is the historic resource under evaluation in this impact. The apartment blocks in the Parkmerced Remnant Historic District are not considered significant individually. The integrity of the historic district would erode with the demolition of Blocks 1 and 6, one-third of the represented garden apartments that line Holloway Avenue west of 19th Avenue. Block 1 is one of two scored concrete garden apartments with one of five total laundry units, and Block 6 is one of four wood frame and stucco garden apartments with one of four carport complexes. Although the number of these typologies would be reduced, all typologies of buildings represented in the identified district would remain, and the character-defining features that the six blocks feature would still be represented by the remaining four blocks. Furthermore, Blocks 1 and 6 are both on the edges of the line of former
Parkmerced blocks owned by SF State: Block 1 is an outlier on the northeast side of Holloway Avenue and Font Boulevard, and Block 6 is the furthest east in the row along Holloway Avenue. Removing these two blocks would not create a discontinuous condition amongst the remaining Parkmerced blocks.

The demolition of the garden apartment Blocks 1 and 6 in the Parkmerced Remnant Historic District would erode the integrity of the remnant historic district, but it would not materially impair the district’s significance. The remnant historic district would continue to represent the significant mid-century middle-income housing concept characterized by Parkmerced and the architectural and landscape designs of Leonard Schultze and Associates and Thomas Church. Therefore, the Parkmered Remnant Historic District would remain eligible with the implementation of the Project. Thus, the Project would create a new less-than-significant Project-specific impact on the remnant historic district. Regardless, CMP Mitigations CULT-2A, -2B, and -2C are included in the Project.

Project Mitigation CULT-2B: No additional mitigation required.

CMP Impact CULT-5: Development under the Campus Master Plan could contribute to cumulative damage to and/or loss of... historical resources in the City and County of San Francisco (Potentially significant impact / Less than significant with mitigation).

Project Impact CULT-5A: The proposed demolition of Blocks 1 and 6 and removal of existing landscape features on the Project site would contribute to a significant cumulative impact on the historic significance of the Parkmerced Historic District, as it would erode its integrity; however, the Project’s contribution to this significant cumulative impact would not be cumulatively considerable (New less-than-significant impact).

The CMP EIR did not identify or evaluate the cumulative impact of campus growth and other reasonably foreseeable future projects and development on the Parkmerced Historic District, as shown in Figure 4.4-1, as this district was not identified at the time the CMP EIR was prepared. The CMP EIR determined that the campus’ contribution to the destruction of the cultural resources in San Francisco would be minimized to the extent feasible with the implementation of identified mitigation measures. The cumulative impact was determined to be less than significant with the protocols in place for development projects on campus and in San Francisco, and the campus’ contribution to this impact would not be cumulatively considerable.
The geographical setting for the discussion of cumulative impacts related to Parkmerced historic resources consists of the SF State campus and the Parkmerced area to the south. Reasonably foreseeable cumulative projects that may impact the Parkmerced Historic District include the following:

- The approved Parkmerced project, including demolition of all of the two-story garden apartment buildings and removal of all of the interior landscaping on the Parkmerced Investors property.
- Future redevelopment of Parkmerced's eastern 2.75-acre commercial shopping center owned by Yousef Realty.
- The current redevelopment project of the former Parkmerced recreation area to construct the Mashouf Wellness Center.
- The probable future build out of University Park South, as contemplated in the future vision included in the 2007 adopted Campus Master Plan, including demolition and redevelopment of all SF State garden apartment blocks in University Park South.2

The EIR for the redevelopment project at the Parkmerced Investors site already determined that the Parkmerced Historic District would not remain eligible for listing in any historic registers if that project proceeds as entitled and the project-level impact was determined to be significant and unavoidable for that project. Additionally, the cumulative study area for that project was the original Parkmerced complex, which included four other property owners of Parkmerced properties, SF State, Yousef Realty, and Olympic Realty. Redevelopment of these former Parkmerced properties is contemplated in some fashion by all of these owners, as described above. The EIR for the Parkmerced project determined that the impact associated with the Parkmerced project and the cumulative redevelopment projects would be significant and unavoidable, as anticipated redevelopment of all of the properties identified above would materially impair the significance of the historic district to the extent that it would no longer be eligible for listing. This impact was identified as being caused primarily by the Parkmerced Investors redevelopment project. For example, out of 34 total garden apartment blocks, the Parkmerced Investors project would demolish 28. The demolition of Blocks 1 and 6 for the Project would contribute to a significant cumulative impact by eroding the Parkmerced Historic District’s integrity. However, when combined with known current, entitled, and future projects, including the large Parkmerced Investors project, the Project’s contribution would not be

2 The adopted 2007 CMP and map do not include future buildout of University Park South during the buildout horizon for the CMP, and there are no approved or adopted plans for such buildout. However, the CMP future vision beyond 2020 and the CMP objectives do consider development in this area and, therefore, such development and the associated demolition is considered reasonably foreseeable and therefore demolition is considered in the cumulative analysis above.
cumulatively considerable. Thus, the new cumulative impact of the Project on the Parkmerced Historic District would be less than significant.

Project Mitigation CULT-5A: No additional mitigation required.

Project Impact CULT-5B: The proposed demolition of Blocks 1 and 6 and removal of existing landscape features on the Project site would contribute to a significant cumulative impact on the historic significance of the Parkmerced Remnant Historic District, as it would erode its integrity; the Project’s contribution to this significant cumulative impact would be cumulatively considerable (New significant and unavoidable impact).

Following the redevelopment of Blocks 1 and 6, the remaining blocks of Parkmerced garden apartments owned by SF State—blocks 2, 5, 41, and 42—are anticipated to be demolished eventually and redeveloped by SF State, as described in Project Impact Cult-5A, and the landscape design of Font Boulevard is anticipated to be eventually altered. This would likely occur under the future vision included in the 2007 CMP, which contemplated demolition and redevelopment of all SF State garden apartment blocks in University Park South beyond the 2020 horizon year for the CMP. While redevelopment of the entirety of University Park South is not yet approved or adopted, the ultimate demolition of this area is considered reasonably foreseeable and is therefore considered in this analysis.

The future redevelopment of Blocks 1 and 6 as part of the Project, as well as the rest of SF State’s Parkmerced blocks and street landscapes would materially impair the significance of the Parkmerced Remnant Historic District, as shown in Figure 4.4-9, to the extent that it would no longer be eligible for listing. The remnant historic district would no longer be able to represent the significant mid-century middle-income housing concept characterized by Parkmerced and the architectural and landscape designs of Leonard Schultz and Associates and Thomas Church. This would constitute a significant cumulative impact, as the remnant district would no longer be eligible for listing. Because the remnant district only includes six garden apartment blocks and two towers, the Project would contribute one-third of the garden apartment demolitions. The Project, therefore, would create a considerable contribution to the cumulative impact when combined with the known and future redevelopment of all former Parkmerced blocks on the SF State campus, as contemplated in the future vision for the campus in the 2007 CMP. Thus, the cumulative impact of the Project on the Remnant Parkmerced Historic District would be significant.

This significant cumulative impact can be reduced through the implementation of CMP Mitigation CULT-2A, -2B, and -2C included above and through the implementation of the Project Mitigation
CULT-5B below. However, the impact is significant and unavoidable as the implementation of feasible mitigation measure would not reduce the impact to less than significant. This is a new significant and unavoidable impact not previously identified in the CMP EIR.

Project Mitigation CULT-5B: The following mitigation measures are recommended in advance of the Project, and elaborate on the mitigation measure outlined in the Campus Master Plan EIR’s Mitigation CULT-2C (ii)

DOCUMENTATION:

SF State shall facilitate documentation of the affected historic resource and its setting. Generally, this documentation shall be in accordance with Historic American Building Survey (HABS) Level II per Campus Master Plan EIR Mitigation CULT-2C(ii), which includes:

i. **Drawings:** Select original Church and Schultze drawings of Blocks 1 and 6, if available from Parkmerced Investors LLC or the San Francisco Planning Department,\(^3\) should be photographed with large-format negatives or photographically reproduced on Mylar. Measured drawings are not required, as these were completed for each type of building as part of the mitigation for demolition of the Parkmerced site (completed by Page & Turnbull in 2016).

ii. **Photographs:** Archivally printed digital photographs of exterior and interior views of Blocks 1 and 6. These photographs must adequately document the character-defining features of the buildings and should be produced by a qualified professional who is familiar with the character-defining features of the buildings, as identified in the Historic Resource Evaluation completed by Page & Turnbull in 2009 and information provided in this report. Photographs should include general views that illustrate the setting; the exterior façades; the courtyard façades; details including front entrances and/or typical doorways; typical windows;

\(^3\) Parkmerced Investors transferred a set of historic Parkmerced drawings to the San Francisco Planning Department to be archived as part of the Parkmerced project’s cultural resource mitigation measures.
exterior details indicative of the era of construction or of historic or architectural interest; and interior views to capture spatial relationships and any decorative elements. An example of printed digital photographs, site plans, and photo captions can be found in the Parkmerced HABS-HALS photographs produced as part of the mitigation for demolition of the Parkmerced Investors LLC site. These photograph sets are located at the San Francisco Public Library History Center and the Northwest Information Center of the California Historical Resources Information System. The photograph set for Blocks 1 and 6 should correspond to the previously produced sets.

iii. **Written data:** Not required, as these blocks are covered in the HABS-HALS written report produced as part of the mitigation for demolition of the Parkmerced Investors LLC site.

HABS material standards regarding reproducibility, durability, and size shall be met. The HABS Level II documentation shall be completed by professionals who meet or exceed the Secretary of the Interior’s Professional Qualification Standards for History or Architectural History.

Three copies of the drawings and photographs should be provided to the San Francisco Public Library History Center, the Northwest Information Center of the California Historical Resources Information System, and SF State University.

This mitigation would create a collection of preservation materials that would be available to the public and inform future research. Implementation of this mitigation measure will assist in reducing the project-specific impacts: however, according to Section 15126.4(b)(2) of the Public Resources Code (CEQA), HABS-level documentation of a historical resource as mitigation for significant impacts of demolition of the resource will typically not mitigate the impacts to less-than-significant.
VIDEO RECORDATION:
SF State will facilitate the creation of a walk-through video of Blocks 1 and 6 and their Parkmerced setting, including an exterior overview of adjacent streets (with medians and traffic circles), nearby tower apartments, and primary public spaces at Parkmerced such as the central Common and the Meadow. The documentation shall be conducted by a professional videographer, preferably one with experience recording architectural resources. The documentation shall be narrated by a qualified architectural historian. The documentation shall include as much information as possible—using visuals in combination with narration—about the materials, construction methods, current condition, historic use, and historic context of the historical resources. Copies of the video documentation shall be submitted to the San Francisco Public Library History Room, the Northwest Information Center, and SF State University. This mitigation measure will supplement the traditional HABS-HALS documentation.

4.4.3 References

California Code of Regulations, Title 14, Division 6, Chapter 3, Sections 15000–15387. CEQA Guidelines.

California Code of Regulations, Title 14, Division 3, Chapter 11.5, Section 4850 et seq. California Register of Historical Resources.

4.4 – Historic Resources

INTENTIONALLY LEFT BLANK
San Francisco State Blocks Associated with Eligible Parkmerced Historic District

SOURCE: San Francisco State (2016)

FIGURE 4.4-2

San Francisco State Creative Arts & Holloway Mixed-Use Project EIR
Southwest façade at Font Boulevard and Tapia Drive, looking northeast

Interior courtyard looking east

Southeast corner at Holloway Avenue and Tapia Drive, looking northeast

Southwest façade, looking near Font Boulevard and Holloway Avenue, looking northeast

FIGURE 4.4-3
Photographs of Block 1

SOURCE: Page & Turnbull (2016)
East façade at Serrano Drive and Arellano Avenue, looking west

Interior courtyard west, looking northeast

Interior courtyard east, looking northwest

Southwest façade, looking northeast

SOURCE: Page & Turnbull (2016)

FIGURE 4.4-4
Photographs of Block 2
INTENTIONALLY LEFT BLANK
INTENTIONALLY LEFT BLANK
INTENTIONALLY LEFT BLANK
West façade at Arballo Drive and Pinto Avenue, looking east

Interior courtyard, looking northeast

South façade at Pinto Avenue and Tapia Drive, looking north

Interior parking area, looking northwest

SOURCE: Page & Turnbull (2016)

FIGURE 4.4-8
Photographs of Block 42

San Francisco State Creative Arts & Holloway Mixed-Use Project
INTENTIONALLY LEFT BLANK
Eligible Parkmerced Remnant Historic District Boundary with Future Buildout of Parkmerced Project

SOURCE: Page & Turnbull (2016)
INTENTIONALLY LEFT BLANK
This section presents potential transportation impacts of the proposed Creative Arts and Holloway Mixed-Use Project (Project). Preparation of this Focused Tiered Final EIR was preceded by the Tiered Initial Study, which determined that an EIR would be prepared to consider the potential for the Project to result in new significant impacts related to transportation or substantially more severe impacts compared to those identified in the Campus Master Plan (CMP) EIR. Section 4.11 of the 2007 CMP EIR (SF State 2006 and 2007a) addresses the traffic, circulation, and parking effects of campus growth under the 2007 CMP (SF State 2007b).

This section presents the environmental setting, impacts of the Project on the environment, and proposed measures to mitigate any identified significant impacts. Information is incorporated by reference from the 2007 CMP EIR, from which this EIR is tiered, as described in Chapter 2. Additionally, a Transportation Memorandum was prepared for the Project by Fehr & Peers and Dudek to document Project trip generation and the potential for impacts beyond those evaluated in the CMP EIR. This report is incorporated into this section of the EIR as relevant and contained in its entirety in Appendix E.

Public and agency comments related to transportation were received during the public scoping period in response to the Notice of Preparation, and are summarized below:

- Consider impacts related to 19th Avenue and prioritize direct connection to Daly City BART.
- Concerns related to existing parking demand and future parking demand with the removal of the Central Parking Garage.
- Current lack of bicycle safety in the Project vicinity.
- Provide the number of Class 1 bicycle parking spaces in the report.
- Speeding vehicles in the Project vicinity causing dangerous conditions for pedestrians.
- Provide an assessment of loading conditions such as turning radii and locations.
- An encroachment permit for traffic controls may be required from Caltrans if changes to state right-of-way are made and a construction transportation management plan may be required.
- Discuss how transportation impacts are to be assessed and whether transportation conditions today reflect what was assumed for 2016 in the CMP EIR.
- The San Francisco County Transportation Authority (SFCTA) and City and County of San Francisco (City) Planning Department currently base its future transportation projections on a 2040 horizon.
• Evaluate all four screenlines for impacts related to transit.

• Any modification of the public right-of-way that deviates from the City’s Public Works Standard Plans and Specifications may require a Major Encroachment Permit (MEP). Street vacation requests are subject to the Planning Department’s review and approval. (See Chapter 3 for discussion on the City’s review and approval process for the vacation of Tapia Drive).

• Include a review of possible pedestrian impacts in light of potential conflicts with driveways, walkways and unsafe conditions.

• Describe the Vision Zero policy framework and note the 19th Avenue is a Vision Zero Corridor. Prioritize improving safety for users of this corridor.

• Access ramps are missing at locations around the Project site.

• Consider how bicycle routes connect to the Project and address any impacts related to bicycles access or conflicts with vehicle access.

• Ensure the Project is consistent with the San Francisco Better Streets Plan.

• Include details relating to SF State’s transportation demand management program and public realm improvements that would occur as part of the Project.

To the extent that issues identified in public comments involve potentially significant effects on the environment according to CEQA, and/or were raised by responsible and trustee agencies, they are identified and addressed in this EIR. For a complete list of public comments received during the public scoping period, refer to Appendix B.

4.5.1 Environmental Setting

Study Area

The study area for the evaluation of vehicular traffic impacts in the CMP EIR includes the southwestern portion of the City and County of San Francisco (City) bounded by Sloat Boulevard to the north, Junipero Serra to the east, John Daly Boulevard to the south, and Lake Merced Boulevard to the west. Impacts on pedestrian and bicycle facilities were evaluated for a smaller area around the campus, as described below that included only those facilities that experience high use by campus affiliates.

The proposed Project is on the existing 144-acre campus of San Francisco State University (SF State), located in the southwestern corner of the City (see Figure 3-1, Regional Map, in Chapter 3). There are “gateways” to the campus from 19th Avenue and Lake Merced Boulevard. Circulation within the campus is primarily bicycle and pedestrian oriented with some east-west roadways that provide access to parking, housing and athletics facilities. The 2007 CMP EIR (SF
Transportation

State 2007a) provides detailed descriptions of the transportation conditions in and around the campus. The information provided below summarizes the setting information from the CMP EIR, where relevant, and provides additional detail related to Project-specific conditions and/or describes new and changed transportation related conditions since 2007.

The approximately 3.6-acre Project site is located in the south campus, with one parcel (Block 6) on the south side of Holloway Avenue between Cardenas and Varela Avenues, and one parcel (Block 1), referred to as the Tapia Triangle, bounded by Tapia Drive, Holloway Avenue, and Font Boulevard (see Figure 3-3, Project Setting, in Chapter 3). The analysis related to pedestrian and bicycle access and safety addresses the Project site and immediate vicinity.

Roadway Network

The SF State campus is served by two primary roadways: 19th Street Avenue (California State Route 1) and Lake Merced Boulevard. The Project site is located to the west of the California State Route 1 (CA SR-1)/19th Avenue at its intersection with Holloway Avenue. The student housing/mixed-use building site is located to the immediate west of this intersection and the Creative Arts building and concert hall site is located at the intersection of Holloway Avenue and Font Boulevard, approximately 0.3 mile from 19th Avenue. Key off-campus streets that are used by traffic associated with the campus are shown in Figure 4.5-1 and are briefly described below.

State Route 1: In the Project area, SR 1 follows 19th Avenue from Lincoln Way to Junipero Serra Boulevard. North of this segment, SR 1 follows Crossover Drive and Park Presidio Boulevard to its junction with US 101 just south of the Golden Gate Bridge. South of the segment, SR 1 follows Junipero Serra Boulevard to I-280.

19th Avenue is a north-south arterial road with three travel lanes in each direction and on-street parking and sidewalks on both sides. Muni light rail lines travel through the center of 19th Avenue in both directions in a dedicated right-of-way. 19th Avenue provides the primary north-south connection between the west side of San Francisco and Interstate (I) 280. I-280 is located approximately 1 mile away and provides the primary regional connection to the Project site. 19th Avenue is a Vision Zero Corridor, which is characterized as a high injury network for pedestrians and vehicles.

Junipero Serra Boulevard is a six-lane arterial street extending north-south from I-280 and Highway 1 to Sloat Boulevard.

Sloat Boulevard is a six-lane arterial street extending east-west from Junipero Serra Boulevard to Great Highway.
Lake Merced Boulevard is a four-lane secondary arterial extending north-south from Skyline Boulevard to John Daly Boulevard.

Holloway Avenue is a two-way east/west road that provides primary local access to the Project site. Holloway Avenue has one travel lane in each direction, a narrow concrete median, on-street parking, and sidewalks, and Class 2 bicycle facilities (i.e., painted bike lanes).

Font Boulevard is a two-way northwest-southeast road with one wide travel lane in each direction, angled parking on both sides, and a wide planted median and standard concrete sidewalks on both sides.

Tapia Drive is a one-way neighborhood street with one travel lane and on-street parking on both sides of the street adjacent to the Creative Arts building and concert hall site. Tapia Drive is northbound north of Holloway Avenue and westbound east of Font Boulevard. From Holloway Avenue, Tapia Drive can only be accessed from the westbound direction.

Varela Avenue and Cardenas Avenue are neighborhood streets with one travel lane in each direction as well as on-street parking and sidewalks on both sides.

Serrano Drive is also a neighborhood street with one-way operations (westbound) between Varela Avenue and Cardenas Avenue. Between Cardenas Avenue and Arellano Avenue, Serrano Drive is two-way with one travel lane in each direction, angled parking on both sides and sidewalks on both sides.

The intersection of 19th Avenue and Holloway Avenue is signalized and includes marked white standard crossings with push-buttons and signals with countdowns for pedestrians. The intersection of Holloway Avenue, Tapia Drive (northbound) and Font Boulevard has a traffic circle with marked yellow continental pedestrian crossings. There is another traffic circle at the intersection of Font Boulevard and Tapia Drive (westbound), with marked yellow continental crossings across the northeast and southeast legs of the intersection, across Tapia Drive and Font Boulevard, respectively; all other crossings are unmarked. The CMP EIR reports on existing intersection level of service on intersections in the study area (see Table 4.11-3 in Section 4.11 of the 2007 CMP EIR).

Transit

Transit is a major component of the transportation system at SF State. Transit services near the Project site are shown in Figure 4.5-1. Primary public transit access to the Project site is provided by San Francisco Municipal Railway (“Muni”) bus and light rail services. According to the 2016 Transportation Survey (Nelson/Nygaard 2016), more than 30% of students, staff and faculty arrive to campus by Muni and 45% use Muni for some part of their commute.
Four Muni bus routes run in proximity to the Project site: 28/28R 19th Avenue, 29 Sunset, 57 Parkmerced, and 91 Owl. Bus stops nearest to the Project site are located at 19th Avenue/Holloway Avenue (serving the 28/28R 19th Avenue, 29 Sunset and 91 Owl), Crespi Drive/Varela Avenue (serving the 29 Sunset), Font Boulevard/Tapia Drive (serving the 57 Parkmerced), and Font Boulevard/Arballo Drive (serving the 57 Parkmerced). The M Ocean View Muni light rail line also runs near the Project site, with a stop on the north side of the 19th Avenue/Holloway Avenue intersection, in the center of 19th Avenue’s right-of-way. Additionally, the Daly City and Balboa BART stations are approximately 1.5 miles and 2.0 miles, respectively, away from the Project site and serve the four BART lines running through San Francisco: Richmond–SFO/Millbrae, Pittsburg/Baypoint–SFO/Millbrae, Dublin/Pleasanton–Daly City, and Fremont–Daly City.

Other regional transit services that serve a very small number of campus affiliates include SamTrans, Golden Gate Transit, Caltrain, and AC Transit. Section 4.11 of the 2007 CMP EIR describes each of these services in detail. More recent changes in services are presented below.

In March 2014, the San Francisco Municipal Transportation Agency (MTA) Board of Directors approved many recommendations designed to make Muni service more reliable, quicker, and more frequent. These recommendations emerged from the Muni Forward Program, which was a review of the City’s public transit system. These recommendations include new routes and route extensions, service-related capital improvements, more service on busy routes, designation of rapid transit routes and travel time reduction proposals on those routes, and elimination or consolidation of certain routes or route segments with low ridership. The Muni Forward Implementation Strategy anticipates that many of the service improvements would be implemented between 2016 and 2017, pending resource availability. Muni Forward proposes the following changes for lines in the vicinity of the proposed Project:

- **28(R) 19th Avenue (Rapid)** – The 28 19th Avenue would increase frequency during AM and PM peak from 10 to 9 minutes and during midday from 12 to 9 minutes. The 28R 19th Avenue Rapid service would increase operations, operating seven days a week between 6AM and 8PM with 9-minute headways during the AM and PM peak periods. The route for these two services would be modified near Fort Mason, by eliminating a section on Laguna, Beach, Buchanan and Bay streets. In addition, new transit and pedestrian bulbs are planned for the intersection of 19th Avenue/Holloway Avenue, near the Project site.

- **29 Sunset** – The 29 Sunset would increase in frequency during the AM peak from 9 to 8 minutes. The route has been modified (2014) so that buses make a left from Lincoln Way to Crossover Drive (instead of a series of three right turns). In addition, part of the route – on Geneva Avenue and Mission Street south of Ocean Avenue – would be eliminated; buses would travel directly on Ocean Avenue.
• **57 Parkmerced** – The 57 Parkmerced has been renumbered – from 17 to 57 Parkmerced – and would increase in frequency, from 30 to 20 minutes. The route would also be modified. The modified route travels on 20th Avenue, Buckingham Way, Winston Drive and Font Boulevard but no longer travels on Winston Drive, 19th Avenue, Crespi Drive, Gonzalez Drive, Carendas Avenue and Cambon Drive. The portion of the route that traveled on Arballo Drive, Garces Drive and Gonzalez Drive would also be eliminated.

In addition, the MTA is planning to combine the 28R Line with the Geneva Harney bus rapid transit (BRT) to provide a one-seat ride between the 19th Avenue corridor/SF State and Balboa Park as well as other major growth areas in southeast San Francisco. The new combined route would include exclusive lane treatments for BRT and would terminate in Candlestick/Hunters Point Shipyard. Implementation is planned for as early as 2023.

The MTA is also studying options to improve the M Ocean View Muni light rail line (M-line). The options under consideration were prompted by the Parkmerced development project, approved by the San Francisco Board of Supervisors in May 2011. The City and County of San Francisco and the owners of Parkmerced entered into a Development Agreement that governs each parties’ roles and responsibilities over a 20 to 25 year buildout of the site. One component of the Development Agreement relates to options for changes to the M-line.

The default improvement plan for the M-line is to realign it to Parkmerced. In this alignment option, the M-line would leave the 19th Avenue median at Holloway, cross 19th Avenue's southbound lanes, run through the Parkmerced development on a dedicated transitway and return to the existing M-line alignment at 19th Avenue and Junipero Serra. This option would also include re-locating the existing M-line station at Holloway from the 19th Avenue median to west of 19th Avenue between Holloway and Crespi, as well as introducing two new stations within the Parkmerced site.

At the time the Development Agreement was executed, there was interest in a few long-term alternatives for the M-line that had not yet undergone any feasibility study or planning. Such ideas included grade separating the M-line at 19th Avenue, either above or below the street, as well as extending the M-line to Daly City BART. Since 2011, SFCTA and SFMTA have carried out the 19th Avenue Transit Study and the Pre-Environmental Study to define and evaluate these alternatives. In addition to the at-grade crossing alignment, two grade-separation options-
the Longer Subway and Bridge, and the Full Subway have also been defined as alternatives that could be advanced to an environmental review stage.¹

None of these options has yet received the required project approvals and permits. If none of these alternatives receives approval by July 2018, the Development Agreement provides for extension of the deadline or defining an alternative investment that replicates the public benefits.

MTA is also studying options to improve the M Ocean View Muni light rail line (M-line) through the Muni Subway Expansion Project. In 2011, as part of Parkmerced’s Development Agreement, an alternative, which would extend the existing M-line into Parkmerced and add an M-line crossing at 19th Avenue at Holloway Avenue, was developed and approved. In 2014, as part of the Pre-Environmental Study, another alternative was developed, which proposed building a full subway under 19th Avenue between West Portal and Parkmerced and introduces a new transfer at SF State for the M and J lines. The 19th Avenue Transit Study (SFCTA 2014), developed for the Muni Subway Expansion Project considers several alternatives for building a subway: Baseline, Longer Subway and Bridge, and Shorter Subway and Tunnel. The alternatives studied for the M-line included simplifying the crossing at 19th Avenue and Winston Avenue or 19th Avenue and Holloway Avenue, with a shorter distance across the street and fewer light-rail tracks to cross. In addition, the Longer Subway and Bridge alternative would add a new protected bike connection over Junipero Serra in the southern part of the corridor as a part of the light-rail bridge, a connection seen as particularly important for improving the bike connection between SF State and Daly City BART.

While the 19th Avenue Transit Study (SFCTA 2014) does include initial analysis of options for improving transit connections to the Daly City BART station, the study’s main focus was on assessing the feasibility and benefits of grade separating the M-Ocean View crossings of 19th Avenue. All alternatives considered in the study for the M-line include a trail track, which would enable a future extension of the light rail to Daly City BART. However, because of the time-sensitive need to advance the grade-separation project, as it relates to the Parkmerced Development Agreement timeline provisions, and because of the significant and independent benefit the grade separation project would provide, the next phase of project development will focus exclusively on advancing the grade-separation project. The next steps for the Daly City transit access upgrades, will be a future phase of work and are not included as part of the Muni Subway Expansion Project. The potential improvements to the M-line have not undergone environmental review yet.

Bicycle and Pedestrian

According to the 2016 Transportation Survey (Nelson/Nygaard 2016) 17.5% of people arrive to campus walking and only 3.4% of people arrive to campus on bicycle. The CMP EIR (SF State 2007a) discusses campus wide facilities and deficiencies. Deficiencies near the Project site include a gap in bicycle facilities between 19th Avenue and Junipero Serra and a lack of bicycle parking near classrooms. Additionally, bike riding is not currently permitted in the campus core.

Pedestrian facilities within the vicinity of the Project include sidewalks, crosswalks, directional or diagonal curb ramps, pedestrian signals, and streetscape and landscape features (e.g., trees, planters, street lighting). The intersection of 19th Avenue and Holloway Avenue is signalized and includes marked white standard crossings with push-buttons and signals with countdowns for pedestrians. The pedestrian crossings across Holloway Avenue at Varela Avenue, Cardenas Avenue and Arellano Avenue are marked, standard crosswalks. However, the south leg of the crossing at Holloway Avenue/Cardenas Avenue, across Cardenas Avenue, is not marked. The marked crosswalks at the traffic circles on Font Boulevard—at Holloway Avenue/Tapia Drive and at Arballo Drive/Tapia Drive—are high-visibility crosswalks, with yellow continental pattern striping. However, only about half of the crossings at these two traffic circles are marked. Crossings are generally not marked on neighborhood streets such as Varela Avenue, Cardenas Avenue, Arellano Avenue and Serrano Drive.

There are Class 2 bicycle facilities (i.e., painted bicycle lanes) in both directions on Holloway Avenue adjacent to the Project site, between Font Boulevard and Junipero Serra Boulevard. Font Boulevard between Holloway Avenue and Lake Merced Boulevard is designated as a Class 3 bicycle facility that does not have painted “sharrows.”

There are a number of bicycle parking facilities on the SF State campus. Near the Project site, there is Class 2 bicycle parking (i.e., outdoor bicycle racks) adjacent to the existing Creative Arts Building on Tapia Drive (where the road curves) and near the intersection of Font Boulevard and the access road to the Village parking lot, which can accommodate 80 and 40 bicycles, respectively.

Existing pedestrian conditions were evaluated during field visits to the Project site during the evening peak period (4 p.m. to 6 p.m.) on Tuesday, May 24, 2016. Pedestrian activity was observed to be moderate along Holloway Avenue and Font Boulevard. Fewer pedestrians were observed on Tapia Drive and the residential streets south of Holloway Avenue. Pedestrian activity was observed to be higher at the 19th Avenue/Holloway Avenue intersection; pedestrians were observed accessing and egressing Muni bus stops on 19th Avenue as well as the M Ocean View light rail station. Few cyclists were observed traveling along Font Boulevard and Holloway Avenue during the evening peak period. On Holloway Avenue, cyclists were observed using the bicycle lanes. One cyclist was observed using the sidewalk on 19th Avenue at Holloway Avenue.
Transportation Demand Management (TDM)

The SF State TDM plan (Nelson/Nygaard 2009) includes two key elements: a TDM implementation plan and a monitoring plan. The implementation aspect of the plan identifies a number of programs and policies to improve access to alternative transportation and reduce single occupancy vehicle trips. The following elements of the TDM plan have been implemented:

- **Shuttle Service:** SF State provides a free shuttle service and has continually increased its frequency and vehicle capacity. The campus loop shuttle runs between Daly City BART and campus, stopping at Creative Arts, the dorms on Font Boulevard, Winston Drive, and University Park North. The campus loop shuttle leaves Daly City BART at 7:20 a.m., 8:20 a.m., 9:20 a.m., 4:40 p.m., and 5:20 p.m., and circles the campus as described on the SF State shuttle service website.

 In spring 2015, following a competitive RFP process, SF State contracted with transMetro for turnkey shuttle services, including larger-capacity, 2-door, low-floor, 40-seat shuttles. A mobile app is available for download that tracks the express shuttles.

- **Transit:** SF State sells Clipper Cards at the information desk of the Student Center as well as provides information services for transit connectivity and access such as real-time arrival updates for Muni on screens posted at a number of locations around campus including the Student Center, the Cesar Chavez Administration Building, the Library and Student Services.

 This past spring, SF State students passed a referendum implementing a mandatory student fee, which will give each student unlimited rides on Muni (excluding cable cars), and a 25% discount on BART fares on rides to and from the Daly City Station.

 Additionally, SF State has funded a number of transit improvements including maintenance of the 19th/Holloway Avenue M-line platform, improvements at the Daly City BART station, and contributions towards the M-line realignment. 19th Avenue Transit Study (SFCTA 2014). Funding contributions outlined in the 2007 Memorandum of Understanding (MOU) (SF State 2007c) between SF State and the City are triggered by milestones for improvements to the M-line, which have yet to occur. Funding will be provided in compliance with the criteria provided in the MOU.

- **Bicycle:** There are multiple bicycle facilities around campus including separated paths, bicycle lanes and designated bicycle routes. SF State also provides several amenities and services for bicyclists including attended, secure bike parking, community events and classes as well information resources.

2 For more information on the TDM measures provided by SF State, see https://parking.sfsu.edu/.
• **Carpooling and Car Share:** A ridematch program has been implemented through 511.org and zipcars are available on campus.

• **Parking:** Fees have been increased and the Go! State marketing program has shifted the emphasis of transportation information away from parking and vehicle access towards other modes of transportation.

• **Employee Programs:** A pre-tax benefits program allows employees to use pretax dollars to pay for transit, vanpool or parking expenses. Additionally, SF State participates in the Emergency Ride Home (EHR) program, which provides a free ride home in cases of emergencies for employees that commute to work by public transportation, biking, walking, or ridesharing.

• **Marketing:** After adopting the TDM Plan, SF State rebranded Parking and Transportation Services messaging to include a slogan (Go! State) and consistent positive messaging for the use of non drive-alone modes of travel. The website was updated to include this new branding and messaging and many new resources, as described above, have been added around campus to make using non drive-alone modes of travel easier.

The TDM monitoring plan includes an online transportation survey and cordon count at least every three years. SF State began monitoring in April 2008, which is considered the baseline survey under the CMP Mitigation TRA-1, with subsequent surveys and counts taking place in April 2011, April 2014, and April 2016. Survey data are used to track a number of key factors such as mode split, peak hour vehicle trips, peak hour Muni ridership, and greenhouse gas emissions. Since 2008, the drive-alone rate for commute trips to SF State has decreased, with 26% of campus affiliates driving alone to campus in 2008 compared to 20% in 2016. Transit usage has increased since 2008, with 45% of campus affiliates using Muni and 27% using BART for a portion of their trip to campus.

4.5.2 Impacts and Mitigation Measures

2007 CMP EIR Standards of Significance

The following standards of significance are based on Appendix G of the CEQA Guidelines and standards used by the City to evaluate transportation related impacts at the time the 2007 CMP EIR was prepared. An impact related to transportation/traffic would be considered significant if the proposed Project would:

1. Cause an increase in the traffic that is substantial in relation to the existing traffic load and capacity of the street system (as indicated by level of service (LOS) standards for congestion at intersections), or exceed, either individually or cumulatively, a level of
service standard established by the county congestion management agency for designated roads or highways.

2. For purposes of this EIR, the following specific thresholds have been used to evaluate project vehicle impacts on the street system.

 a. **Signalized Intersections.** The project’s traffic impact at a signalized intersection would be considered significant if:

 i. Project-related traffic causes the level of service to deteriorate from LOS D or better to LOS E or F, or from LOS E to LOS F, or

 ii. If a signalized intersection operates at LOS E or F under without project conditions, (1) project related traffic contributes 5% or more of the total traffic at the intersection, and (2) the project related traffic contributes 5% or more of the cumulative growth in traffic volumes at the affected intersection.

 b. **Unsignalized Intersections.** The project’s traffic impact at an unsignalized intersection would be considered significant if:

 i. Project-related traffic causes the level of service at the worst approach of an unsignalized intersection to deteriorate from LOS D or better to LOS E or LOS F and Caltrans signal warrants are met,

 ii. Where the worst approach at the unsignalized intersection without the addition of project traffic is already at LOS E or F, project traffic causes Caltrans signal warrants to be met.

3. Cause a substantial increase in transit demand that could not be accommodated by adjacent transit capacity, resulting in unacceptable levels of transit service; or cause a substantial increase in operating delay or costs such that significant adverse impacts in transit service levels could result.

4. For purposes of this EIR, the proposed Project would have a significant effect on the transit provider if project-related transit trips would cause the capacity utilization standards to be exceeded during the weekday PM peak hour.

5. Result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility to the site and adjoining areas.

6. Substantially increase hazards due to a design feature or incompatible uses or create potentially hazardous conditions for bicyclists or otherwise substantially interfere with bicycle accessibility to the site and adjoining areas.

7. Conflict with applicable adopted policies, plans, or programs supporting alternative transportation.
Standards of Significance Changes Since 2007 CMP EIR

Parking

The 2007 CMP EIR standards of significance also included a standard to address the adequacy of parking. However, since the 2007 CMP EIR was certified, parking has been removed from the CEQA Guidelines and is no longer considered in Appendix G of the CEQA Guidelines. Therefore, parking is not considered in the standards of significance for the proposed Project and CMP Impact TRA-5 and an associated Project impact is not considered further in this section.

Additionally, the absence of available parking spaces, in conjunction with available alternatives to vehicular travel (e.g., transit, bicycling or walking) and a dense pattern of urban development, induces many drivers to seek out other modes of travel or change their overall travel habits. Any such resulting shifts to transit service in particular would be in keeping with the City’s Transit First Policy (CCSF 2007). The City's Transit First Policy provides that parking policies for areas well served by public transit shall be designed to encourage travel by public transportation and alternative transportation.

The Project site is well served by numerous Muni and transit lines. There is also substantial existing parking available on campus and in on-street parking surrounding the campus. The addition of student housing and neighborhood retail services reduces the need for student automobile use, which reduces parking demand and supports SF State’s goal to minimize drive-alone auto trips to reduce traffic congestion and GHG emissions. The Creative Arts replacement building would not result in an increase in student enrollment. At most, four additional staff members would be hired to support the operations of the new building. Therefore, there would not be a substantial increase in parking demand due to the Creative Arts replacement building.

Most weekday events at the concert hall would not begin until 7:30 p.m. or 8:00 p.m. During this time, parking demand on campus is lower as evidenced by a reduced number of vehicles entering the cordon study area and an increased number of vehicles leaving (Nelson Nygaard 2016). Event attendees would be able to use parking spaces that are unoccupied during the evening, including new parking in the student housing/mixed-use building. Overall, the proposed Project would not result in secondary physical effects on the environment due to the removal of parking on the Project site.

Vehicle Miles Traveled

In September 2013, Governor Brown signed Senate Bill 743, which made significant changes to how transportation impacts are to be assessed under CEQA. SB 743 directs the Governor’s Office of Planning and Research to develop a new metric and approach that replaces level of
service (LOS) analysis and suggests vehicle miles travelled as a metric. SB 743 also creates a new exemption for certain projects that are consistent with the regional Sustainable Communities Strategy and, in some circumstances, eliminates the need to evaluate aesthetic and parking impacts of a project.

The Governor’s Office of Planning and Research has released Draft CEQA Guidelines; however, at the time this analysis was completed the Guidelines have not been finalized or adopted. It is anticipated that the revisions to the CEQA Guidelines will be finalized in early 2017. According to the most recent Draft CEQA Guidelines released by the Governor’s Office of Planning and Research, lead agencies would have a grace period of two years to update and adopt new thresholds once the new Guidelines have been adopted. Although the City has updated its transportation standards of significance to reflect SB 743 requirements, the California State University (CSU) system has not. Because there are no adopted thresholds for CSUs and the CEQA Guidelines have not yet been finalized, vehicle miles travelled is not analyzed as a standard of significance in this EIR. Additionally, for the purposes of tiering, the standards of significance for this EIR are consistent with the 2007 CMP EIR (SF State 2007a), as provided above.

Analytical Method

To determine whether the Project would result in a substantial increase in traffic or transit demand in comparison to the 2007 CMP, a travel demand analysis was completed by Fehr & Peers and Dudek (Fehr & Peers and Dudek 2016). This evaluation is consistent with the California State University’s Transportation Impact Study Manual (November 2012) (herein "CSU TIS Manual"), with input from the City’s Transportation Impact Analysis Guidelines (October 2002) (herein “SF Guidelines”).

The 2007 CMP EIR (SF State 2007a) estimated that the projected campus expansion by 2020 would result in an additional 466 vehicle trips and 387 public transit or shuttle trips during the PM peak hour by 2020. The 2007 CMP EIR evaluated transportation impacts based on this “CMP Trip Envelope” for vehicle and transit trips. The Project was evaluated to determine whether the trips would fit within this envelope, accounting for an updated 2016 baseline. Additional detail about the methodology used in the analysis is provided below.

The CSU TIS Manual states that a full TIS, including LOS analysis, would be required if an assessment of a project’s trip generation indicated that potential new significant impacts to traffic conditions could result based on the CEQA Guidelines Appendix G Checklist. As presented below, the Project’s trip generation would not exceed the CMP Trip Envelope, which indicates no potential new significant impacts to traffic conditions. Additionally, the number of vehicle trips generated by the campus in the PM peak hour has declined due to an effective TDM program and changing demographics and population. Therefore, even with event
day conditions for the Project, the number of vehicle trips generated would not result in an increase in PM peak hour vehicle trips over the CMP EIR baseline (2007) conditions. Thus, a LOS analysis was not conducted for the Project.

Vehicle Travel Demand Analysis

This section presents the Project’s travel demand and the changes in SF State’s campus travel demand between 2007 and 2016.

Student Housing/Mixed-Use Building. The Project’s new on-campus student housing/mixed use building would provide a net increase of 355 beds. These units are expected to be occupied by existing SF State students that are currently living off-campus. PM peak hour trip rates and mode splits for the new student housing were estimated for students living both on- and off-campus based on the results of the 2016 Travel Survey (Nelson/Nygaard 2016). This following analysis is inclusive of both internal and external trips. Table 4.5-1 presents the net change in trips by mode to/from and within campus during the PM peak hour that would result from the addition of the 355 on-campus beds. External vehicle and transit trips would decrease as students currently living off-campus move on-campus while internal walk and bike trips would increase. Overall, the total number of person trips generated by on-campus students during the PM peak hour is slightly less than for off-campus students. In net, the Project’s new on-campus student housing/mixed use building would reduce trips external to the campus by 18 vehicle trips and 39 public transit trips.

Table 4.5-1

<table>
<thead>
<tr>
<th>PM Peak-Hour Student Housing Trip Generation</th>
<th>Existing 355 Off-Campus Students</th>
<th>Project 355 On-Campus Students</th>
<th>Net Change¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trips</td>
<td>Percent</td>
<td>Trips</td>
</tr>
<tr>
<td>Total Person Trips²</td>
<td>96</td>
<td>100%</td>
<td>85</td>
</tr>
<tr>
<td>Person Trip Rate³</td>
<td>0.27</td>
<td>-</td>
<td>0.24</td>
</tr>
<tr>
<td>Drive Alone, Motorcycle</td>
<td>17</td>
<td>17.9%</td>
<td>0</td>
</tr>
<tr>
<td>Carpool⁴</td>
<td>1</td>
<td>1.4%</td>
<td>0</td>
</tr>
<tr>
<td>Taxi, Transportation Network Company (TNC), Pick up/Drop off⁵</td>
<td>4</td>
<td>3.7%</td>
<td>3</td>
</tr>
<tr>
<td>Public Transit</td>
<td>54</td>
<td>55.9%</td>
<td>15</td>
</tr>
<tr>
<td>Walk/Bike</td>
<td>20</td>
<td>21.1%</td>
<td>60</td>
</tr>
<tr>
<td>Other⁶</td>
<td>0</td>
<td>0.0%</td>
<td>6</td>
</tr>
<tr>
<td>Vehicle Trips⁴</td>
<td>21</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Public Transit Trips⁷</td>
<td>54</td>
<td>-</td>
<td>15</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers and Dudek 2016.

¹ Net change in trip generation due to the Project, i.e. trips generated by 355 students living on-campus minus trips generated by 355 students living off-campus.

² Person trips include all trips made by each person.
3. The 2016 Travel Survey asked about trip making behavior during the two hour PM peak period for a typical day on campus. Therefore, the PM peak hour trip rates shown here include the following assumptions: the PM peak hour generates 60% of the trips from the two-hour PM peak period (based on the peak hour factors in SF-CHAMP, the City of San Francisco’s travel demand model), and 80% of students will be present on-campus on any one day (based on the responses to the SF State 2016 Travel Survey and survey data from other university campuses in San Francisco).

4. Vehicle trips include drive alone, motorcycle, carpool, and taxi/TNC/pick-up and drop-off. Vehicle occupancy for carpool trips is 2.2 people per vehicle, based on cordon counts performed on April 6, 2016. Because so few students are currently using carpool, this number was rounded down for a conservative assessment.

5. Transportation Network Companies, or TNCs, connect paying passengers with drivers who transport people in their own private vehicles. Examples include Lyft, Uber, and Cabify.

6. Mode for “Other” trips were not specified by 2016 Travel Survey respondents. These are assumed to be people using skateboards or other active modes typically used on university campuses. i.e. not vehicle or transit trips.

7. Public transit trips include the SF State campus shuttle.

The mixed-use component of the Project includes campus-serving retail, student support services, bike storage, study rooms, a copy center, and retail dining. These land uses supplement or replace existing on-campus services and primarily cater to SF State affiliates, although the retail options will also be open to nearby residents of the adjacent Parkmerced neighborhood, similar to existing on-campus retail services. As a result of these new on-campus services, SF State affiliates may choose to stay on campus for activities they would have otherwise done off campus. This effect may decrease the number of trips from campus. In contrast, nearby residents may travel to these new on-campus services whereas they would not previously have traveled to campus. These effects have not been quantified as part of this analysis, although patrons of the businesses are expected to be within walking or biking distance. Thus, the campus-serving retail and student support services are assumed not to generate new vehicle or transit trips to campus.

Creative Art Replacement Building. The Project would also include the construction of the Creative Arts replacement building. This building would provide a new home for the existing BECA program. There are not currently plans to use the old Creative Arts building to add new programs, students, staff, or faculty to the existing services provided at SF State. As indicated in Chapter 3 of this EIR, SF State is at approaching its enrollment ceiling of 25,000 FTE students and the total number of students (headcount) has been flat since the 2007 CMP EIR was prepared. Therefore, this building would not increase the enrollment or full-time employees above current levels nor result in an increase in the number of trips to/from campus.

Concert Hall. The Project would also include an 800-seat concert hall that would provide hands-on learning for BECA students and would serve as a performance venue and state of the art recording studio. On a typical day, the concert hall would function as a teaching and learning environment for existing BECA students. The addition of the concert hall would not result in additional students or faculty and staff on non-event days. Therefore, when there are no events, the concert hall would not result in additional vehicle or transit trips.

Events at the concert hall would vary in size and purpose. Some events would cater only to students while others would have a regional draw. To calculate the trip generation for the
concert hall on an event day, a large event scenario was assumed based on input from SF State. The large event scenario assumes full capacity, or 800 attendees, with 85% of attendees coming from off-campus and 15% of attendees coming from on-campus. Four additional employees would be needed to staff the concert hall on event days. Most weekday events would not begin until 7:30 p.m. or 8:00 p.m., in which case attendees would not be traveling to campus during the PM peak hour. However, for the purpose of presenting a “worst-case large event scenario” analysis, the event day trip generation assumes that all attendees and staff would travel during the PM peak hour.

Table 4.5-2 presents the resulting number of person trips by mode on event days related to the new concert hall. Assuming the worst-case large event scenario—the event is at full capacity and all attendees travel to the concert hall during the PM peak—the concert hall would result in 251 new vehicle trips and 109 new transit trips during the PM peak hour of an event day.

Table 4.5-2

Event-Day PM Peak-Hour Trip Generation due to New Concert Hall Only

<table>
<thead>
<tr>
<th></th>
<th>Person Trips</th>
<th>Mode Split</th>
<th>Vehicle and Transit Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff (Drive Alone Trips)</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Event Attendees</td>
<td>800</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Person Trips</td>
<td>804</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Off-Campus Person Trips1</td>
<td>684</td>
<td>85% of attendees and 100% of staff</td>
<td>-</td>
</tr>
<tr>
<td>Off-Campus Mode Split2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle3</td>
<td>523</td>
<td>76.3%</td>
<td>251 249</td>
</tr>
<tr>
<td>Transit</td>
<td>109</td>
<td>16.1%</td>
<td>109</td>
</tr>
<tr>
<td>Walk</td>
<td>37</td>
<td>5.4%</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>15</td>
<td>2.2%</td>
<td>-</td>
</tr>
</tbody>
</table>

Sources: Fehr & Peers and Dudek 2016

1. Based on information provided by SF State regarding existing on-campus events, 85% of event attendees are assumed to come from off-campus. It is assumed that on-campus attendees would walk, bicycle or use a form of transportation other than driving or transit.
2. Modes splits are based on Table E-17 from the City and County of San Francisco Transportation Impact Analysis Guidelines (October 2002) (herein referred to as “SF Guidelines”).
3. Vehicle occupancy is 2.1 for Visitors to “Other” land uses, based on the SF Guidelines. The number of vehicle trips also includes four additional staff, all of which are assumed to be living off campus and driving alone.

Total Net New Project Trips. On a typical, non-event day, which would occur over 75% of the time the Project would result in a reduction of vehicle trips due to existing students moving from off-campus locations to on-campus housing. Table 4.5-3 demonstrates the reduction that would occur with the Project on non-event days.

3 Provided by SF State staff. These percentages are based on attendance data from existing events at other comparable theaters on campus.
Table 4.5-3
Total PM Net New Peak-Hour Project Trip Generation – Typical Non-Event Day

<table>
<thead>
<tr>
<th></th>
<th>Student Housing/Mixed-Use Net New Trips¹</th>
<th>Creative Arts Building and Concert Hall Net New Trips</th>
<th>Net New Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person Trips</td>
<td>-11</td>
<td>0</td>
<td>-11</td>
</tr>
<tr>
<td>Vehicle Trips²</td>
<td>-18</td>
<td>0</td>
<td>-18</td>
</tr>
<tr>
<td>Public Transit Trips</td>
<td>-39</td>
<td>0</td>
<td>-39</td>
</tr>
<tr>
<td>Walk/Bike³</td>
<td>40</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Other³</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

1. As presented in Table 4.5-1.
2. Vehicle occupancy is 2.2 for carpool trips to/from the new student housing and 2.1 for visitor trips to concert hall, as presented in Table 4.5-1 and Table 4.5-2.
3. Mode split was obtained from two different sources and each categorizes mode split differently. The housing land use mode split was used from the 2016 Travel Survey. The concert hall mode split was obtained from the SF Guidelines using “visitor trips” because campus specific mode split for events was not collected in the 2016 Travel Survey. Due to the differences in how mode split data was collected, “Walk/Bike” trips includes walking and bicycle trips for the student housing/mixed-use land use, whereas it only includes walking trips for the Creative Arts building land use. Biking trips are characterized under “other” for the concert hall and cannot be extracted based on available data.

On event days, the Project would generate a total of 233 231 net new vehicle trips and 70 net new public transit trips during the PM peak hour assuming the worst-case large event scenario described above. The types of events that would result in this worst-case large event scenario would be expected to occur up to 80 times per year or about 7 times a month. The total number of net new event-day trips generated by the Project alone is shown in Table 4.5-4. However, since 2007, total campus-related vehicle trips have substantially declined below the CMP EIR base year. Therefore, campus-wide, the Project would not result in a net increase in PM peak hour vehicle trips, as further described below.

Table 4.5-4
Total PM Net New Peak-Hour Project Trip Generation – Event Day Only

<table>
<thead>
<tr>
<th></th>
<th>Student Housing/Mixed-Use Net New Trips¹</th>
<th>Creative Arts Building and Concert Hall Net New Trips²</th>
<th>Net New Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person Trips</td>
<td>-11</td>
<td>804</td>
<td>793</td>
</tr>
<tr>
<td>Vehicle Trips³</td>
<td>-18</td>
<td>254 249</td>
<td>233 231</td>
</tr>
<tr>
<td>Public Transit Trips</td>
<td>-39</td>
<td>109</td>
<td>70</td>
</tr>
<tr>
<td>Walk/Bike⁴</td>
<td>40</td>
<td>32 157</td>
<td>22 197</td>
</tr>
<tr>
<td>Other⁴</td>
<td>6</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>

1. As presented in Table 4.5-1.
2. As presented in Table 4.5-2.
3. Vehicle occupancy is 2.2 for carpool trips to/from the new student housing and 2.1 for visitor trips to concert hall, as presented in Tables 4.5-1 and 4.5-2.
Mode split was obtained from two different sources and each categorizes mode split differently. The housing land use mode split was used from the 2016 Travel Survey. The concert hall mode split was obtained from the SF Guidelines using “visitor trips” because campus specific mode split for events was not collected in the 2016 Travel Survey. Due to the differences in how mode split data was collected, “Walk/Bike” trips includes walking and bicycle trips for the student housing/mixed-use land use, whereas it only includes walking trips for the Creative Arts building land use. Biking trips are characterized under “other” for the concert hall and cannot be extracted based on available data.

2007 CMP EIR Trip Envelope. The 2007 CMP EIR (SF State 2007a) estimated that the projected campus expansion by 2020 would result in an additional 466 vehicle trips and 387 public transit trips during the PM peak hour by 2020. The 2007 CMP EIR evaluated transportation impacts based on this “CMP Trip Envelope” for vehicle and transit trips. However, since 2007, which is the CMP EIR base year for transportation, the total campus population has remained flat or even declined in some years. In addition, fewer students, staff, and faculty currently drive to campus compared to 2007 due to the successful implementation of SF State TDM measures. The combination of these two factors has reduced the number of campus-related vehicle trips since the completion of the 2007 CMP and CMP EIR. Table 4.5-5 shows the estimated PM peak-hour travel demand for the campus in 2007 and in 2016, and calculates the change in the number of trips generated by the campus between 2007 and 2016. During the PM peak hour, SF State generates 561 fewer vehicle trips and 224 additional public transit trips during the PM peak hour in 2016 compared to 2007.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trips</td>
<td>Percent</td>
<td>Trips</td>
</tr>
<tr>
<td>Headcount Students, Faculty, and Staff</td>
<td>33,612</td>
<td>100%</td>
<td>33,563</td>
</tr>
<tr>
<td>Total Person Trips</td>
<td>10,083</td>
<td>100%</td>
<td>10,068</td>
</tr>
<tr>
<td>Trip Rate<sup>2,4</sup></td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Drive Alone, Motorcycle</td>
<td>2,692</td>
<td>26.7%</td>
<td>2,084</td>
</tr>
<tr>
<td>Carpool</td>
<td>494</td>
<td>4.9%</td>
<td>181</td>
</tr>
<tr>
<td>Taxi, Transportation Network Company, Pick up/Drop off</td>
<td>242</td>
<td>2.4%</td>
<td>413</td>
</tr>
<tr>
<td>Public Transit</td>
<td>4,941</td>
<td>49.0%</td>
<td>5,165</td>
</tr>
</tbody>
</table>
4.5 – TRANSPORTATION

Table 4.5-5
SF State Campus PM Peak-Hour Travel Demand 2007–2016

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk/Bike</td>
<td>1,593</td>
<td>2,104</td>
<td>511</td>
</tr>
<tr>
<td>Other</td>
<td>121</td>
<td>121</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle Trips</td>
<td>3,140</td>
<td>2,579</td>
<td>-561</td>
</tr>
<tr>
<td>Public Transit Trips</td>
<td>4,941</td>
<td>5,165</td>
<td>224</td>
</tr>
</tbody>
</table>

1. Population data from “SF State Facts” website: http://puboff.sfsu.edu/sfsufact/archive. See also Chapter 3, Project Description.
2. Mode splits are based on Travel Survey results analyzed by Nelson/Nygaard in 2008 and 2016.
3. The 2016 Travel Survey asked about trip making behavior during the two hour PM peak period for a typical day on campus. Therefore, the PM peak hour trip rates shown here include the following assumptions: the PM peak hour generates 60% of the trips from the two-hour PM peak period (based on the peak hour factors in SF-CHAMP, the City of San Francisco’s travel demand model), and 80% of students would be present on-campus on any one day (based on the responses to the SF State 2016 Travel Survey and survey data from other university campuses in San Francisco).
4. Trip rate is a weighted average for students, faculty, and staff. It is assumed to be the same for 2007 as for 2016, i.e. assumes the number of trips generated per person were the same in 2007 as they are in 2016.
5. Vehicle occupancy for carpool trips in 2007 is assumed to be 2.4, based on travel survey results presented in the Transportation Demand Management Plan, Fall 2009.
6. Vehicle occupancy for carpool trips in 2016 is assumed to be 2.2, based on cordon counts performed on April 6, 2016.

Table 4.5-6 presents the changes in travel demand from 2007 to 2016 and the Adjusted CMP Trip Envelope to reflect these changes. This Adjusted CMP Trip Envelope represents the number of trips that could be added to the campus between 2016 and 2020 without creating new impacts to the roadway and transit networks beyond those presented in the 2007 CMP EIR. The Adjusted CMP Trip Envelope is 1,027 vehicle trips and 163 public transit trips during the PM peak hour. In comparison, the Project alone generates a total of 233 231 vehicle trips and 70 public transit trips during the PM peak hour on event days. On a typical day, the Project would result in a decrease of 18 vehicle trips and a decrease of 39 transit trips.

Further, given that the number of PM peak hour vehicle trips campus wide has declined by 561 trips between 2007 (CMP EIR base year) and 2016, the net new PM peak hour vehicle trips associated with the event-day Project conditions, as shown in Table 4.5-4, would not result in an increase in PM peak hour vehicle trips over the CMP EIR baseline 2007 conditions.

Table 4.5-6
PM Peak-Hour CMP Trip Envelope Adjustments and Project Trip Generation

<table>
<thead>
<tr>
<th></th>
<th>2007 CMP EIR Trip Envelope</th>
<th>SF State Campus Travel Demand Change 2007–2016</th>
<th>Adjusted 2016 CMP Trip Envelope</th>
<th>Event-Day Project Trip Generation</th>
<th>Typical Day Project Trip Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Trips</td>
<td>466</td>
<td>-561</td>
<td>1,027</td>
<td>233 231</td>
<td>-18</td>
</tr>
<tr>
<td>Public Transit Trips</td>
<td>387</td>
<td>224</td>
<td>163</td>
<td>70</td>
<td>-39</td>
</tr>
</tbody>
</table>

Intersection Level of Service

The CMP EIR reported on existing and future 2020 intersection level of service on intersections in the study area and added the CMP Trip Envelope to determine the impact of campus growth on traffic congestion in the vicinity of campus under Project and cumulative conditions (see Section 4.11 of the 2007 CMP EIR). The PM peak-hour trips from the campus have declined substantially since 2007/2008 due to an effective TDM program and changing demographics and population. Therefore, even with the worst-case large event scenario for the Project, the number of vehicle trips generated would not result in an increase in PM peak hour vehicle trips over the CMP EIR baseline (2007) conditions. Thus, the CMP EIR Project and cumulative intersection level of service analysis was not updated for this EIR.

Transit Screenline Analysis

The CMP EIR evaluated the impact of campus growth on transit services using a screenline analysis. A downtown transit screenline analysis was also conducted for the Project as described in the SF Guidelines, as part of this EIR. A screenline is an imaginary line on a map, composed of one or more straight line segments. Various screenlines were created by the City that intercept groups of transit lines at or near their maximum load point. The SF Guidelines establishes that a project would have a significant effect on the transit provider if project-related transit trips would cause the capacity utilization standard to be exceeded during the peak hour at those screenlines. For the Muni transit screenlines, the capacity utilization standard is 85%.

The impact analysis reviews the potential transit impacts due to the Project and compares them to what was presented in the 2007 CMP EIR. In particular, the impact is compared to the results presented in the CMP EIR under 2020 conditions. A planning horizon beyond 2020 is not considered in the transit analysis, as the EIR is tiered to the CMP EIR, which has a horizon of 2020. Additionally, a planning horizon beyond 2020 is not considered given that SF State does not have an adopted CMP that covers growth and development beyond 2020 and therefore projecting growth on the campus beyond 2020 is considered to be speculative.

Bicycle and Pedestrian Analysis

The Project was also reviewed for potentially hazardous bicycle and pedestrian conditions and potential conflicts with adopted policies, plans or programs supporting alternative transportation.

CMP Mitigation Measures Included in the Project

The adopted mitigation measures for transportation included in the 2007 CMP EIR and applicable to the Project are presented below. These measures are already being implemented as part of the CMP, the adopted CMP EIR Mitigation Monitoring and Reporting Program, and the Project and therefore they are considered to be part of the Project, as described in
Chapter 3 of this EIR. Additional mitigation measures, if needed, are provided under Impacts and Mitigation Measures below to reduce or minimize any additional impacts of the Project.

CMP Mitigation TRA-1: The campus shall implement the following monitoring and mitigation program:

- As a first step, the campus shall conduct a new baseline cordon survey no less than 18 months following the certification of this EIR. Alternatively, the campus may use the 2006 cordon survey as a baseline.

- Next, at intervals of no more than every three years, and no later than the addition of each 1,000 students in enrollment, SF State will hire an outside transportation planning or data analysis firm to conduct a statistically significant cordon survey of campus commuters during the PM peak hours. The cordon survey will cover all major entrances to the campus and will examine the travel behavior of SF State affiliates. The survey will be conducted during typical days while classes are in session, excluding final examination, national holiday or orientation weeks.

- If cordon surveys show that the PM peak period auto trips to and from campus are greater than 5% above the baseline, the campus shall conduct the cordon surveys annually until such trips fall below 5% above the baseline for 2 years in a row. If and when this occurs, cordon surveys will continue in accordance with the second bullet above.

- If the cordon surveys show an increase in PM peak period auto trips sufficient to result in project impacts at the two affected intersections, the campus will increase the level of TDM programs until the impacts associated with project traffic increases are mitigated to a less-than-significant level.

- If the campus fails to reduce its traffic impacts to a less-than-significant level for more than two years in a row, it will contribute its “fair share” (as defined in the CMP EIR) of the cost of identified intersection improvements to the City and County of San Francisco, as appropriate, provided that the legislature appropriates funds as requested by CSU in the State budget process.
CMP Mitigation TRA-2A: The San Francisco Municipal Transportation Agency (MTA) and the San Francisco County Transportation Authority (SFCTA) can and should implement improvements to transit services along 19th Avenue via the implementation of MTA’s Transit Effectiveness Project and SFCTA’s 19th Avenue Project, which are in the planning stages. Improvements ultimately included in these programs could include, but would not be limited to, travel time improvements along the M-line and 28/28L lines (e.g., bus rapid transit, improved stop spacing, transit prioritization treatments, expanded Proof-of-Payment, in-lane bus stops), re-establishing a “short-run” of the M-line between the Embarcadero and the SF State stations, etc.

CMP Mitigation TRA-2B: In the event that transit capacity enhancements listed in the Campus Master Plan are not implemented in a timely manner by Muni and/or SFCTA, the campus will extend the Campus Shuttle service to West Portal Station on an interim basis, based on the following program:

- The University will collect data from Muni to establish the baseline average peak period, peak direction passenger loading between the campus and West Portal Station.
- The University will monitor SF State peak period transit use by conducting cordon counts as specified in Mitigation TRA-1.
- If Muni reports that M-line average peak period, peak direction passenger loading between the campus and West Portal Station exceeds 85% of combined seating and standing load capacity for two years in a row, and if the cordon surveys show that peak period transit trips on the M-line between the campus and West Portal Station are greater than 5% above the baseline, the University will extend campus shuttle service to West Portal Station during the peak period(s).
- This additional campus shuttle service will be operated with adequate capacity (i.e., it will not exceed a 85% combined seated/standing passenger capacity target).
- This additional campus shuttle service will be operated until MTA’s and SFCTA’s planned transit capacity
enhancements related to 19th Avenue are implemented, as described in Mitigation TRA-2A above.

CMP Mitigation TRA-2C: The campus shall monitor peak hour utilization of Campus Shuttle buses on an annual basis and if average peak period, peak direction passenger loading exceeds 85% of combined seated and standing load capacity for shuttle service between the campus and the Daly City BART station, the campus shall increase shuttle frequency or otherwise increase the capacity of the shuttle services during the peak period(s) until this standard is met.

Impacts and Mitigation Measures

Tiered Initial Study Results

As described in the Tiered IS (Appendix A), the 2007 CMP and the subsequent adopted TDM Program (Nelson/Nygaard 2009) indicates that it is the campus’s objective to continue to grow and develop, as proposed under the CMP, while minimizing the transportation impacts of the increase in enrolled students and employees. More specifically, the TDM plan outlines a program that would minimize the daily AM and PM peak-period vehicle trips to the campus. The 2007 CMP EIR indicated that the combined effect of the baseline TDM, parking, transit, and housing programs of the CMP would likely be to maintain campus-related vehicle traffic levels at their then-current (2006/2007) rates through 2020. The 2007 CMP EIR considered this no-net-increase in vehicle trips scenario in a traffic analysis that also provided a more conservative traffic scenario that estimated trip generation from proposed campus growth more traditionally. The more conservative analysis indicated that campus growth could potentially result in significant traffic-related impacts on vicinity roadways when considering existing and future 2020 conditions. To address these potential impacts, the campus is implementing CMP EIR Mitigation TRA-1 (see above), which required the campus to conduct a new baseline cordon survey, completed in 2008. Subsequent cordon surveys are required every 3 years and no later than the addition of each 1,000 students in head count enrollment. If vehicle trips increase over the base year, various measures, including increasing the frequency of cordon surveys and increasing TDM programs, are called for. The most recent cordon survey, conducted in 2016, revealed that daily and peak-hour campus-related vehicle trips have decreased since the 2008 survey base year, as described in Section 4.5-1, above (Nelson/Nygaard 2016).

The Tiered IS concluded that the EIR will estimate trip generation associated with the Project, and evaluate transportation hazards, emergency access, and conflicts with adopted transportation policies to determine whether the Project could result in new or increased
impacts compared to those identified in the 2007 CMP EIR. This analysis is provided below and is based on Appendix E.

Project and Cumulative Impacts

For each impact presented below, the CMP EIR impact is presented first in gray text for easy reference to the CMP EIR’s prior impact conclusions. The Project impact is presented second and emphasizes whether new or increased impacts would result with the Project.

CMP Impact TRA-1: Implementation of the Campus Master Plan could potentially contribute substantial traffic at two intersections in southwest San Francisco (*significant unavoidable impact*)

Project Impact TRA-1: The proposed Project would not increase vehicle trips above the adjusted CMP EIR Trip Envelope and therefore would not result in new or increased level of service impacts over those identified in the CMP EIR (*less-than-significant impact / no new or increased impact*)

Since the adoption of the 2007 CMP, the campus has achieved the no-net-increase in vehicle trips objective identified in the CMP and CMP Impact TRA-1. To date, a net reduction of PM Peak hour vehicle trips has been achieved since 2007, as described in Section 4.5.1 and shown in Table 4.5-5. SF State adopted a TDM Plan (Nelson/Nygaard 2009) and in accordance with CMP Mitigation TRA-1 above, has conducted an online transportation survey and cordon count at least every 3 years beginning in April 2008 with subsequent surveys taking place in April 2011, April 2014, and April 2016. Based on the 2016 cordon counts the number of peak-hour trips decreased by 3% since 2008 and the number of automobile trips per day decreased by 22%. The percentage of respondents driving alone has decreased from 26% in 2008 to 20% in 2016 (Nelson/Nygaard 2016).

The addition of housing and neighborhood retail services with the Project supports SF State’s goal to further minimize drive-alone vehicle trips to reduce traffic congestion and vehicle miles traveled. Consistent with the TDM plan (Nelson/Nygaard 2009), new residential and retail development should use strategies that minimize the need for vehicle parking, such as car sharing, bike facilities, and access to transit. The new student housing/mixed-use building at the southeast corner of Holloway Avenue and Varela Avenue would include secure, covered bicycle storage on the first floor of the building (discussed below). These spaces are part of a campus-wide planning effort to improve bicycle infrastructure and access to campus, addressing routes, safety, and centralized bike parking areas that include a mix of racks and secure facilities.
The Project is also directly accessible to 19th Avenue and the M-line as well as Routes 28/28R, 29 and 57, as shown in Figure 4.5-1. Other TDM measures implemented as part of the Project include car sharing and pedestrian amenities (discussed below). Additionally, the Project is by nature a TDM strategy to reduce vehicle trips, as it relocates students who would otherwise live off-campus into on-campus housing.

As part of the Project Tapia Drive would be vacated. During site observations, vehicle volumes on Tapia Drive were observed to be low because it does not provide through access to any destinations. Existing vehicles on Tapia Drive are typically looking for parking spaces or picking-up or dropping-off passengers. Therefore, the closure of Tapia Drive would cause that parking and pick-up/drop-off activity to shift to other locations on campus, but would not cause congestion on adjacent streets.

On typical, non-event days, the Project would contribute to further reducing vehicle trips on campus during the PM peak hour (see Table 4.5-3), as existing students living off campus relocate to the student housing/mixed use building. On event days, the Project alone would add 233 net new vehicle trips during the PM peak hour, which is less than the Adjusted CMP Trip Envelope of 1,027 vehicle trips (see Table 4.5-6). This increase in vehicle trips would occur during concert hall event days only (up to 80 per year or about 7 per month), and only on the rare occasion when there is an early evening, full-capacity event that attracts mostly off-campus attendees. Most evening events are expected to begin at 7:30 or 8:00 p.m., after the PM peak hour. Even under this worst-case scenario, the Project would remain within the Adjusted CMP Trip Envelope. On most days during the year, the Project would result in many fewer, if any, new vehicle trips to SF State’s campus.

Further, when considering the Project within the context of campus-wide trip generation, the Project would not generate new PM peak hour trips, as campus-wide PM peak-hour trips have declined substantially since the CMP EIR base year (see Table 4.5-6). Therefore, with Project implementation, campus-wide trip generation would remain below the CMP EIR base year and the impact would be less than significant. There are no new or increased impacts compared to the CMP EIR as a result of vehicle trips generated by the Project.

Project Mitigation TRA-1: No additional mitigation required.

CMP Impact TRA-2: Implementation of the Campus Master Plan would result in a substantial increase in transit (Potentially significant impact / Less than significant with mitigation).
Project Impact TRA-2: The Project would not increase transit trips above the adjusted CMP EIR Trip Envelope and therefore would not result in new or increased impacts over those identified in the CMP EIR (Less-than-significant impact / No new or increased impact).

The 2007 CMP EIR concluded that implementation of the CMP could result in a substantial increase in transit demand that could not be accommodated by transit capacity.

Mitigation measures included the following (SF State 2007a):

- Improvements to transit services on 19th Avenue, including the M-line.

- Extended campus shuttle service to West Portal station on an interim basis in the event that improvements to 19th Avenue transit services are not implemented in a timely manner. This extended service would be provided if certain criteria are met: if Muni reports that the M-line average PM peak period, peak direction passenger loading between the campus and West Portal station exceeds 85% for two or more years in a row and if the cordon surveys show that peak period transit trips on the M-line between the campus and West Portal station are greater than 5% above the baseline.

- Additionally, if the campus shuttle exceeds 85% load capacity for service between the campus and the Daly City BART station then additional shuttle service will be provided via higher frequency service and/or higher capacity vehicles.

SF State has funded a number of transit improvements including maintenance of the 19th/Holloway Avenue M-line platform, improvements at the Daly City BART station, and contributions towards the M-line realignment. 19th Avenue Transit Study (SFCTA 2014). Funding contributions outlined in the MOU are triggered by milestones for improvements to the M-line, which have yet to occur. Funding will be provided in compliance with the criteria provided in the MOU. Since 2008 campus generated ridership on the M-line has decreased as campus affiliates shift to other routes or other forms of transit. Additionally, a number of shuttle improvements have been implemented including increased shuttle frequency and vehicle capacity. (See subheading “Transportation Demand Management” in Section 4.5.1 for more information on the SF State TDM program.)

The Project would add 70 net new public transit trips during the PM peak hour on event days, which is less than the Adjusted CMP Trip Envelope of 163 public transit trips during the PM peak hour. As indicated in Tables 4.5-3 and 4.5-4, the Project would result in an increase in transit trips on event days only. On non-event days, the Project would actually result in a decrease of 39 transit trips due to existing students moving into on-campus housing from off-campus locations.
The Project’s contribution to transit screenlines was evaluated using the SF Guidelines methodology to determine whether the Project would cause an existing transit line to exceed its capacity. The SF Guidelines methodology requires analysis of outbound trips from Downtown. The proposed student housing/mixed building would generate a net decrease of 39 public transit trips in the PM peak hour. Based on the 2016 Travel Survey results, only 8% of these trips (i.e. three trips) represent trips towards the SF State campus (i.e. Muni’s outbound direction, away from downtown), which would affect the PM peak hour Muni screenline analysis. This small reduction in transit trips would have a negligible effect on the Downtown transit screenline analysis and was therefore not taken into account in this analysis.

On event days, the concert hall would generate 109 transit trips. Combined with the reduction of transit trips from the student housing there would be a total of 70 net transit trips on event days due to the Project. However, this transit analysis does not take into account the reduction of transit trips due to the availability of new on-campus housing. Therefore, in addition to representing a worst-case large-event scenario, this analysis likely over-represents transit ridership due to the Project.

Based on the 2016 Travel Survey, of the 109 transit trips generated by the concert hall during the PM peak hour, 33% of the trips would use the M-line to SF State (i.e., Muni’s outbound direction, away from downtown). This represents 36 additional trips on the M-line across the Downtown screenline. The remainder of the transit trips would use the SF State shuttle or other Muni lines that do not cross the transit screenlines: routes 28/28R 19th Avenue, 29 Sunset, and 57 Parkmerced.

As presented in Table 4.5-7, based on the worst-case large-event scenario, Project trips represent a less than 1% increase in the number of transit riders crossing the Downtown screenline. Even with the addition of these 36 trips, neither the individual M-line nor the Southwest screenline total would exceed the 85% PM peak hour capacity utilization and the Project impact would be less than significant. This conclusion is consistent with the CMP EIR conclusion that buildout under the CMP would not substantially impact the peak hour capacity utilization at the screenlines for 2020 conditions. Therefore, there are no new or increased impacts compared to the CMP EIR, as a result of transit trips generated by the Project.
Table 4.5-7
PM Peak-Hour Muni Downtown Screenlines – Southwest Screenline

<table>
<thead>
<tr>
<th>Outbound Screenline</th>
<th>Existing</th>
<th>Existing Plus Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM Peak Hour (^1) Ridership</td>
<td>PM Peak Hour (^1) Capacity</td>
</tr>
<tr>
<td>Subway lines</td>
<td>4,904</td>
<td>6,164</td>
</tr>
<tr>
<td>Haight/Noriega</td>
<td>977</td>
<td>1,554</td>
</tr>
<tr>
<td>Other lines</td>
<td>555</td>
<td>700</td>
</tr>
<tr>
<td>Southwest Screenline Total</td>
<td>6,435</td>
<td>8,418</td>
</tr>
</tbody>
</table>

Sources: San Francisco Planning Department, May 2015; Fehr & Peers and Dudek 2016; Nelson/Nygaard, 2016.

1. As discussed above the other transit screenlines are not affected by the Project.
2. PM peak hour outbound (i.e. away from Downtown, inbound to SF State) only.
3. Data is based on the 2016 Travel Survey. Transit riders using BART (the subway) have to use another mode to arrive to campus because the nearest BART stop is over 1.5 miles away. Some of these BART riders are likely to take MUNI. Therefore, the total number of transit trips would be greater than 109 as some people would take both BART and MUNI to get to campus.

Project Mitigation TRA-2: No additional mitigation required.

CMP Impact TRA-3: Implementation of the Campus Master Plan would not adversely affect conditions for pedestrians or otherwise interfere with pedestrian accessibility (Less-than-significant impact).

Project Impact TRA-3: Implementation of the Project would not adversely affect conditions for pedestrians or otherwise interfere with accessibility, nor would the Project create hazardous conditions for pedestrians (Less-than-significant impact / No new or increased impact).

As shown in Tables 4.5-3 and 4.5-4 the Project would add 77 197 net new pedestrian and bicycle trips on event days and 40 net new on-campus pedestrian and bicycle trips on non-event days. SF State is applying to the City to “vacate” Tapia Drive, as part of the Project. This would allow SF State to incorporate the street right-of-way into the Project site and to integrate the site into the campus, specifically the academic core. SF State owns the property on both sides of Tapia Drive, and closing the street is consistent with the 2007 CMP, which envisioned a major east/west walkway connecting the central academic core with sites to the west, including the Mashouf Wellness Center (SF State 2007b). Some vehicular access would be required for loading at the existing Creative Arts and Humanities buildings, but the area currently occupied by the street right-of-way would be developed as part of the site for the proposed Creative Arts replacement building and concert hall, and would be used primarily by pedestrians.
The Project’s closure of Tapia Drive to through vehicular traffic would create a more pedestrian-scale environment on campus near the Project site. Based on delivery activity at the existing Creative Arts and Humanities buildings it is anticipated that deliveries along Tapia Drive would occur two to three times per week during the semester and less frequently during the summer. SF State’s Shipping and Receiving Department would also provide delivery service. However, these deliveries occur along Centennial Way, using an off-street cart or fork lift for heavier objects. It is anticipated that these types of deliveries would occur one to two times per day. Commercial loading access to the concert hall and College of Liberal and the Creative Arts replacement building on Tapia Drive and vehicle access to the parking garage at the new student housing/mixed-use building along Holloway Avenue would be designed to minimize conflicts with pedestrians by providing adequate sight distance and conforming to the SF Planning Code. Additionally, signage regarding deliveries would be in place to warn pedestrians of potential deliveries. Access to most vehicles would be limited through the provision of bollards or signage on the vacated Tapia Drive, similar to the designs of other mixed commercial loading and pedestrian spaces on campus. Therefore, the proposed changes to Tapia Drive due to the Project would not worsen conditions for pedestrians and the existing facilities would be able to accommodate the new pedestrians.

The proposed changes to Tapia Drive due to the Project would improve conditions for pedestrians by reducing intermodal conflicts due to the presence of cars and pedestrians. Sidewalks installed as part of the Project would be consistent with the Better Streets Plan and would have the capacity to accommodate Project pedestrian trips. Other pedestrian improvements as part of the Project include direct pedestrian access from Block 1 to paths accessing the campus core by reallocating street space on Tapia Drive to the pedestrian realm and adding outdoor active space to the site at Block 6. The Project would also provide for bulb–outs and wider sidewalks consistent with the Better Streets Plan, improved crosswalks and new access ramps within the Project site.

Varela Avenue is envisioned as a shared street pedestrian oriented street. The Project would be designed to connect to the future Parkmerced transit station by adding pedestrian amenities on the Project site and a courtyard that opens towards the transit hub. The alignment of the courtyard to this potential transit hub would promote movement of visitors through the courtyard from the new transit hub, ultimately connecting pedestrians to the SF State campus via Holloway Avenue. The Project would also include improved pedestrian crossings on Varela Avenue. The final design of the Project’s proposed modifications in the public right-of-way, including pedestrian crossings, would be completed in consultation with City staff as part of the Project’s approval process for a street improvement permit and sidewalk legislation through the City. Once the future transit hub is being designed and implemented by the City, completed, Varela Avenue may be restricted to shuttles and Muni buses, additional pedestrian amenities and improvements could be considered as part of that future project.
be prioritized and the courtyard would act as an extension of the transit hub on the opposite side of the street. Improvements will include eliminating parking on Varela Avenue, a strategy to modify and reduce curbs so that ease of movement is promoted across Varela Avenue, and pavers that strengthen the pedestrian connection as well as provide a safe street crossing.

While pedestrian trips are expected to increase due to the Project, the Project would not create unsafe conditions for pedestrians, nor would the additional walk and bike trips cause crowding on nearby sidewalks. Campus facilities are designed to accommodate high pedestrian and bicycle volumes and these facilities would not experience crowding due to the Project. In addition, the Project’s closure of Tapia Drive to vehicles (except commercial loading and deliveries) and other pedestrian improvements on adjacent roadways within the Project site would improve pedestrian conditions on campus near the Project site. These improvements include new access ramps, bulbouts, crosswalks, improved sidewalks, and other pedestrian amenities within the Project site that will ensure safer access. Thus, the Project impact would be less than significant as the Project would not cause substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility to the site and adjoining areas. The Project would not result in new or increased impacts to pedestrians compared to those identified in the CMP EIR.

Project Mitigation TRA-3: Mitigation not required.

CMP Impact TRA-4: Implementation of the Campus Master Plan would not adversely affect conditions for bicyclists (*Less-than-significant impact*).

Project Impact TRA-4: Implementation of the Project would not adversely affect conditions for bicyclists or otherwise interfere with accessibility, nor would the Project create hazardous conditions for bicyclists (*Less-than-significant impact / No new or increased impact*).

As shown in Tables 4.5-3 and 4.5-4 the Project would add **79 197** net new pedestrian and bicycle trips on event days and **42 40** net new on-campus pedestrian and bicycle trips on non-event days. As indicated in Project Impact TRA-3, SF State is applying to the City to “vacate” Tapia Drive, as part of the Project. The area currently occupied by the street right-of-way would be developed as part of the site for the proposed Creative Arts replacement building and concert hall, and would be used primarily by pedestrians, but also bicyclists.

The Project’s closure of Tapia Drive to through vehicular traffic would create a more pedestrian-scale environment on campus near the Project site that would also be accessible by bicycle. Commercial loading access to the concert hall and College of Liberal and the Creative
Arts replacement building on Tapia Drive and vehicle access to the parking garage at the new student housing/mixed-use building along Holloway Avenue would be designed to minimize conflicts with bicyclists by providing adequate sight distance and conforming to the SF Planning Code. Access to most vehicles would be limited through the provision of bollards or signage at the former Tapia Drive, similar to the designs of other mixed commercial loading and pedestrian/bicycle spaces on campus. Therefore, the proposed vacation of Tapia Drive would not worsen, but rather would improve conditions for bicyclists by reducing intermodal conflicts that currently exist in this area due to presence of cars and bicycles. Further, the existing facilities near the Project site would be able to accommodate the new bicyclists associated with the Project.

The new student housing/mixed-use building at the southeast corner of Holloway Avenue and Varela Avenue would include secure, covered bicycle storage on the first floor of the building. Approximately 185 Class I secure, covered bicycle storage spaces would be provided in the building. Approximately 12 Class II bicycle parking spaces would also be provided in the vicinity of the Creative Arts replacement building and concert hall and would be in a visible location, easily accessible to the buildings. These spaces are part of a campus-wide planning effort to improve bicycle infrastructure and access to campus, addressing routes, safety, and centralized bike parking areas that include a mix of racks and secure facilities.

While bicycle trips are expected to increase due to the Project, the Project would not create unsafe conditions for bicyclists, nor would the additional bicycle trips cause crowding on nearby bicycle facilities or roadways. Campus facilities are designed to accommodate high pedestrian and bicycle volumes and these facilities would not experience crowding due to the Project. In addition, the Project’s closure of Tapia Drive to vehicles (except commercial loading and deliveries) and other improvements along Holloway Avenue and Varela Avenue would improve bicycling conditions on campus near the Project site. Thus, the Project impact would be less than significant as it would not substantially increase hazards due to a design feature or incompatible uses, create potentially hazardous conditions for bicyclists, or otherwise substantially interfere with bicycle accessibility to the site and adjoining areas. The Project would not result in new or increased impacts to bicyclists compared to those identified in the CMP EIR.

Project Mitigation TRA-4: Mitigation not required.

CMP Impact TRA-6: Implementation of the Campus Master Plan would not conflict with any adopted plans, policies or programs supporting alternative transportation (Less-than-significant impact).
Project Impact TRA-6: Implementation of the Project would not conflict with any adopted plans, policies or programs supporting alternative transportation (Less-than-significant impact / No new or increased impact).

CMP EIR Impact TRA-6 indicates that the CMP includes a parking and housing strategy, bicycle and pedestrian improvements, and shuttle service improvements designed to discourage automobile use and encourage the use of alternate means of transportation. These and other TDM measures were included in the SF State TDM Plan (Nelson/Nygaard 2009) and have been implemented as described under the subheading “Transportation Demand Management” in Section 4.5.1. Monitoring conducted under CMP Impact TRA-1 since 2008 indicates that the number of automobile trips per day decreased by 22%. The percentage of respondents driving alone has decreased from 26% in 2008 to 20% in 2016 (Nelson/Nygaard 2016). Transit usage has increased since 2008, with 45% of campus affiliates using Muni and 27% using BART for a portion of their trip to campus.

The City has a “Vision Zero” policy that is a safety policy committing to build safer streets, educate the public on traffic safety, enforce traffic laws, and adopt policy changes that result in zero fatalities and reduced accidents. The goal is to create a culture that prioritizes traffic safety and to ensure that zero deaths occur by the year 2024. 19th Avenue is a Vision Zero Corridor, which is characterized as a high injury network for pedestrians and vehicles. While the Project is not on 19th Avenue and would not be proposing changes to 19th Avenue, improvements on or adjacent to the Project site such as new access ramps, bulbouts, crosswalks, improved sidewalks, and other pedestrian amenities would ensure safer access to the Project from 19th Avenue. Additionally, Block 6 has been designed to interface and connect with the future Parkmerced transit hub, which would improve access and safety for people accessing the future realigned M-line and other transit services.

Many of these improvements are also consistent with San Francisco’s Better Streets Plan, as they improve pedestrian access, safety, and the overall pedestrian environment. The Project includes applying for a vacation of Tapia Drive, which, based on preliminary review would not may require an Encroachment Permit or Major Encroachment Permit from the City. The vacation request will be reviewed by the City Planning Department for consistency with the City’s General Plan and Better Streets Plan. A matrix of relevant plans, policies and programs is provided as Appendix A-2 to the Tiered Initial Study and demonstrates that the proposed vacation of Tapia Drive would not result in conflicts with adopted plans, policies or programs supporting alternative transportation. Therefore, the impact of the Project is less than significant and would not result in new or increased impacts compared to those identified in the CMP EIR.

Project Mitigation TRA-6: Mitigation not required.
4.5.3 References

Nelson/Nygaard. 2016. San Francisco State University 2016 Transportation Survey Results.

SF State. 2007c. Memorandum of Understanding: City & County of San Francisco and California State University/San Francisco State University. October 29, 2007.

Figure 4.5-1: Project Sites and Existing Bicycle and Transit Network

- **Project Sites**
- **Class 1 Bicycle Facilities**
- **Class 2 Bicycle Facilities**
- **Class 3 Bicycle Facilities**
- **Muni Light Rail Station**
- **Muni Bus Stop**
- **Passenger Loading Zone**
- **Commercial Loading Zone**
- **Continental Yellow Crosswalk**
- **Standard Crosswalk**

Note: Crosswalks only shown along Holloway Avenue and Font Boulevard for pedestrian access to campus near the Project Sites.

INTENTIONALLY LEFT BLANK
CHAPTER 5
OTHER CEQA CONSIDERATIONS

Section 15126 of the California Environmental Quality Act (CEQA) Guidelines requires that all aspects of a project be considered when evaluating its impact on the environment, including planning, acquisition, development, and operation. As part of this analysis, an EIR must identify the following three types of impacts:

- Significant environmental effects that cannot be avoided if the proposed project is implemented;
- Significant irreversible environmental effects that would be involved in the proposed project should it be implemented; and
- Growth-inducing impacts of the proposed project.

The following sections identify each of these types of impacts based, in part, on analyses contained in Chapter 4, Environmental Setting, Impacts, and Mitigation.

5.1 SIGNIFICANT AND UNAVOIDABLE IMPACTS

Pursuant to Section 15126.2(b) of the CEQA Guidelines, this section identifies significant impacts that would not be avoided, even with the implementation of feasible mitigation measures. The final determination of significance of impacts and of the feasibility of mitigation measures would be made by the Board of Trustees of the California State University as part of their EIR certification action.

A summary of the environmental impacts and mitigation measures is contained in Chapter 1 of this EIR. Chapters 4.1 through 4.5 provide a comprehensive identification of the Project's environmental effects, including the level of significance both before and after mitigation. These sections also specifically indicate whether the Project would result in new or increased impacts over those identified in the 2007 Campus Master Plan (CMP) EIR.

5.1.1 Significant and Unavoidable Impacts of CMP

The following significant and unavoidable impacts would result from development proposed under the CMP. Potentially significant and unavoidable environmental impacts associated with implementation of the CMP were identified for cultural resources, noise, and transportation. These impacts are described below, along with the related conclusions for the Project:

- **Cultural Resources** – Implementation of the CMP could result in a substantial adverse change in the significance of historical buildings or structures (Impact CULT-2), if recordation of the historic resource would not reduce the impact to less than significant.
Chapter 4.4 of this EIR concludes that there is a new significant cumulative historic resources impact associated with this Project. See further discussion in the section below.

- **Noise** – Implementation of the CMP could result in a significant and unavoidable impact related to excessive airborne noise during the construction of campus facilities in proximity to sensitive receptors (Impact NOIS-1).

The Tiered Initial Study for this Project (Appendix A) concluded that there could potentially be some Project construction activities where the noise levels would not be reduced to levels below the threshold, even with the recommended mitigation. Therefore, conservatively, the Project impact would be significant and unavoidable, as concluded in the 2007 CMP EIR, but no new or increased impacts would occur with the Project. Such an impact would be temporary and would only exist during construction activities.

- **Transportation** – Implementation of the CMP could potentially contribute substantial traffic at two intersections in southwest San Francisco if campus development results in the PM peak hour trip generation estimated in the CMP EIR (Impact TRA-1).

Chapter 4.5 of this EIR indicates that the Project would not generate PM peak hour vehicle trips above what was studied in the 2007 CMP EIR. Campus-wide PM peak hour vehicle trips have actually declined substantially since the CMP EIR base year such that even with Project implementation, campus-wide trip generation would remain below the CMP EIR base year. Therefore, the impact would be less than significant, as the Project would not contribute to substantially increased vehicle traffic at intersections in the study area. There are no new significant or increased impacts compared to the CMP EIR, as a result of vehicle trips generated by the Project.

A Statement of Overriding Considerations (SOC) for these impacts was adopted by the Trustees of the California State University at the time the CMP Final EIR was certified. The only new significant impact associated with the Project that was not identified in the CMP EIR relates to historic resources and is described below.

5.1.2 New Significant and Unavoidable Impacts of Project

The Project would result in less-than-significant impacts on the Parkmerced Historic District and the Parkmerced Remnant Historic District, identified during the preparation of this EIR, as the Project alone would not materially impair the significance of these districts (see Chapter 4.4, Project Impacts Cult-2A and Cult-2B). However, the Project would have a significant adverse cumulative impact related to historical resources. The proposed demolition of Blocks 1 and 6 and removal of existing landscape features on the Project site would contribute to a significant cumulative impact on the historic significance of the Parkmerced Remnant Historic District, as it would erode its integrity. The Project’s contribution to this significant cumulative
impact would be cumulatively considerable (See Chapter 4.4, Project Impact CULT-5B). This significant cumulative impact can be reduced through the implementation of CMP EIR Mitigation CULT-2A through CULT-2C as part of the Project and through the implementation of Project Mitigation CULT-5B identified in Chapter 4.4. However, the impact is significant and unavoidable as the implementation of the feasible mitigation measure would not reduce the impact to less than significant. This is considered a new significant cumulative impact, as the CMP EIR did not contemplate impacts to eligible historic districts and did not identify a significant cumulative impact on historic resources.

5.2 SIGNIFICANT IRREVERSIBLE ENVIRONMENTAL CHANGES

The CEQA Guidelines (Section 15126.2(c)) requires that an EIR discuss the extent to which a project, during its initial or continued phases (i.e., construction and operations), would result in commitment of nonrenewable resources that future generations would be unable to reverse. An impact would fall into this category if:

- The project would involve a large commitment of nonrenewable resources;
- The primary and secondary impacts of a project would generally commit future generations to similar uses (e.g., a highway provides access to a previously remote area);
- The project involves uses in which irreversible damage could result from any potential environmental accidents associated with the project; or
- The phasing of the proposed consumption of resources is not justified (e.g., the project involves the wasteful use of energy).

Development of the Project, which is consistent with the 2007 CMP, would result in the continued commitment of the San Francisco State University (SF State) campus to institutional and related uses, thereby precluding any other uses for the lifespan of the campus. The California State University System’s ownership of the campus represents a long-term commitment of the campus lands to institutional and related uses. Restoration of the Project site and campus to pre-developed conditions is not feasible given the degree of disturbance, the urbanization of the area, the level of capital investment, and SF State’s educational mission.

Resources that will be permanently and continually consumed by Project implementation include water, electricity, natural gas, and fossil fuels; however, the consumption of these resources would not represent unnecessary, inefficient, or wasteful use of resources. Construction activities related to the Project would result in the irretrievable commitment of nonrenewable energy resources, primarily in the form of fossil fuels (including fuel oil, natural gas, and gasoline) for automobiles and construction equipment, and other resources including, but are not limited to, lumber, sand, gravel, asphalt, metals, and water. The irretrievable
commitment of the above-listed resources is considered justified to achieve the overall goals and objectives of the proposed Project; however, as described below, various measures to reduce water and energy use are incorporated into the Project.

The Project would include installation of recycled water infrastructure to accept the supply of recycled water from the City and County of San Francisco when available and SF State would explore other water reuse strategies to reduce water use. Targeted strategies could include ultra-water-efficient bathroom fixtures, dual plumbing to allow use of recycled water for toilet and urinal flushing, and recycled water infrastructure for irrigation. The use of non-potable water during construction for soil compaction and dust control would also be considered, if feasible.

The campus has also instituted lighting and other energy conservation measures and has been replacing in-building lighting systems with up-to-date energy-saving equipment. New Project buildings would be designed to achieve at least LEED Gold or equivalent performance, and energy efficiency beyond Title 24 requirements. LEED Platinum and zero net energy would be targeted using a combination of advanced green building and energy efficiency measures, on-site renewable energy, district energy strategies, and/or renewable energy credits. On-site renewable energy could include roof-mounted solar arrays. The efficiency measures to be incorporated could include high efficiency HVAC equipment, daylight harvesting, highly insulated wall assemblies, high-performance glazing, and similar strategies.

The CEQA Guidelines also require a discussion of the potential for irreversible environmental damage caused by an accident associated with the Project. While the campus uses, transports, stores, and disposes of hazardous wastes, the campus complies with all applicable state and federal laws and existing campus programs, practices, and procedures related to hazardous materials, which reduces the likelihood and severity of accidents that could result in irreversible environmental damage. Over the campus history, there has never been an accident that resulted in irreversible environmental damage, indicating that current practices with respect to hazardous materials handling are adequate, and thus the potential for the Project to cause irreversible environmental damage from an accident or upset of hazardous materials, is very low.

5.3 GROWTH INDUCING IMPACTS

Growth-inducing impacts refer to the ways in which a proposed project may directly or indirectly influence or foster economic development, population growth, or the construction of additional housing in the project area as well as its impacts to the surrounding environment (CEQA Guidelines Section 15126.2(d)). Growth can be induced in a number of ways, including the elimination of obstacles to growth, or through the stimulation of economic activity within the region. The discussion of removing obstacles to growth relates directly to the removal of infrastructure limitations or regulatory constraints that could result in growth unforeseen at the time of project approval.
A project may have direct and/or indirect growth inducement potential. Direct growth of development and population would result if a project includes construction of new housing or establishes substantial new permanent employment opportunities (or, in the case of SF State, would accommodate new enrollment), which would stimulate demand for additional housing and services in the surrounding area. A project also could directly induce growth if it would involve a construction effort with substantial short-term employment opportunities, particularly if construction employees are likely to relocate to the area.

A project would have an indirect growth inducement effect to the extent that spending for project development and by students and employees associated with the project stimulates economic development (jobs) in the surrounding area, such that the demand for housing, public services and other development increases.

The proposed Project was included in the CMP building program and related development assumptions. Section 4.10, Population and Housing, and Section 6.3, Growth Inducement of the 2007 CMP EIR, addressed anticipated direct and indirect growth impacts related to campus development under the CMP. The Project includes construction of Creative Arts buildings and on-campus housing for existing students. The Project would not contribute to direct population growth on the campus, as it would not increase enrollment or faculty and would not substantially increase staff, as reported on in Chapter 3, Project Description of this EIR. The Project could contribute to indirect employment growth as an increase in the residential population on campus could result in campus-serving businesses moving into the area or expansion of existing businesses in response to increased demand for goods and services. The retail portion of the Project is expected to serve some or most of this demand. Other campus-related indirect and induced employment growth could result in some other commercial development on lands that are underutilized, especially in those parts of San Francisco that are near the campus. However, it is anticipated that there would not be any major shifts in land use planning in San Francisco and that future growth would continue to emphasize redevelopment, as anticipated in local plans and forecasts, because most of San Francisco is built out. If and when specific commercial development projects are proposed, they will be subject to environmental review. Induced employment growth in the vicinity of campus would not be expected to stimulate employees to move into San Francisco, as this type of commercial project would be expected to draw employees from the local market.

The Project would not add new capacity to existing utilities or extend services into areas that are currently unserved. Rather, the Project would be connected to existing utility infrastructure and the Project’s utility connections would not serve off-campus areas or lead to urban growth outside the boundary of the campus. No changes to off-campus utilities provided to SF State by other entities are anticipated to be necessary to serve the needs of the Project. Therefore, the Project would not remove obstacles to growth or encourage growth through the provision of
new and essential public services or access opportunities. The Project would not result in urbanization of land in a remote location, resulting in “leapfrog” development, because the Project site is located in an urbanized area that is served by an existing extensive network of electricity, water, sewer, storm drain, communications, roadways, and other infrastructure sized to accommodate or allow existing and planned future growth. Overall, no new growth-inducing effects would be expected as a result of implementing the Project.
CHAPTER 6
ALTERNATIVES

6.1 INTRODUCTION

The California Environmental Quality Act (CEQA) requires an EIR to describe and evaluate a range of reasonable alternatives to the Project, or alternatives to the location of the Project. The purpose of the alternatives analysis is to explore ways that the objectives of the Project could be attained while avoiding or reducing significant environmental impacts of the Project as proposed. The alternatives discussion must evaluate the comparative merits of each alternative relative to the Project and the discussion of each alternative should be sufficient to allow meaningful evaluation, analysis, and comparison with the Project. Therefore, the significant effects of each alternative are discussed in less detail than those for the Project, but in sufficient detail to permit decision makers to make a reasoned choice when considering approval of a Project. This process is intended to foster informed decision-making and public participation in the environmental process.

Public and agency comments related to alternatives were received during the public scoping period in response to the Notice of Preparation, and are summarized below:

- The design of Blocks 1 and 6 should provide a buffer and low-scale transition between San Francisco State University (SF State) and the Parkmerced future blocks. Options that look at low-scale pencil thin housing towers, open plazas, accessible landscape features, and Mills-Act rehabilitation of the existing blocks should be considered that lessen overall massing and height of future buildout.

- Look at lessening the impact of the scale of future Parkmerced parcels or provide for a softer transition between the Parkmerced taller buildings with a project that lessens the overall massing and height.

- Driveways and courtyards should be densified as an option not explored during the Parkmerced project.

- Given that the housing in University Park South (UPS) is sound, more preservation based solutions to providing density need to be considered, including infill and re-integration of denser housing using 4- to 6-story and 6- to 8-story townhomes and 10- to 12-story tower buildings.

- Consider method initially done during the UPS rehabilitation, which included roof and wall work and rehab of existing townhouse structures in UPS.

To the extent that issues identified in public comments involve potentially significant effects on the environment according to CEQA, and/or were raised by responsible and trustee agencies, they are identified and addressed in this EIR. For a complete list of public comments received during the public scoping period, refer to Appendix B.
6.2 PROJECT OBJECTIVES

Alternatives considered in the EIR should be feasible, and should attain most of the basic Project objectives. CEQA indicates that the statement of project objectives should be clearly written to define the underlying purpose of a project in order to permit development of a reasonable range of alternatives and aid the lead agency in making findings when considering the project for approval. The objectives of the adopted 2007 CMP (see Chapter 3, Project Description) originate in the obligation SF State has to meet its educational mission as defined by the California Education Code. The Project objectives that are drawn from the CMP are based on the physical planning principles derived from the long-term vision for the SF State campus, consistent with SF State’s strategic plan. The Project-specific objectives are provided in a table at the end of this chapter.

6.3 SIGNIFICANT IMPACTS OF PROJECT

The range of alternatives studied in the EIR must be broad enough to permit a reasoned choice by decision-makers when considering the merits of a project. The analysis should focus on alternatives that are feasible (i.e., that may be accomplished in a successful manner within a reasonable period of time, and that take economic, environmental, social and technological factors into account). Under CEQA, alternatives that are remote or speculative should not be discussed in the alternatives analysis. Furthermore, alternatives should focus on reducing or avoiding significant environmental impacts associated with the Project as proposed.

Most of the potentially significant impacts can be reduced to less than significant through the implementation of mitigation measures adopted in the Mitigation Monitoring and Reporting Program for the 2007 CMP. The mitigation measures included in this program are already being implemented as part of the CMP Mitigation Monitoring and Reporting Program, the certified CMP EIR, and the Project and therefore they are considered to be part of the Project. Applicable CMP mitigations are listed Chapter 4 and in Appendix A-1.

6.3.1 Significant and Unavoidable Impacts of CMP

Potentially significant and unavoidable environmental impacts associated with implementation of the CMP were identified for cultural resources, noise, and transportation. These impacts are described below, along with the related conclusions for the Project:

- Cultural Resources – Implementation of the CMP could result in a substantial adverse change in the significance of historical buildings or structures (Impact CULT-2), if recordation of the historic resource would not reduce the impact to less than significant.
Section 4.4 of this EIR concludes that there is a new significant cumulative historic resources impact associated with this Project. See further discussion in the section below.

- **Noise** – Implementation of the CMP could result in a significant and unavoidable impact related to excessive airborne noise during the construction of campus facilities in proximity to sensitive receptors (Impact NOIS-1).

The Tiered Initial Study for this Project (Appendix A) concluded that there could potentially be some Project construction activities where the noise levels would not be reduced to levels below the threshold, even with the recommended mitigation. Therefore, conservatively, the Project impact would be significant and unavoidable, as concluded in the 2007 CMP EIR, but no new or increased impacts would occur with the Project. Such an impact would be temporary and would only exist during construction activities.

- **Transportation** – Implementation of the CMP could potentially contribute substantial traffic at two intersections in southwest San Francisco if campus development results in the PM peak hour trip generation estimated in the CMP EIR (Impact TRA-1).

Section 4.5 of this EIR indicates that the Project would not generate PM peak hour vehicle trips above what was studied in the 2007 CMP EIR. Campus-wide PM peak hour vehicle trips have actually declined substantially since the CMP EIR base year such that even with Project implementation, campus-wide trip generation would remain below the CMP EIR base year. Therefore, the impact would be less than significant, as the Project would not contribute to substantially increased vehicle traffic at intersections in the study area. There are no new significant or increased impacts compared to the CMP EIR, as a result of vehicle trips generated by the Project.

A Statement of Overriding Considerations for the CMP EIR impacts was adopted by the Board of Trustees of the California State University (Trustees of the California State University) at the time the CMP Final EIR was certified. The only new significant impact associated with the Project that was not identified in the CMP EIR relates to historic resources and is described below.

6.3.2 New Significant and Unavoidable Impacts of Project

The Project would result in less-than-significant impacts on the Parkmerced Historic District and the Parkmerced Remnant Historic District, identified during the preparation of this EIR, as the Project alone would not materially impair the significance of these districts (see Section 4.4, Project Impacts Cult-2A and Cult-2B). However, the Project would have a significant adverse cumulative impact related to historical resources. The proposed demolition of Blocks 1 and 6 and removal of existing landscape features on the Project site would contribute to a significant cumulative impact on the historic significance of the Parkmerced Remnant Historic District, as it would erode its integrity. The Project’s contribution to this significant cumulative impact
would be cumulatively considerable (see Section 4.4, Project Impact CULT-5B). This significant cumulative impact can be reduced through the implementation of CMP EIR Mitigation CULT-2A through CULT-2C as part of the Project and through the implementation of Project Mitigation CULT-5B identified in Section 4.4. However, the impact is significant and unavoidable as the implementation of the feasible mitigation measure would not reduce the impact to less than significant. This is considered a new significant cumulative impact, as the CMP EIR did not contemplate impacts to eligible historic districts and did not identify a significant cumulative impact on historic resources.

6.3.3 Other Impacts of Project

Aesthetics

The Project would not result in substantial adverse impacts to scenic vistas, scenic resources, visual character, or light and glare. The Project includes the implementation of all CMP EIR mitigation measures identified in Section 4.1 of this EIR. All aesthetic impacts of the Project would be less than significant. The Project would not result in new or increased aesthetic impacts compared to the CMP EIR.

Air Quality

The Project would not result in a violation of any air quality standard or contribution to an existing or projected air quality violation, would not conflict with or obstruct the implementation of the applicable air quality plan, would not expose sensitive receptors to substantial pollutant concentrations, and would not result in a cumulatively considerable increase of any criteria pollutant for which the Project region is nonattainment. The Project includes the implementation of all CMP EIR mitigation measures identified in Section 4.2 of this EIR. All air quality impacts of the Project would be less than significant. The Project would not result in new or increased air quality impacts compared to the CMP EIR.

Greenhouse Gas Emissions

The CMP EIR did not analyze campus-wide impacts related to greenhouse gas (GHG) emissions, as Appendix G of the CEQA Guidelines at that time did not address GHG emissions and there were no established thresholds. This EIR concludes that the Project would not generate GHG emissions that would have a significant impact on the environment, would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs, and would not result in cumulatively considerable emissions of GHGs. All GHG impacts of the Project would be less than significant.
Transportation
The Project would not result in new or increased impacts related to vehicle trips or transit trips, would not adversely affect conditions for pedestrians or bicyclists or otherwise interfere with accessibility, and would not conflict with any adopted plans, policies or programs supporting alternative transportation. The Project includes the implementation of all CMP EIR mitigation measures identified in Section 4.5 of this EIR. All transportation impacts of the Project would be less than significant. The Project would not result in new or increased transportation impacts compared to the CMP EIR.

Noise and Other Impacts
As indicated in the Tiered Initial Study (Appendix A), the Project would not result in any new or increased impacts over those identified in the CMP EIR for other environmental topics.

As indicated in Significant and Unavoidable Impacts of CMP above, implementation of the CMP could result in a significant and unavoidable impact related to excessive airborne noise during the construction of campus facilities in proximity to sensitive receptors (CMP Impact NOIS-I). The Tiered Initial Study for this Project (Appendix A) concluded that there could potentially be some Project construction activities where the noise levels would not be reduced to levels below the threshold, even with the recommended mitigation. Therefore, conservatively, the Project impact would be significant and unavoidable, as concluded in the 2007 CMP EIR, but no new or increased impacts would occur with the Project. Such an impact would be temporary and would only exist during construction activities.

6.4 CAMPUS MASTER PLAN ALTERNATIVES
The alternatives considered in the 2007 CMP EIR are summarized below, as the results of this analysis influences the development of the reasonable range of alternatives for the Project. The following alternatives were considered in the 2007 CMP EIR:

• **Alternative 1: Reduced Housing Growth.** Under the Reduced Housing Growth Alternative, future development of the campus would be planned to accommodate the proposed enrollment ceiling increase to 25,000 FTE [full-time-equivalent] students on campus by 2020, similar to the 2007 CMP. However, under this alternative the existing housing in UPS and UPN [University Park North] would be retained and would not be redeveloped to provide for higher density housing. Therefore, this alternative would not result in the construction of new housing in UPN and UPS. While the replacement of units in UPN and UPS would not result in significant environmental impacts under CEQA, as reported on in the CMP EIR, some members of the surrounding community were concerned about this replacement and the resulting possible displacement of people that currently live in these units.
This alternative was identified as having a greater impact on housing supply in San Francisco compared to the 2007 CMP. In particular, it would result in a considerable contribution to a significant cumulative impact on the San Francisco housing supply. The alternative also would not meet the CMP project objectives related to: (1) providing more close-in housing that enables the SF State population to walk to school and work; (2) redefining Holloway [Avenue] and Buckingham as “college main streets” that offer neighborhood retail and services, because with no redevelopment of UPS and UPN for higher density housing, such retail could not be provided; (3) making efficient use of redevelopment sites in UPS and UPN; and (4) integrating new residential properties to create a unified campus.

- **Alternative 2: Expanded Housing Growth.** Under the Expanded Housing Growth Alternative, future development of the campus would be planned to accommodate the proposed enrollment ceiling increase to 25,000 FTE students on campus by 2020, similar to the 2007 CMP. However, under this alternative all of the existing housing in UPS and UPN would be redeveloped to provide for higher density housing. This alternative was considered in order to maximize the provision of on-campus housing in order to minimize vehicle trips to the campus, given that the CMP EIR identified a potentially significant and unavoidable transportation impact related to growth in vehicle trips. This alternative was identified as the environmentally superior alternative because it would reduce the CMP’s impacts with respect to traffic and air quality, and would place a reduced demand on off-campus housing supply. This alternative would meet all of the objectives of the CMP; in particular, the objectives related to the provision of on-campus housing to aid in recruitment and retention of faculty and staff and to allow the SF State population to walk to work or school.

- **Alternative 3: No Project (1989 Campus Master Plan, as Amended).** Under the No Project Alternative, the campus would remain subject to the prior 1989 Master Plan, as most recently amended in 2006. The Campus would have continued to operate under the current enrollment ceiling of 20,000 FTE, and would maintain student enrollment at that level, which would allow for no increase in enrollment over existing conditions. The No Project Alternative would avoid all of the significant impacts of the 2007 CMP. However, it would not meet any of the CMP project objectives, as described in Chapter 3, Project Description.

6.5 PROJECT ALTERNATIVES

The analysis below presents the alternatives that were considered for this Project. Each alternative is examined for its ability to reduce environmental impacts relative to the Project, feasibility of implementation, and ability to meet Project objectives.
6.5.1 Alternatives Considered but Eliminated

This section discusses alternatives that were considered for the Project or were reviewed as a result of scoping comments received, but were eliminated from further analysis as allowed under CEQA because they did not meet most of the Project objectives; were found to be infeasible for technical, economic, environmental, or social reasons; or they did not substantially lessen or avoid a significant environmental effect of the Project.

Alternative Site Plan Configurations

Different site plan configurations for the Creative Arts replacement building, concert hall, and student housing/mixed-use building on Block 1 and Block 6 were considered during the conceptual design process. These alternative site plans considered the same uses and building area as the Project, but oriented the uses differently on the Project site. The various site plan alternatives are not evaluated in detail in this EIR, as such alternatives would not reduce or otherwise substantially change the conclusions of the environmental analysis for the Project, given that the same level of development would occur with these alternatives.

Off-Campus Alternatives

A number of public comments received during the 2007 CMP EIR preparation process indicated that the proposed growth should be accommodated at SF State regional centers, such as the Downtown Center, Tiburon, etc., or at some other off-campus site. As concluded in the CMP EIR, off-campus alternatives were also eliminated from detailed review for the 2007 CMP. SF State is primarily an undergraduate institution where the critical mass of students and faculty and diversity of course options are what make for a rich education. Moving the Creative Arts replacement building, concert hall, and student housing/mixed-use building to SF State regional centers would not support the educational mission of the SF State campus or meet the CMP or Project objectives. Moreover, the SF State regional centers do not have adequate capacity and/or the utility or transportation infrastructure to accommodate the development proposed by the Project. The SF State campus does not own any other off-campus land that would be suitable for the Project. Given the above, an off-campus alternative is also not considered feasible for the Project.

6.5.2 Alternatives Evaluated in Detail

This section presents an evaluation of five alternatives to the Project:

- No Project Alternative – Development under Adopted Campus Master Plan (Figure 3-4 in Chapter 3)
- No Project Alternative – No New Development/Preservation
• Reduced Project Alternative – Partial Reuse/Preservation (Figure 6-1)
• Reduced Project Alternative – No Development on Block 6
• Alternative Site Location – Avoidance of Former Parkmerced Properties (Figure 6-2)

For each alternative, a brief description is presented, followed by an assessment of the degree to which the alternative would meet Project objectives, and a summary impact analysis relative to the Project. The impact analysis focuses on whether the alternative would avoid or reduce the new significant cumulative historic resources impact of the Project, or cause other new or increased impacts. Table 6-1 compares the characteristics of each alternative. Table 6-2 compares the alternatives to the Project in terms of their ability to meet Project objectives. Table 6-3 compares the alternatives to the Project in terms of their ability to reduce or avoid Project impacts. Tables 6-2 and 6-3 are located at the end of this chapter.

Table 6-1
Characteristics of Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Student Housing Beds</th>
<th>Retail and Support Space (GSF)</th>
<th>Creative Arts Replacement Building Space (GSF)</th>
<th>Concert Hall Space (GSF)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Project</td>
<td>550</td>
<td>33,000 25,000</td>
<td>75,000 76,350</td>
<td>60,000</td>
<td>Block 1 Block 6</td>
</tr>
<tr>
<td>No Project – Development under Adopted CMP</td>
<td>550</td>
<td>0</td>
<td>75,000 76,350</td>
<td>0</td>
<td>Block 1 Block 5</td>
</tr>
<tr>
<td>No Project – No New Development/Preservation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Block 1 Block 6</td>
</tr>
<tr>
<td>Reduced Project Alternative – Partial Reuse/Preservation</td>
<td>100–120</td>
<td>10,000–12,000</td>
<td>75,000 76,350</td>
<td>60,000</td>
<td>Block 1 Block 6</td>
</tr>
<tr>
<td>Reduced Project Alternative – No Development on Block 6</td>
<td>0</td>
<td>0</td>
<td>75,000 76,350</td>
<td>60,000</td>
<td>Block 1 Block 6</td>
</tr>
<tr>
<td>Alternative Site Location – Avoidance of Former Parkmerced Properties</td>
<td>550</td>
<td>33,000 25,000</td>
<td>75,000 76,350</td>
<td>60,000</td>
<td>West Campus Green UPN Site</td>
</tr>
</tbody>
</table>

GSF = gross square feet

No Project Alternative – Development under Adopted Campus Master Plan

Description. As required by the CEQA Guidelines, the EIR’s alternatives analysis must include consideration of the No Project Alternative. The “No Project” analysis discusses the existing conditions as well as what would reasonably be expected to occur in the foreseeable future if the Project was not approved (CEQA Guidelines Section 15126.6(e)(2) and (3)(A)).
Under this No Project Alternative (Development under Approved Campus Master Plan), the campus would continue to operate and develop under the adopted 2007 CMP, as amended most recently in early 2014. Under this No Project Alternative, the proposed Master Plan map revisions being considered as part of the Project would not be approved.

The adopted Master Plan map would allow for the Creative Arts replacement building and the School of Music and Dance building to be constructed on the Block 1 portion of the Project site, if SF State and the Trustees of the California State University decide to pursue the development of these buildings on this site. In the future, SF State could also pursue construction of the Theater Arts building and the Creative Arts auditorium on the adjacent West Campus Green site, as currently contemplated in the existing Master Plan map (see Chapter 3, Figure 3-4). For the purposes of this analysis, this alternative would include only the allowed development above on Block 1, given that Block 1 is part of the Project site.

The adopted Master Plan map would allow for housing to be built on Block 5, but no new development would be allowed on Block 6 (see Chapter 3, Figure 3-4). Therefore, under this alternative, SF State could pursue housing on Block 5 only. For the purposes of this analysis, it is assumed that a similar number of housing units would be constructed on Block 5 (550 beds), even though that block is substantially larger than Block 6. Additionally, no retail or student support space would be included in the building given that the existing adopted Master Plan map calls for housing only on this block. Given the above, a building on Block 5 would likely be lower in height, as compared to the Project, as the same amount of student housing would be located on a larger site. All other Project features would be similar under this alternative.

Ability to Meet Project Objectives. As shown in Table 6-2, this alternative would meet the Project objectives related to the Creative Arts replacement building. However, the alternative would not meet any of the objectives related to the concert hall, as the concert hall would not be built on Block 1 under the existing Master Plan map and, therefore, would not be developed under this alternative.

Although the concert hall would not be built on Block 1 under this alternative, it could be built on the West Campus Green in the future, based on the existing approved Master Plan map, if the University decided to pursue this site for this use. This future site would not meet the Project objectives for the concert hall, as the West Campus Green: (1) is farther removed from the student housing/mixed-use building site and the associated emerging activity along Holloway Avenue; (2) is less prominent as a location for the concert hall; and (3) lacks the opportunity to reinforce programmatic connection and collaboration between the existing Creative Arts, Fine Arts and Humanities Buildings and the campus core, as this site is farther away from the existing arts buildings. Additionally, the planned future space for Music & Theater/Dance programs contemplated as part of the CMP building program would be better to site together,
and due to their size require a larger site, such as the West Campus Green. Therefore, this alternative would not provide for the most efficient and effective use of the West Campus Green and the Tapia Triangle (Block 1) for all of the planned future Creative Arts programs.

As this alternative would provide the same amount of student bed spaces as the Project, it would meet the objective to provide new on-campus student housing to aid in recruitment and retention of students and to reduce vehicle trips. It would somewhat meet the Project objective that aims to make efficient use of more recently acquired properties along the southern edge of campus, as it would result in a lower building height with fewer units than could be achieved in Block 5. As the alternative would be located further away from the M-line and would not include retail and student support uses, it would somewhat meet the objective to locate new student housing, neighborhood retail, and support services in proximity to the existing Muni M line and bus lines and to the future planned underground Muni M line and station and to planned 19th Avenue bicycle and pedestrian facilities. As the alternative would not locate higher-density housing with ground-floor neighborhood retail and services along Holloway Avenue, it would not help to redefine Holloway Avenue as a “college main street.”

Impact Analysis. The impacts of this alternative in comparison to the Project are presented below and in Table 6-3:

- **Aesthetics** – This alternative would result in similar, but would be somewhat reduced aesthetics impacts compared to the Project. All impacts would be less than significant, given that the height of the residential building on Block 5 under this alternative would be lower than the building proposed for Block 6 with the Project. The lower building height would be more compatible with the existing visual character of the former Parkmerced blocks on the SF State campus and in the adjacent Parkmerced area. However, the approved Parkmerced project and the adopted Parkmerced Special-Use District would ultimately result in redevelopment of all of the adjacent blocks in this area with higher density development with greater building heights. As for the Project, this alternative would not result in new or increased aesthetic impacts compared to the CMP EIR.

- **Air Quality** – This alternative would result in similar, but somewhat reduced air quality impacts compared to the Project. While the square footage of development, number of beds, and most Project features would be similar, the concert hall would not be constructed and therefore Project air emissions would be somewhat reduced due to the lack of major events. All impacts would be less than significant, as for the Project, but somewhat reduced. As for the Project, this alternative would not result in new or increased air quality impacts compared to the CMP EIR.
• **Greenhouse Gas Emissions** – This alternative would result in similar, but somewhat reduced GHG impacts compared to the Project. While the square footage of development, number of beds, and most Project features would be similar, the concert hall would not be constructed and therefore Project GHG emissions would be somewhat reduced due to the lack of major events. All impacts would be less than significant, as for the Project, but somewhat reduced. As the CMP EIR did not evaluate this topic, these are new less-than-significant impacts, as for the Project.

• **Historic Resources** – This alternative would result in increased historic resource impacts, given that Block 5 is a larger area and more garden apartments would be demolished, as compared to the Project. Given that, Project Impact CULT-2B related to the impact of the Project on the Parkmerced Remnant Historic District would be significant and unavoidable with this alternative, as it would result in more demolition of garden apartments and loss of other character-defining features. A discontiguous remnant district would result, as new development on Block 5 under this alternative would result in former Parkmerced development remaining on Block 6 to the east and Blocks 2, 41, and 42 to the west of Block 5. In contrast, Project Impact CULT-2B would be less than significant with proposed development on Blocks 1 and 6, given that the Project would result in less demolition and a contiguous Parkmerced Remnant Historic District such that the significance of the remnant district would not be materially impaired. This alternative would also result in greater project contribution to the significant cumulative impact on the Parkmerced Remnant Historic District, under Project Impact CULT-5B, for the same reasons above.

• **Transportation** – This alternative would result in similar, but somewhat reduced transportation impacts compared to the Project. While the square footage of development, number of beds, and most project features would be similar to the Project, the concert hall would not be constructed and therefore Project vehicle and transit trips would be reduced due to the lack of major events. All impacts would be less than significant, and somewhat reduced from the Project. This alternative would not result in new or increased transportation impacts compared to the CMP EIR.

• **Noise and Other Impacts** – Similar to the Project, this alternative would not result in any new or increased impacts over those identified in the CMP EIR for other environmental topics. Given the proximity of Block 5 to sensitive receptors, construction activity on this Block could also result in significant and unavoidable construction noise impacts, similar to the Project (CMP Impact NOIS-1). However, such an impact would be temporary and would only exist during construction activities. As for the Project, this alternative would not result in new or increased construction noise impacts compared to the CMP EIR.
No Project Alternative – No New Development/Preservation

Description. Under this No Project Alternative (No New Development/Preservation), the campus would not pursue redevelopment on the Project site in the foreseeable future. SF State has been reusing the properties in UPS, including the Project site, since their purchase in 2000 and 2005. SF State has conducted rehabilitation and maintenance activities on former Parkmerced blocks in this area of campus to prevent disrepair and degradation of existing buildings. These activities would continue under this alternative, but no rehabilitation, demolition, or construction would occur. Funding under the Mills Act for the above purposes is not available to SF State (California Government Code Sections 50280–50290).¹

Ability to Meet Project Objectives. This alternative would not meet any of the Project objectives shown in Table 6-2, as the Project would not be implemented under this alternative and no other development would take place on the Project site.

Impact Analysis. The impacts of this alternative in comparison to the Project are presented below and in Table 6-3:

- **Aesthetics** – This alternative would not result in any physical changes on the Project site over existing conditions and therefore the visual character of the site would not change. No aesthetic impacts would result with this alternative.

- **Air Quality** – This alternative would not result in any physical changes on the Project site over existing conditions and therefore air quality would not change. No air quality impacts would result with this alternative.

- **Greenhouse Gas Emissions** – This alternative would not result in any physical changes on the Project site over existing conditions and therefore GHG emissions would not change. No impacts related to GHG emissions would result with this alternative.

- **Historic Resources** – This alternative would not result in any physical changes on the Project site over existing conditions. Therefore, the alternative would not result in any changes to the former Parkmerced garden apartments and other character-defining features located on the Project site. Unlike the Project, this alternative would not erode the integrity of the Parkmerced Historic District or the Parkmerced Remnant Historic District, as identified in Project Impacts CULT-2A and CULT-2B. The alternative also would not result in a significant cumulative impact on the Parkmerced Remnant Historic

¹ The Mills Act is an economic incentive program in California for the restoration and preservation of qualified historic buildings by private property owners. Enacted in 1972, the Mills Act legislation grants participating local governments (cities and counties) the authority to enter into contracts with private owners of qualified historic properties who actively participate in the restoration and maintenance of their historic properties while receiving property tax relief (California Office of Historic Preservation 2016). As the Trustees of the California State University are a public entity, Mill-Act funding is not available to SF State.
District, as it would not contribute to the significant cumulative impact on the remnant district, as identified in Project Impact CULT-5B.

- **Transportation** – This alternative would not result in any physical changes to the Project site over existing conditions and vehicle and transit trips would not increase from existing conditions. Therefore, no impacts related to transportation would result with this alternative. However, this alternative would not locate student housing on campus and would not reduce vehicle trips on typical days compared to existing conditions.

- **Noise and Other Impacts** – This alternative would not result in any physical changes on the Project site over existing conditions and therefore significant and unavoidable construction noise impacts would not occur. No impacts related to noise or other impacts would result with this alternative.

Reduced Project Alternative – Partial Reuse/Preservation

Description. As indicated previously, SF State has been reusing the properties in UPS, including the Project site, since their purchase in 2000 and 2005. SF State has conducted rehabilitation and maintenance activities on former Parkmerced blocks in this area of campus to prevent disrepair and degradation of existing buildings. This alternative considers whether further reuse and rehabilitation of all or some of the buildings on Blocks 1 and 6 could be completed in compliance with the “Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings” (Weeks and Grimmer 1995), while still meeting some of the primary Project objectives.

The former Parkmerced buildings are not flexible for reuse and rehabilitation, in conformance with the Secretary of the Interior’s Standards, for the following reasons:

1. The Block 1 buildings cannot be rehabilitated for academic purposes as the existing footprint (floor plates) and vertical floor-to-floor heights are more appropriately sized for residential use and not suitable for classrooms or other instructional spaces.

2. The structural supports and foundations in the buildings are not sufficient to support construction of additional floors. Adding floors above the existing buildings would require significant structural improvements to the existing foundations and load-bearing wall systems. Adding floors would have the following considerations:
 - Architectural character would be significantly compromised
 - Increased building area would likely require additional life-safety improvements such as sprinklers and rated area separation walls
• Vertical and horizontal circulation network would need to be incorporated to serve additional floors, given that existing housing has ground-floor entrances and private interior stairs

• Site accessibility would be an issue requiring significant investment to create equity in accessing the site due to significant grade changes on Block 6

• The existing character-defining features on the Project site associated with the apartment courtyards, as identified in the Parkmerced Historic District and the Parkmerced Remnant Historic District, would be reduced

3. Adding building space only within the existing courtyards, or maintaining the existing building facades would have the following considerations:

• Existing courtyards and associated landscaping would be eliminated

• Existing construction type and method make preservation of existing facades problematic to guarantee when constructing new “inside” built features

• Construction logistics and staging would be very difficult and could substantially impact the community during construction

• The existing character-defining features on the Project site associated with the apartment courtyards, as identified in the Parkmerced Historic District and the Parkmerced Remnant Historic District, would be reduced

4. Retaining a portion of the existing garden apartments and courtyards and developing a multi-story building on the remainder of the site would have the following considerations:

• Code required building separations could make the site too small to build effectively

• Architectural character may be significantly compromised, depending on where the multi-story portion is constructed and its compatibility in design

• Existing courtyards and landscaping would be impacted and potentially eliminated

• Site accessibility may be an issue requiring significant investment to create equity in accessing the site due to significant grade changes on Block 6

• The existing character-defining features on the Project site associated with the apartment courtyards, as identified in the Parkmerced Historic District and the Parkmerced Remnant Historic District would be reduced

Given the above, the Partial Reuse/Preservation Alternative would not consider rehabilitation of the existing residential buildings on Block 1 for the proposed academic uses, as the existing buildings on this site are not conducive to reuse and rehabilitation for academic uses (see Item 1, above). Therefore, the alternative would include the Creative Arts replacement building and
concert hall on Block 1, as planned for the Project. The proposed Master Plan map revision would also be implemented under this alternative to allow for the location of the above uses on Block 1 and for the student housing/mixed-use building on Block 6.

On Block 6, this alternative would consider the possibility of retaining a portion of the existing garden apartments and courtyard and developing a multi-story building on the remainder of the site (as described in Item 4, above). The other two options above (see Items 2 and 3) would retain fewer character-defining features associated with the historic districts and would be more difficult to implement.

Figure 6-1 shows a portion of the site that could be considered for redevelopment per the above approach. This location faces east and away from the rest of the Parkmerced Remnant Historic District. The alternative would retain the existing apartment buildings on the north and west sides of the block and the portion of the interior courtyard on the northwest side of the block facing those portions of the building. This approach would provide for continued continuity with the rest of the remnant district to the west.

The remainder of the block would be redeveloped with a student housing/mixed-use building within the boundary shown in Figure 6-2. The building would be limited to no more than four stories for compatibility with the existing buildings to be retained, which are one and two stories. Given the limited horizontal and vertical building area, the student housing beds, and retail and support space would be reduced substantially. The number of housing beds would likely be reduced to approximately 100 to 120 beds, from the 550 beds proposed with the Project. The retail and support space would be reduced to approximately 10,000 to 12,000 square feet, from 25,000 to 33,000 square feet proposed with the Project. Given the code and accessibility issues identified under Item 4, above, the number of bed spaces and retail and support space identified above could be further reduced during the design process.

Ability to Meet Project Objectives. As shown in Table 6-2, this alternative would meet all of the Project objectives related to the Creative Arts replacement building and the concert hall, as these buildings would be constructed under this alternative. However, the alternative would only somewhat meet the Project objectives related to the student housing/mixed-use building site as it would substantially reduce the number of housing units and beds that could be constructed on the site and therefore the alternative would be limited in aiding in the recruitment and retention of students and reducing commute trips by providing close-in housing. A partial reuse/preservation alternative would not integrate Block 6 into the campus and would not make efficient use of this site. Given that the housing and retail would not face Holloway Avenue, the alternative would not facilitate redefining Holloway Avenue as a “college main street.”
Impact Analysis. The impacts of this alternative in comparison to the Project are presented below and in Table 6-3:

- **Aesthetics** – This alternative would result in similar, but would be somewhat reduced aesthetics impacts compared to the Project. All impacts would be less than significant, given that the height of the residential building on Block 6 under this alternative would be lower than proposed for Block 6 with the Project. The lower building height would be more compatible with the existing visual character of the former Parkmerced apartments on the remainder of Block 6, on the rest of the SF State campus and in the adjacent Parkmerced area. However, the approved Parkmerced project and the adopted Parkmerced Special-Use District would ultimately result in redevelopment of all of the adjacent blocks in this area with higher density development and greater building heights. As for the Project, this alternative would not result in new or increased aesthetic impacts compared to the CMP EIR.

- **Air Quality** – This alternative would result in similar, but somewhat increased air quality impacts compared to the Project. The number of beds on Block 6 would be reduced under this alternative, resulting in a smaller reduction in vehicle trips and therefore an increase in daily and annual operation emissions. All impacts would be less than significant, as for the Project, but somewhat increased. As for the Project, this alternative would not result in new or increased air quality impacts compared to the CMP EIR.

- **Greenhouse Gas Emissions** – This alternative would result in similar, but somewhat increased GHG impacts compared to the Project. The number of beds on Block 6 would be reduced under this alternative, resulting in a smaller reduction in vehicle trips and, therefore, an increase in daily and annual GHG emissions. All impacts would be less than significant, as for the Project, but somewhat increased. As the CMP EIR did not evaluate this topic, these are new less-than-significant impacts, as for the Project.

- **Historic Resources** – This alternative could result in reduced historic resource impacts, as compared to the Project. While the alternative calls for development on Block 1 as planned with the Project, Block 6 would be only partially reused for new development. The retained former Parkmerced apartments on the northwest corner of Block 6 would retain continuity with the rest of the remnant district to the west. Sensitive development on the southeast corner of Block 6 could allow for retention of character-defining features on this block, although the presence and extent of such features would likely be reduced under this alternative. As a result, this alternative would have a reduced contribution to the significant cumulative impact on the Parkmerced Remnant Historic District, under Project Impact CULT-5B. The contribution to the cumulative
impact would not be considerable and therefore the alternative would have a less-than-significant cumulative impact on the Parkmerced Remnant Historic District.

- **Transportation** – This alternative would result in similar, but somewhat increased transportation impacts compared to the Project. The square footage of development and number of beds on Block 6 would be reduced under this alternative, resulting in a smaller reduction in vehicle and transit trips. With a smaller reduction in trips due to the housing development, the net increase in vehicle and transit trips on event days would be greater due to the concert hall. However, the net new vehicle trips would still be within the CMP Trip Envelope described in Section 4.5. All impacts would be less than significant, as for the Project, but somewhat increased under this alternative. As for the Project, this alternative would not result in new or increased transportation impacts compared to the CMP EIR.

- **Noise and Other Impacts** – Similar to the Project, this alternative would not result in any new or increased impacts over those identified in the CMP EIR for other environmental topics. Given the proximity of the Project site to sensitive receptors, construction activity could also result in significant and unavoidable construction noise impacts, similar to the Project (CMP Impact NOIS-1). However, such an impact would be temporary and would only exist during construction activities. As for the Project, this alternative would not result in new or increased construction noise impacts compared to the CMP EIR.

Reduced Project Alternative – No Development of Block 6

Description. Under the Reduced Development Alternative, SF State would not redevelop Block 6 as part of this Project to provide for increased student housing and retail and support space, or pursue the related Master Plan map revision required to develop this block. While, SF State could ultimately pursue future build out of UPS, as contemplated in the future vision included in the 2007 CMP, including demolition and redevelopment of all SF State garden apartment blocks in UPS, such development is not considered as part of this alternative.

The proposed development on Block 1, related Master Plan map revision, and the vacation of Tapia Drive would take place under this alternative to meet the primary Project objectives related to Creative Arts facilities, extending the academic core to the west, and positioning semi-public uses such as the concert hall in highly visible locations along the campus edges. This alternative is consistent with the CMP EIR Reduced Housing Alternative described in Section 6.3, above, which called for no redevelopment in UPS and reduced campus housing.

Ability to Meet Project Objectives. As shown in Table 6-2, this alternative would meet all of the Project objectives related to the Creative Arts replacement building and the concert hall, as these buildings would be constructed under this alternative. However, the alternative would not
meet the Project objectives related to the student housing/mixed-use building site, as it would not build housing, retail, or support uses and therefore would not aid in the recruitment and retention of students, reduce commute trips, integrate Block 6 into the campus, make efficient use of Block 6, and would not facilitate redefining Holloway Avenue as a “college main street.”

Impact Analysis. The impacts of this alternative in comparison to the Project are presented below and in Table 6-3:

- **Aesthetics** – This alternative would result in similar, but would be somewhat reduced aesthetics impacts compared to the Project. All aesthetics impacts would be less than significant, but would be somewhat reduced given that no development on Block 6 would occur with the alternative. As for the Project, this alternative would not result in new or increased aesthetic impacts compared to the CMP EIR.

- **Air Quality** – This alternative would result in increased operational air quality impacts, but decreased construction air quality impacts compared to the Project. Without the construction of student housing there would be no reduction in student vehicle and transit trips, while construction of the concert hall would increase vehicle and transit trips on event days. However, the lack of any construction on Block 6 would reduce construction related emissions associated with the Project. All impacts would be less than significant, as for the Project, but somewhat increased. As for the Project, this alternative would not result in new or increased air quality impacts compared to the CMP EIR.

- **Greenhouse Gas Emissions** – This alternative would result in increased GHG impacts compared to the Project. Without the construction of student housing there would be no reduction in student vehicle and transit trips, while construction of the concert hall would increase vehicle and transit trips on event days. All impacts would be less than significant, as for the Project, but somewhat increased. As for the Project, this alternative would not result in new or increased GHG impacts compared to the CMP EIR.

- **Historic Resources** – This alternative would result in reduced historic resource impacts, as compared to the Project. While the alternative calls for development on Block 1 as planned with the Project, Block 6 would not be developed. Character-defining features on Block 6 would be retained. The former Parkmerced apartments on the Block 6 would retain continuity with the rest of the remnant district to the west. As a result, this alternative would have a reduced contribution to the significant cumulative impact on the Parkmerced Remnant Historic District, under Project Impact CULT-5B. The contribution to the cumulative impact would not be considerable and therefore the alternative would have a less-than-significant cumulative impact on the Parkmerced Remnant Historic District.
• **Transportation** – This alternative would result in similar, but somewhat increased transportation impacts compared to the Project. Without the student housing there would be no reduction in student vehicle and transit trips, while the concert hall would increase vehicle and transit trips on event days. The net new vehicle and transit trips on event days would increase; however, the trips would still be within the CMP Trip Envelope described in Section 4.5. All impacts would be less than significant, as for the Project, but somewhat increased under this alternative. As for the Project, this alternative would not result in new or increased transportation impacts compared to the CMP EIR.

• **Noise and Other Impacts** – Similar to the Project, this alternative would not result in any new or increased impacts over those identified in the CMP EIR for other environmental topics. Given the proximity of the Project site to sensitive receptors, construction activity could also result in significant and unavoidable construction noise impacts, similar to the Project (CMP Impact NOIS-1). However, such an impact would be temporary and would only exist during construction activities. Given that the alternative would result in construction on one block instead of two blocks, the construction noise impact would be somewhat reduced. As for the Project, this alternative would not result in new or increased construction noise impacts compared to the CMP EIR.

Alternative Site Locations – Avoidance of Former Parkmerced Properties

Description. Alternative Site Locations considered for the Project include (1) the West Campus Green, adjacent to Block 1, for the Creative Arts replacement building and concert hall, and (2) a site in UPN on the north of the campus for the student housing/mixed-use building. A site in UPN is considered given that the 2007 CMP also called for the redevelopment of UPN and the redevelopment of Buckingham Way into a campus main street, similar to that contemplated for Holloway Avenue. A location in UPN does not provide for a direct, proximate connection to the campus core. Therefore, development on this site would likely also require the construction of the Millennium Bridge across the valley, which would connect UPN to the academic core, as called for in the 2007 CMP.

This alternative would avoid redevelopment of former Parkmerced properties located in Block 1 and Block 6. Figure 6-2 shows the site locations for this alternative.

Ability to Meet Project Objectives. The construction of the Creative Arts replacement building and concert hall on the West Campus Green would not meet the Project objectives for these uses, as this site: (1) is farther removed from the student housing/mixed-use building site and the associated emerging activity that would occur on Buckingham Way on the north side of the campus; (2) is less prominent as a location for the concert hall; and (3)
lacks the opportunity to reinforce programmatic connection and collaboration between the existing Creative Arts, Fine Arts and Humanities Buildings and the campus core, as this site is farther away from the existing arts buildings. Additionally, the planned future space for Music & Theater / Dance programs contemplated as part of the CMP building program would be better to site together, and due to their size require a larger site, such as the West Campus Green. Therefore, this alternative would not provide for the most efficient and effective use of the West Campus Green and the Tapia Triangle (Block 1) for all of the planned future Creative Arts programs.

As this alternative would provide the same amount of student bed spaces as the Project it would meet the objective to provide new on-campus student housing to aid in recruitment and retention of students and to reduce vehicle trips. It would not meet the Project objective that aims to integrate and make efficient use of more recently acquired properties along the southern edge of campus, as the Project would be pursued in the northern portion of the campus. As the student housing/mixed-use building would be located further away from the M-line, it would somewhat meet the objective to locate new student housing, neighborhood retail, and support services in proximity to the existing Muni M line and bus lines and to the future planned underground Muni M line and station and to planned 19th Avenue bicycle and pedestrian facilities. Given that the building would be on the north side of the campus, it would not meet the objective to locate the building in immediate proximity to the academic core of the campus, where pedestrian access to the core is readily available. As noted above, a new pedestrian bridge would be required to provide for direct access to the academic core. The alternative would not facilitate redefining Holloway Avenue as a “college main street.” However, it would facilitate redefining Buckingham Way as a “college main street,” as called for in the CMP.

Impact Analysis. The impacts of this alternative in comparison to the Project are presented below and in Table 6-3:

- **Aesthetics** – This alternative would result in similar, but somewhat reduced aesthetics impacts compared to the Project. All aesthetics impacts would be less than significant, but would be somewhat reduced given that no development on Block 1 or Block 6 would occur with the alternative. As for the Project, this alternative would not result in new or increased aesthetic impacts compared to the CMP EIR.

- **Air Quality** – This alternative would result in similar air quality impacts compared to the Project. Most features of the Project would be similar but located on other parts of the campus resulting in similar air quality impacts. All impacts would be less than significant, as for the Project. As for the Project, this alternative would not result in new or increased air quality impacts compared to the CMP EIR.
• **Greenhouse Gas Emissions** – This alternative would result in similar GHG impacts compared to the Project. Most features of the Project would be similar but located on other parts of the campus resulting in similar GHG impacts. All impacts would be less than significant, as for the Project. As the CMP EIR did not evaluate this topic, these are new less-than-significant impacts.

• **Historic Resources** – This alternative would result in reduced historic resource impacts, as compared to the Project. The alternative would avoid redevelopment of both Block 1 and Block 6, and the Parkmerced Remnant Historic District would be retained under this alternative. Therefore, the alternative would not erode the integrity of the historic district or contribute to a cumulative impact. The alternative would avoid the significant cumulative impact on the Parkmerced Remnant Historic District, under Project Impact CULT-5B, as it would not result in a considerable contribution to the cumulative impact. The impact would be less than significant.

• **Transportation** – This alternative would result in similar transportation impacts compared to the Project. Most features of the Project would be similar but located in other parts of the campus resulting in the same number of vehicle and transit trips and similar transportation impacts. The trip generation would still be within the CMP Trip Envelope described in Section 4.5. All impacts would be less than significant, as for the Project. As for the Project, this alternative would not result in new or increased transportation impacts compared to the CMP EIR.

• **Noise and Other Impacts** – Similar to the Project, this alternative would not result in any new or increased impacts over those identified in the CMP EIR for other environmental topics. However, the pedestrian bridge through the valley portion of the campus would have greater biological resource and hydrology and water quality impacts compared to the Project, but such impacts would likely be reduced to less than significant with CMP EIR mitigation measures. Given the proximity of the Project site to sensitive receptors, construction activity could also result in significant and unavoidable construction noise impacts, similar to the Project (CMP Impact NOIS-1). However, such an impact would be temporary and would only exist during construction activities. As for the Project, this alternative would not result in new or increased construction noise impacts compared to the CMP EIR.

6.6 ENVIRONMENTALLY SUPERIOR ALTERNATIVE

Table 6-3 provides a summary comparison of the alternatives to the Project with the purpose of highlighting whether the alternative would result in a similar, greater or lesser environmental impact than the Project.
The No Project Alternative – No New Development/Preservation would avoid all of the impacts of the Project, as no development would occur under this alternative. However, this alternative would not locate student housing on campus and therefore would not reduce vehicle trips on typical days compared to existing conditions. Despite not reducing vehicle trips on typical days, this alternative would be the environmentally superior alternative, as it would avoid the significant cumulative impact on the Parkmerced Remnant Historic District and avoid other less-than-significant impacts. However, the No Project Alternative would not meet any of the Project objectives, as shown in Table 6-2.

If the environmentally superior alternative is the No Project Alternative, CEQA Guidelines Section 15126(d)(2) requires that the EIR identify another alternative as environmentally superior.

Of the remaining alternatives, the environmentally superior alternative is the Alternative Site Locations alternative that calls for avoiding development on the Project site, which consists of two blocks in the southern portion of the campus that have former Parkmerced apartments and other character-defining features. This alternative would avoid the significant unavoidable cumulative historic resource impact of the Project, as it would not contribute to this impact. It would also provide for the full housing program and associated vehicle and transit trip reduction benefits, similar to the Project. However, this alternative would not meet many of the other Project objectives, as discussed above and shown in Table 6-2.
Table 6-2
Ability to Meet Project Objectives Comparison

<table>
<thead>
<tr>
<th>Project Objective</th>
<th>Project</th>
<th>No Project – Development under Adopted CMP</th>
<th>No Project – No New Development/Preservation</th>
<th>Reduced Project Alternative – Partial Reuse/Preservation</th>
<th>Reduced Project Alternative – No Development on Block 6</th>
<th>Alternative Site Location – Avoidance of Former Parkmerced Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Replace significant portions of the existing Creative Arts building, which has various deficiencies and no longer supports the academic program, and construct a new concert hall with recording and broadcast capability to provide hands-on learning for BECA [Broadcast & Electronic Communication Arts] students and support SF State and community programs.</td>
<td>Yes</td>
<td>Yes (Creative Arts building) No (concert hall)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2. Reinforce the academic core and extend it westward to create a contiguous, uninterrupted academic core. The Creative Arts replacement building and concert hall would occupy a pivotal location at Holloway Avenue and Font Boulevard, in proximity to residential mixed-use development and adjacent to College of Liberal and Creative Arts facilities to provide for programmatic collaboration.</td>
<td>Yes</td>
<td>Yes (Creative Arts building) No (concert hall)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3. Position semi-public uses, such as the concert hall, at the corners or edges of campus, creating icons that redefine SF State’s external identity and engage the larger community.</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4. Provide for the most efficient and effective use of the West Campus Green and the Tapia Triangle for planned future Creative Arts programs.</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Project Objective</td>
<td>Project</td>
<td>No Project – Development under Adopted CMP</td>
<td>No Project – No New Development/Preservation</td>
<td>Reduced Project Alternative – Partial Reuse/Preservation</td>
<td>Reduced Project Alternative – No Development on Block 6</td>
<td>Alternative Site Location – Avoidance of Former Parkmerced Properties</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>5. Provide new on-campus student housing to aid in recruitment and retention of students and to provide close-in housing that enables students to walk to school, thereby reducing commute trips to campus and associated greenhouse gas (GHG) emissions.</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Somewhat</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6. Begin to integrate and make efficient use of more recently acquired residential properties located along the southern edge of the campus.</td>
<td>Yes</td>
<td>Somewhat</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>7. Locate new student housing, neighborhood retail, and support services in proximity to the existing Muni M line and bus lines and to the future planned underground Muni M line and station and to planned 19th Avenue bicycle and pedestrian facilities. Additionally, locate the above uses in immediate proximity to the academic core of the campus, where pedestrian access to the core is readily available.</td>
<td>Yes</td>
<td>Somewhat</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Somewhat (Proximity to M line)</td>
</tr>
<tr>
<td>8. Locate higher-density student housing with ground-floor neighborhood retail and services along Holloway Avenue to redefine Holloway Avenue as a "college main street."</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 6-2
Ability to Meet Project Objectives Comparison

<table>
<thead>
<tr>
<th>Project Objective</th>
<th>Project</th>
<th>No Project – Development under Adopted CMP</th>
<th>No Project – No New Development/Preservation</th>
<th>Reduced Project Alternative – Partial Reuse/Preservation</th>
<th>Reduced Project Alternative – No Development on Block 6</th>
<th>Alternative Site Location – Avoidance of Former Parkmerced Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Ensure that new construction achieves LEED (Leadership in Energy and Environmental Design) Gold or equivalent performance and energy efficiency beyond California Energy Commission Title 24 requirements. LEED Platinum certification (or an equivalent rating under WELL or another green building rating system) and ZNE (zero net energy) should be targeted, and the Project should meet other CMP and Climate Action Plan (SF State 2010) sustainability objectives.</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Yes = Meets Project objective
No = Does not meet Project objective
Somewhat = Partially meets Project objective
Table 6-3
Alternatives Impact Comparison

<table>
<thead>
<tr>
<th>Project Impact</th>
<th>Project</th>
<th>No Project – Development under Adopted CMP</th>
<th>No Project – No New Development/Preservation</th>
<th>Reduced Project Alternative – Partial Reuse/Preservation</th>
<th>Reduced Project Alternative – No Development on Block 6</th>
<th>Alternative Site Location – Avoidance of Former Parkmerced Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Impact AES-0</td>
<td>The Project would not have a substantial adverse impact on a scenic vista</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS-</td>
<td>LS-</td>
</tr>
<tr>
<td>Project Impact AES-1</td>
<td>The Project would not substantially damage the small groves of Monterey Cypress and Monterey Pine or otherwise substantially damage a scenic resource</td>
<td>LS</td>
<td>LS</td>
<td>NI</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AES-2</td>
<td>The Project would not substantially degrade the existing visual character of the existing site or SF State campus surroundings</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS-</td>
<td>LS-</td>
</tr>
<tr>
<td>Project Impact AES-3</td>
<td>The Project would not substantially degrade the existing visual character of the adjacent Parkmerced area given the implementation of design guidelines and compatibility with approved plans for Parkmerced</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS-</td>
<td>LS-</td>
</tr>
<tr>
<td>Project Impact AES-4</td>
<td>The Project would not create new sources of substantial light or glare on or adjacent to campus that could adversely affect daytime or nighttime views in the area</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS-</td>
<td>LS-</td>
</tr>
</tbody>
</table>
6 – ALTERNATIVES

Table 6-3
Alternatives Impact Comparison

<table>
<thead>
<tr>
<th>Project Impact</th>
<th>Project Impact</th>
<th>Project</th>
<th>No Project – Development under Adopted CMP</th>
<th>No Project – No New Development/Preservation</th>
<th>Reduced Project Alternative – Partial Reuse/Preservation</th>
<th>Reduced Project Alternative – No Development on Block 6</th>
<th>Alternative Site Location – Avoidance of Former Parkmerced Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Impact AES-5</td>
<td>The Project, in conjunction with other vicinity development, would not result in significant cumulative impacts due to substantial degradation of the existing visual character of the area</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS-</td>
<td>LS-</td>
<td>LS</td>
</tr>
</tbody>
</table>

4.2 Air Quality

<table>
<thead>
<tr>
<th>Project Impact</th>
<th>Project Impact</th>
<th>Project</th>
<th>Project</th>
<th>Project</th>
<th>Project</th>
<th>Project</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Impact AIR-1</td>
<td>The Project would not violate any air quality standard or contribute substantially to an existing or projected air quality violation</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AIR-2</td>
<td>The Project would not conflict with or obstruct the implementation of the applicable air quality plan</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AIR-3</td>
<td>The Project would not expose sensitive receptors to substantial pollutant concentrations</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact AIR-4A</td>
<td>The Project would not result in a cumulatively considerable new increase of any criteria pollutant for which the Project region is nonattainment under an applicable federal or state ambient air quality standard</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
<td>LS</td>
</tr>
</tbody>
</table>
Table 6-3
Alternatives Impact Comparison

<table>
<thead>
<tr>
<th>Project Impact</th>
<th>Project</th>
<th>No Project – Development under Adopted CMP</th>
<th>No Project – No New Development/Preservation</th>
<th>Reduced Project Alternative – Partial Reuse/Preservation</th>
<th>Reduced Project Alternative – No Development on Block 6</th>
<th>Alternative Site Location – Avoidance of Former Parkmerced Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Impact AIR-4B</td>
<td>The Project would not contribute to cumulative impacts with respect to air quality</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
</tr>
<tr>
<td>Project Impact GHG-1</td>
<td>The Project would not generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
</tr>
<tr>
<td>Project Impact GHG-2</td>
<td>The Project would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs.</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
</tr>
<tr>
<td>Project Impact GHG-3</td>
<td>The Project would not result in cumulatively considerable emissions of GHGs.</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
</tr>
</tbody>
</table>

4.3 Greenhouse Gas Emissions
Table 6-3
Alternatives Impact Comparison

<table>
<thead>
<tr>
<th>Project Impact</th>
<th>Project Impact</th>
<th>No Project – Development under Adopted CMP</th>
<th>No Project – No New Development/Preservation</th>
<th>Reduced Project Alternative – Partial Reuse/Preservation</th>
<th>Reduced Project Alternative – No Development on Block 6</th>
<th>Alternative Site Location – Avoidance of Former Parkmerced Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Impact</td>
<td>Tiered Project EIR</td>
<td>Historic Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CULT-2A</td>
<td>LS</td>
<td>LS+</td>
<td>NI</td>
<td>LS-</td>
<td>LS-</td>
<td>NI</td>
</tr>
<tr>
<td></td>
<td>The proposed Project would demolish Blocks 1 and 6, which are qualified historic resources as contributors to an identified Parkmerced Historic District. The demolition of Blocks 1 and 6 would erode the integrity of the historic district but would not materially impair its significance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CULT-2B</td>
<td>LS</td>
<td>SU</td>
<td>NI</td>
<td>LS-</td>
<td>LS-</td>
<td>NI</td>
</tr>
<tr>
<td></td>
<td>The proposed Project would demolish Blocks 1 and 6, which are qualified historic resources as contributors to an identified Parkmerced Remnant Historic District. The demolition of Blocks 1 and 6 would erode the integrity of the historic district but would not materially impair its significance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6-3
Alternatives Impact Comparison

<table>
<thead>
<tr>
<th>Project Impact</th>
<th>Project</th>
<th>No Project – Development under Adopted CMP</th>
<th>No Project – No New Development/Preservation</th>
<th>Reduced Project Alternative – Partial Reuse/Preservation</th>
<th>Reduced Project Alternative – No Development on Block 6</th>
<th>Alternative Site Location – Avoidance of Former Parkmerced Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Impact CULT-5A</td>
<td>The proposed demolition of Blocks 1 and 6 and removal of existing landscape features on the Project site would contribute to a significant cumulative impact on the historic significance of the Parkmerced Historic District, as it would erode its integrity; however, the Project’s contribution to this significant cumulative impact would not be cumulatively considerable.</td>
<td>LS</td>
<td>LS+</td>
<td>NI</td>
<td>LS-</td>
<td>LS-</td>
</tr>
<tr>
<td>Project Impact CULT-5B</td>
<td>The proposed demolition of Blocks 1 and 6 and removal of existing landscape features on the Project site would contribute to a significant cumulative impact on the historic significance of the Parkmerced Remnant Historic District, as it would erode its integrity; the Project’s contribution to this significant cumulative impact would be cumulatively considerable.</td>
<td>SU</td>
<td>SU+</td>
<td>NI</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>Project Impact</td>
<td>Project Impact TRA-1</td>
<td>Project Impact TRA-2</td>
<td>Project Impact TRA-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Project – Development under Adopted CMP</td>
<td>The proposed Project would not increase vehicle trips above the adjusted CMP EIR trip envelope and therefore would not result in new or increased level of service impacts over those identified in the CMP EIR.</td>
<td>The proposed Project would not increase transit trips above the adjusted CMP EIR trip envelope and therefore would not result in new or increased impacts over those identified in the CMP EIR.</td>
<td>Implementation of the Project would not adversely affect conditions for pedestrians or otherwise interfere with accessibility, nor would the Project create hazardous conditions for pedestrians.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Project – No New Development/Preservation</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Project Alternative – Partial Reuse/Preservation</td>
<td>LS-</td>
<td>NI</td>
<td>NI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Project Alternative – No Development on Block 6</td>
<td>LS+</td>
<td>LS+</td>
<td>LS+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative Site Location – Avoidance of Former Parkmerced Properties</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6-3
Alternatives Impact Comparison

Tiered Project EIR

4.5 Transportation

<table>
<thead>
<tr>
<th>Project Impact</th>
<th>LS</th>
<th>LS-</th>
<th>NI</th>
<th>LS+</th>
<th>LS+</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Impact TRA-1</td>
<td>The proposed Project would not increase vehicle trips above the adjusted CMP EIR trip envelope and therefore would not result in new or increased level of service impacts over those identified in the CMP EIR.</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
</tr>
<tr>
<td>Project Impact TRA-2</td>
<td>The proposed Project would not increase transit trips above the adjusted CMP EIR trip envelope and therefore would not result in new or increased impacts over those identified in the CMP EIR.</td>
<td>LS</td>
<td>LS-</td>
<td>NI</td>
<td>LS+</td>
<td>LS+</td>
</tr>
<tr>
<td>Project Impact TRA-3</td>
<td>Implementation of the Project would not adversely affect conditions for pedestrians or otherwise interfere with accessibility, nor would the Project create hazardous conditions for pedestrians.</td>
<td>LS</td>
<td>LS</td>
<td>NI</td>
<td>LS</td>
<td>LS</td>
</tr>
</tbody>
</table>
Table 6-3
Alternatives Impact Comparison

<table>
<thead>
<tr>
<th>Project Impact</th>
<th>Project</th>
<th>No Project – Development under Adopted CMP</th>
<th>No Project – No New Development/Preservation</th>
<th>Reduced Project Alternative – Partial Reuse/Preservation</th>
<th>Reduced Project Alternative – No Development on Block 6</th>
<th>Alternative Site Location – Avoidance of Former Parkmerced Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiered Project EIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Impact TRA-4</td>
<td></td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>Implementation of the Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>would not adversely affect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conditions for bicyclists or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>otherwise interfere with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>accessibility, nor would the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project create hazardous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conditions for bicyclists.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Impact TRA-6</td>
<td></td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td>Implementation of the Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>would not conflict with any</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adopted plans, policies or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>programs supporting alternative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transportation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other CMP EIR Significant Unavoidable Impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP Impact NOIS-1</td>
<td></td>
<td>SU</td>
<td>SU</td>
<td>NI</td>
<td>SU</td>
<td>SU</td>
</tr>
<tr>
<td>Construction of campus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>facilities under the Campus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master Plan could expose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nearby sensitive receptors to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>excessive airborne noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NA = not applicable
NI = no impact
LS = less than significant
PS = potentially significant
S = significant
SU = significant and unavoidable
- Reduced impact compared to the Project
+ Increased impact compared to the Project
6.7 REFERENCES

FIGURE 6-1
Partial Reuse/Preservation Alternative

SOURCE: Bing Maps (Accessed 2016); Dudek (2016)
San Francisco State Creative Arts & Holloway Mixed-Use Project EIR
INTENTIONALLY LEFT BLANK
CHAPTER 7
RESPONSE TO COMMENTS

7.1 INTRODUCTION

This chapter contains the comment letters received in response to the draft environmental impact report (EIR) during the public review period (September 27, 2016 through November 11, 2016) and at the public meeting to receive comments on the Draft EIR held on October 18, 2016, for the Creative Arts & Holloway Mixed-Use Project (Project). Each comment letter is numbered, each individual comment within a letter is bracketed and numbered, and responses are provided to each comment following each letter. The responses amplify or clarify information provided in the Draft EIR and/or refer the reader to the appropriate place in the document where the requested information can be found. Comments that are not directly related to environmental issues (e.g., opinions on the merits of the Project unrelated to its environmental impacts) are either discussed or noted for the record. Where text changes in the Draft EIR are warranted based on comments received, on updated Project description information, or on information provided by San Francisco State University (SF State) staff, those changes are included in underline/strikeout text in this Final EIR. This chapter, in its entirety, is new in the Final EIR. Given that, it is not underlined, but should be considered new text.

The changes to the information contained in the Draft EIR represent only minor clarifications/amplifications and do not constitute significant new information resulting in a new significant impact. In accordance with the California Environmental Quality Act (CEQA) Guidelines, Section 15088.5, recirculation of the Draft EIR is not required.

7.2 RESPONSES TO COMMENTS

A list of all commenters is provided in Table 7-1, followed by the comment letters and responses.

Table 7-1
List of Commenters

<table>
<thead>
<tr>
<th>Letter Number</th>
<th>Date of Letter</th>
<th>Sender or Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/10/16</td>
<td>Department of Toxic Substances Control (Harold Duke)</td>
</tr>
<tr>
<td>2</td>
<td>10/20/16</td>
<td>San Francisco Municipal Transportation Agency (Charles Rivasplata)</td>
</tr>
<tr>
<td>3</td>
<td>11/7/16</td>
<td>San Francisco Public Utilities Commission (Irina Torrey)</td>
</tr>
<tr>
<td>4</td>
<td>10/18/16</td>
<td>Lakeside Park Owners Association (Ralph Chem)</td>
</tr>
<tr>
<td>5</td>
<td>11/9/16</td>
<td>Parkmerced, Maximus Real Estate Partners (Bert Polacci)</td>
</tr>
<tr>
<td>6</td>
<td>11/10/16</td>
<td>San Francisco State University, University Property Management (Linda Jo Morton)</td>
</tr>
</tbody>
</table>
Table 7-1
List of Commenters

<table>
<thead>
<tr>
<th>Letter Number</th>
<th>Date of Letter</th>
<th>Sender or Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>11/11/16</td>
<td>Mani Drayton</td>
</tr>
<tr>
<td>8</td>
<td>10/20/16</td>
<td>Aaron Goodman</td>
</tr>
</tbody>
</table>
November 10, 2016

Ms. Wendy Bloom
Campus Planner
Capital Planning, Design & Construction
San Francisco State University
1600 Holloway Avenue
San Francisco, California 94131

REVIEW OF NOTICE OF COMPLETION OF DRAFT ENVIRONMENTAL IMPACT REPORT FOR THE CREATIVE ARTS & MIXED-USE PROJECT, SAN FRANCISCO, SAN FRANCISCO COUNTY (SCH #2016072013)

Dear Ms. Bloom:

The Northern California Schools Unit of the Department of Toxic Substances Control (DTSC) has reviewed the Notice of Completion (NOC) for a draft Environmental Impact Report (EIR) for the Creative Arts & Holloway Mixed-Use project (Project) proposed by the San Francisco State University (SF State). The due date to submit comments is November 10, 2016.

SF State proposes to develop the Creative Arts and Holloway Mixed-Use project in the southern portion of the SF State campus (Site). The Project includes the construction of the Creative Arts replacement building, an associated concert hall, and a mixed-use development including student housing, neighborhood-serving retail, and student support services.

Based on a review of the NOC, DTSC would like to provide the following comments:

1. Because the Project is school site related, DTSC recommends that an environmental review, such as a Phase 1 Environmental Site Assessment (Phase 1) and/or Preliminary Endangerment Assessment (PEA), be conducted for the Site to determine whether there has been or may have been a release or threatened release of a hazardous material, or whether a naturally occurring hazardous material is present based on reasonably available information about the property and the...
area in its vicinity. Such an environmental review should generally be conducted as part of the California Environmental Quality Act (CEQA) process. If SF State elects to proceed to conduct an environmental assessment at the Site under DTSC oversight, it should enter into a Voluntary Cleanup Agreement with DTSC to oversee the preparation of the environmental assessment. Alternatively, DTSC recommends SF State continue to investigate, and clean up if necessary, the Site under the oversight of the City and County of San Francisco and in concurrence with all applicable DTSC guidance documents.

2. The presence of existing, older or former structures at the Site may result in potential environmental concerns due to lead from lead-based paint and/or organochlorine pesticides from termicide applications and polychlorinated biphenyls (PCBs) from electrical transformers, light ballast or window caulking or glazing. DTSC recommends that these environmental concerns be investigated and possibly mitigated, in accordance with DTSC’s “Interim Guidance, Evaluation of School Sites with Potential Soil Contamination as a Result of Lead from Lead-Based Paint, Organochlorine Pesticides from Termicides, and Polychlorinated Biphenyls from Electrical Transformers, dated June 9, 2006”, and in accordance with the recommendations provided in the United States Environmental Protection Agency’s website “PCBs in Caulk in Older Buildings” (http://www.epa.gov/oppslcaucl/index.htm).

3. If the Site was previously used for agricultural purposes, pesticides (such as DDT, DDE, and toxaphene) and fertilizers (usually containing heavy metals) commonly used as part of agricultural operations are likely to be present. These agricultural chemicals are persistent and bio-accumulative toxic substances. DTSC recommends that these environmental concerns be investigated and possibly mitigated, in accordance with the “Interim Guidance for Sampling Agricultural Soils (Third Revision)”, dated August 2008. This guidance should be followed to sample agricultural properties where development is anticipated.

4. The Site appears to be located within 10-miles of a geological unit potentially containing naturally occurring asbestos (NOA). Pursuant to DTSC’s “Interim Guidance – Naturally Occurring Asbestos at School Sites, Revised September 24, 2004”, further action should be considered and conducted to determine whether a naturally occurring hazardous material (i.e., NOA) is present, based on reasonably available information about the properties and the areas in their vicinity, and a soil assessment pursuant to the DTSC’s NOA guidance.

5. If a response action is required based on the results of the above investigations, and/or other information, the EIR will require an analysis of the potential public health and environmental impacts associated with any proposed response action, pursuant to requirements of the CEQA (Pub. Resources Code, Division 13, section
Ms. Wendy Bloom
November 10, 2016

Page 3

21000 et seq.), and its implementing Guidelines (California Code of Regulations,
Title 14, section 15000 et seq.), prior to approval or adoption of an EIR for the
Project. A discussion of the mitigation and/or removal actions, if necessary, and
associated cumulative impacts to the Project properties and the surrounding
environment, should be included in the EIR. If sufficient information to discuss the
proposed mitigation and/or removal actions, and their associated impacts to the
Project properties and the surrounding environment, are not available for inclusion in
the EIR, then an Addendum or Supplement to the EIR may be required.

DTSC is also administering the Revolving Loan Fund (RLF) Program which provides
revolving loans to investigate and clean up hazardous materials at properties where
redevelopment is likely to have a beneficial impact to a community. These loans are
available to developers, businesses, schools, and local governments.

For additional information on DTSC’s Schools process or RLF Program, please visit
DTSC’s web site at www.dtsc.ca.gov. If you would like to discuss this matter further,
please contact me at (916) 285-3695, or via email at bud.duke@dtsc.ca.gov.

Sincerely,

Harold (Bud) Duke, PG
Senior Engineering Geologist
Northern California Schools Unit
Brownfields and Environmental Restoration Program

cc:
State Clearinghouse (State.clearinghouse@opr.ca.gov)
Office of Planning and Research
Michael O’Neill (MO'Neill@oe.ca.gov)
Department of Education – Sacramento, CA
Lisa Constanse (LCoustonse@oe.ca.gov)
Department of Education – Sacramento, CA
Jackie Buttle (Jackie.Buttle@dtsc.ca.gov)
DTSC CEQA Tracking Center – Sacramento, CA
Jose Salcedo (Jose.Salcedo@dtsc.ca.gov)
DTSC Schools Unit – Sacramento, CA
INTENTIONALLY LEFT BLANK
Response to Comment Letter 1

Department of Toxic Substances Control
Harold (Bud) Duke, PG
November 10, 2016

This comment recommends that a Phase 1 Environmental Site Assessment be conducted for the site to determine whether there has been a release of a hazardous material in the vicinity. This comment also indicates that the information from a Phase 1 Environmental Site Assessment should be included in the CEQA document for the Project.

As described in Chapter 2, Introduction, of this Final EIR, the EIR for this Project is tiered to the 2007 Campus Master Plan (CMP) EIR (SCH No. 2006102050) (SF State 2007a). A Tiered Initial Study was prepared and is attached as Appendix A to this EIR to identify the issues that were adequately addressed in the 2007 CMP EIR and to identify the issues that would require further analysis in this EIR. The tiered project-level evaluation provided in the Tiered Initial Study (Section 4.8 of the Initial Study) addresses the potential impacts of the Project related to hazards and hazardous materials. The CMP EIR and Tiered Initial Study conclusions about hazardous materials contamination are summarized below.

As cited in Section 4.6 of the CMP EIR, numerous Phase I Environmental Site Assessments were conducted for various locations on the SF State campus, including the former Parkmerced properties acquired by SF State. CMP EIR Impact HAZ-3 indicates that the campus is not on a list of hazardous material sites compiled pursuant to Government Code Section 65962.5. There are no known sites with soil or groundwater contamination on the campus, and several former underground storage tank or leaking underground storage tank sites on campus have been remediated and contamination is no longer a concern. As reported in the CMP EIR, the SF State Office of Environmental Health and Occupational Safety is not aware of any existing contaminated sites on campus. Also, the past uses of the campus are well known and are not likely to have resulted in soil or groundwater contamination. Due to the low probability of any remaining contaminated locations on campus, CMP EIR Impact HAZ-3 was determined to be less than significant.

Appendix A, the Tiered Initial Study for the Project, includes an updated database and file review for the Project site to provide a characterization of current conditions. Based on this review, conditions have not changed on the campus or the Project site, and the impact related to soil and groundwater contamination is less than significant, as was concluded in the 2007 CMP EIR.
This comment indicates that older structures have the potential for lead-based paint, pesticides, termiticides, and polychlorinated biphenyls (PCBs) from electrical transformers, light ballasts, etc. DTSC recommends that these concerns be investigated and possibly mitigated.

Asbestos, Lead-Based Paint, and Other Regulated Materials. The CMP EIR determined that the demolition or renovation of laboratory buildings could potentially expose construction workers and campus occupants to contaminated building materials (CMP EIR Impact HAZ-4), a potentially significant impact that could be reduced to less than significant through implementation of procedures for the proper demolition of laboratory space (CMP EIR Mitigation HAZ-4).

As indicated in the Tiered Initial Study (Appendix A), the Project would involve demolition of two-story residential buildings on Block 1 and Block 6, none of which are or have been used for laboratory space. However, the Initial Study indicates that buildings may contain asbestos building materials, lead-based paint, and/or other regulated materials such as fluorescent lights and electrical ballasts. A limited building survey conducted for the Phase 1 Environmental Site Assessment of Parkmerced (Building Analytics 1999) indicates that the garden apartments, such as those located in Blocks 1 and 6 on the Project site, likely contain asbestos building materials and lead-based paint.

Where present, asbestos, lead-based paint, and other regulated building materials would be abated prior to building demolition, as is required by state regulations. As indicated in the 2007 CMP EIR, the removal of asbestos-containing building materials is subject to the limitations and requirements of Bay Area Air Quality Management District Regulation 11, Rule 2: Hazardous Materials; Asbestos Demolition, Renovation and Manufacturing. Additionally, Final EIR Section 3.7, Project Approvals, acknowledges the requirements under this Rule.

Lead-based-paint abatement would include removal of any lead hazard, which, according to Title 17 of the California Code of Regulations, includes deteriorated lead-based paint and lead-contaminated soil (soil contaminated with lead paint chips). As indicated in the 2007 CMP EIR, the California Occupational Safety and Health Administration lead standard for construction activities is implemented under Title 8 of the California Code of Regulations. The standard applies to any construction activity that may release lead dust or fumes, including manual scraping, manual sanding, heat gun applications, power tool cleaning, rivet busting, abrasive blasting, welding, cutting, or torch burning of lead-based coatings. Additionally, under California law, fluorescent lamps cannot be disposed of as municipal waste.
Fluorescent tubes and bulbs may be managed as universal waste under Title 22, Chapter 23 of the California Code of Regulations, and are typically recycled.

The campus would be required to conform with all applicable regulations related to the removal of asbestos-containing building materials, lead-based paint, and fluorescent lamps. Compliance with these regulations is required of all SF State’s construction and design/build contractors, as demonstrated in the campus’s construction and building practices. Final EIR Chapter 3, Project Description (page 3-19), has been revised to clarify that standard California State University (CSU) requirements and acceptable building practices include the abatement of hazardous building materials, per regulatory requirements and/or applicable Department of Toxic Substances Control (DTSC) guidance.

With implementation of these regulations and standards, impacts would be less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts related to the removal and disposal of these materials would result with implementation of the Project.

Termiticides. The Block 1 buildings are concrete structures; the foundation is poured concrete and the walls are scored concrete. Due to the lack of major wood building materials, it is unlikely that termiticides were applied around this building. The Block 6 buildings are stucco-covered wood-framed buildings constructed in 1944. In accordance with DTSC guidance (DTSC 2006), there is a possibility that termiticides, such as chlordane, were applied around the building foundation.

According to the DTSC 2006 guidance, chlordane was applied to shallow soils around buildings in the United States from 1948 until 1988 as a termiticide. There are very limited data evaluating this potential issue for multi-unit residential buildings in California. DTSC investigated three multi-unit residential buildings in Southern California and found elevated chlordane and dieldrin around all three buildings. DTSC further investigated soils around residential buildings at 18 sites throughout California and found elevated pesticide concentrations in 70% of the sites sampled.

As reported on in the Parkmerced EIR, a limited Phase II investigation was conducted in 2005 to assess potential environmental concerns associated with former operations at Parkmerced (CCSF 2010). Detectable concentrations of hazardous materials were found in 5 out of 28 samples. Materials found included the pesticides heptachlor, lindane, and chlordane. However, the concentrations of chemicals detected did not pose a threat to human health or the environment based on U.S. Environmental Protection Agency Region IX health-based screening values.
Further, the concentrations were below levels that typically may lead to a requirement for cleanup by regulatory agencies, and thus were not considered significant environmental concerns in the Parkmerced EIR (CCSF 2010). Although that is the case, Final EIR Chapter 3, Project Description (page 3-19), has been revised to clarify that standard CSU requirements and acceptable building practices include the abatement of hazardous building materials, per regulatory requirements and/or applicable DTSC guidance.

1-3

This comment recommends that if the Project site was previously used for agricultural purposes, pesticides and fertilizers are likely to be present and should be investigated and possibly mitigated.

As indicated in Section 4.4, Historic Resources, and Appendix D, Historic Resources Technical Report, of the Final EIR, during the early years of Spanish settlement in San Francisco, the shores of Lake Merced were used as common land for grazing cattle. It was not until 1835 that the land was privatized and granted to a rancher named Jose Antonio Galindo. The current site of Parkmerced formed part of the Rancho Laguna de la Merced. The Spring Valley Water Company purchased Lake Merced and the surrounding land in 1868 as part of a move to establish a monopoly over San Francisco’s water supply. The company began to sell off some of its land holdings by the 1890s.

In the Parkmerced Phase 1 Report conducted for the Parkmerced Property, including the former Parkmerced properties purchased by SF State, the oldest available aerial photograph from 1935 showed that the site was occupied by a golf course, agricultural land, and vacant undeveloped land (Building Analytics 1999). However, by 1946 the Parkmerced area was mostly developed and had some vacant land, and agricultural uses were not listed as uses by that time (Building Analytics 1999). The Parkmerced Phase 1 Report and the Parkmerced EIR (CCSF 2010) did not identify the potential for pesticide contamination in the Parkmerced area. As indicated in Response to Comment 1-3, a limited Phase II Investigation of the Parkmerced area indicated that pesticides do not pose a threat to human health or the environment. Therefore, sampling soils further for pesticides and fertilizers is not warranted.

1-4

This comment indicates that the Project site may contain naturally occurring asbestos and that further action should be considered to determine whether such material is present.
According to reviewed maps (California Department of Conservation 2000; USGS 2011), the site is located more than 3 miles from areas anticipated to have naturally occurring asbestos. According to the maps, the site is not located in an area likely to contain naturally occurring asbestos. Additionally, according to the 2001 Phase I ESA for Parkmerced Blocks 2, 5, and 6 (Building Analytics 2001), soils at the site vicinity include fine to medium sands of the Quaternary sand dune deposits and fine to medium grained sand with small to moderate amounts of silt and clay of the Colma Formation. Both of these sedimentary deposits are unlikely to contain asbestos.

This comment indicates that if a response action on the Project site is required, the EIR will require an analysis of the potential public health and environmental impacts associated with the response action.

This comment is noted for the record. See Responses to Comments 1-1 through 1-5 above for information about the potential for hazardous conditions to occur on the Project site.
INTENTIONALLY LEFT BLANK
MEMORANDUM

DATE: October 20, 2016
FROM: Charles Rivapalata, SFMTA
TO: Wendy Bloom, San Francisco State University (SFSU)
THROUGH: Frank Markowitz, SFMTA
RE: San Francisco State University Creative Arts and Holloway Mixed-Use Project: Comments on the Focused Tiered Environmental Impact Report (EIR)

Staff at the SFMTA has reviewed the transportation-related sections of the Focused Tiered EIR for the San Francisco State University (SFSU) Creative Arts/Holloway Mixed-Use Project. Staff submits the following comments (below):

GENERAL COMMENT
Be sure to include sidewalk dimensions and curb cuts for the streets directly adjacent to the project area.

SPECIFIC COMMENTS

Page 1-14, Table 1-2: The top row is cut off after “transit….”

Page 2-14, Fourth Paragraph: On the first line, there is a typo. The text should read as follows:

“Varela Avenue, adjacent to the student housing/mixed-use building site…”

Page 3-15, Second Paragraph: About how many daily deliveries of materials for the Creative Arts Building would need to be accommodated on the vacated Tapa Drive? Would accompanying signage alert pedestrians of infrequent deliveries on the vacated Tapa Drive?

Page 4-15, Second Paragraph (Roadway Network): On the first line, there is a typo. The report should read as follows:

“…served by two primary roadways: 19th Avenue (California State Route 1) and….”

In addition, it should be mentioned that State Highway 1 follows 19th Avenue from Lincoln Way to Junipero Serra Boulevard. North of this segment, State Highway 1 follows Crossover Drive and Park Presidio Boulevard to its junction with US 101 just south of the Golden Gate Bridge; and south of the segment, State Highway 1 follows Junipero Serra Boulevard to I-280.”
Page 4.5.1, Seventh Paragraph. For convenience, the text should indicate that Figure 4.5-1 is located on p. 4.5-33.

Page 4.5.5, First Paragraph. As background, the text should include a brief description of each of the four regional transit carriers listed, and their principal connections to the Muni services listed.

Page 4.5.5, First Bullet (OBC, 19th Avenue (Rapid)). Outside of Muni Forward, SFMTA is planning to combine the 28R Line with the Geary/Hamilton BRT—planned as early as 2023—to provide a one-seat ride between the 19th Avenue corridor/SPSU and Balboa Park/major growth areas in Southeast San Francisco, terminating in Candlestick Point/Hunters Point Shipyards, with exclusive lane treatments for bus rapid transit (BRT).

Page 4.5.8, First Bullet (Shuttle Service). Please indicate the daily shuttle ridership, line capacity and frequency. What areas do these free shuttles serve and do they operate on fixed schedules?

Page 4.5.12, Last Paragraph (Student Housing/Mixed-Use Building). Is the assumption that new on-campus student housing would be occupied by existing students reasonable?

Page 4.5.16, Table 4.5-4 (Total PM Net New Peak Hour Project Trip Generation – Event Day Only). Is the trip generation column for creative arts/concert hall correct? The sum of (a) the vehicle trips and (b) the public transit, walk/bike and other trips, is 713 (less than the 804 total person trips listed in the table). In addition, the fourth footnote to the table (beyond “Walk/Bike”) is not listed.

Page 4.5.16, Second Paragraph. Staff appreciates the reference in the text to inconsistencies in the mode split data between Tables 4.5.2 and 4.5.4; however, is there any way of extracting data for bikes only from the “Walk/Bike” data? For the purposes of future bicycle planning, a clear indication of bicycle mode share in the area will be essential.

Page 4.5.24, Project Impact TPA 2 and Corresponding Mitigation Measures. Is an additional support being proposed for M-line/19th Avenue improvements? Can we respond directly to the Western Portal shuttle triggers? What are the prospects of SPSU and Parkmerced eventually consolidating shuttles to West Portal?

Page 4.5.28, Last Paragraph. Where in the building would the Class 1 bike parking spaces be located? Please include this location on the site maps.

The SFMTA’s Transit Service Planning section is currently reviewing the Draft EIR and may have additional comments at a later time.
Response to Comment Letter 2

San Francisco Municipal Transportation Agency
Charles Rivasplata
October 20, 2016

2-1 This comment requests sidewalk dimensions and curb cuts for the streets adjacent to the Project area.

The Board of Trustees of the California State University will consider approval of schematic designs at the same time as they consider certification of the EIR for this Project. Due to this timeline, site plans with sidewalk dimensions are not yet available. However, as indicated in Final EIR Chapter 3, Project Description (page 3-14), the Project would provide for bulb-outs and wider sidewalks, consistent with the City and County of San Francisco’s (City) Better Street Plan. Additionally, any Project work in the City’s public rights-of-way, including any changes to sidewalks and streets, would require City approval through the City Department of Public Works Bureau of Street-Use and Mapping, as acknowledged in Final EIR Chapter 3, Project Description (Table 3-3, page 3-20). Therefore, the City would review and approve the sidewalk dimensions and curb cuts surrounding the Project site.

2-2 This comment states that information is cut off on page 1-14, Table 1-2.

The top of page 1-14 in Final EIR Chapter 1, Summary, provides a complete impact statement for CMP Impact TRA-2. The impact statement ends with the word “transit.”

2-3 This comment calls out the omission of the word “to” on the first line of the fourth paragraph on page 3-14. Additionally, the comment asks what measures would be taken to improve pedestrian crossings on Varela.

The identified typo has been corrected in Final EIR Chapter 3, Project Description (page 3-14). The Project would include improved pedestrian crossings on Varela Avenue. Due to the timeline for the Project (see Response to Comment 2-1), detailed plans for pedestrian crossing and amenities are not yet available. The final design of the Project’s proposed modifications in the public right-of-way, including pedestrian crossings, will be completed in consultation with City staff as part of the Project’s encroachment approval process through the City.

2-4 This comment asks about the number of deliveries and signage at the Creative Arts Building.
Commercial loading access from Holloway Avenue to the Creative Arts replacement building and concert hall would be controlled with bollards or signage similar to the designs of other mixed commercial loading and pedestrian spaces on campus. Additionally, signage regarding deliveries would be in place to warn pedestrians of potential deliveries. Based on delivery activity at the existing Creative Arts and Humanities buildings it is anticipated that deliveries along the vacated Tapia Drive would occur two to three times per week during the semester and less frequently during the summer. SF State’s Shipping and Receiving Department would also provide delivery service. However, these deliveries occur along Centennial Way, using an off-street cart or fork lift for heavier objects. It is anticipated that these types of deliveries would occur one to two times per day. Text has been added to Final EIR Chapter 3, Project Description (page 3-15), and Section 4.5, Transportation (page 4.5-27), to clarify this.

2-5 This comment identifies a typo and provides additional descriptive information for State Route 1.

The identified typo has been corrected in Final EIR Section 4.5, Transportation (page 4.5-3), and additional information regarding State Route 1 has been added to the same page.

2-6 This comment requests that the location of Figure 4.5-1 be noted within the text of Section 4.5, Transportation.

Figures follow the chapter text in all of the chapters, or in the case of Chapter 4, figures follow each major section (Section 4.1, Section 4.2, etc.). A sentence explaining this has been added to Final EIR Section 2.4, Organization, of this EIR (page 2-5).

2-7 This comment requests descriptions of all the transit carriers.

As described in Chapter 2, Introduction, of the Final EIR, the EIR for this Project is tiered to the 2007 CMP EIR. As such, the 2007 CMP EIR is incorporated by reference and referred to throughout this EIR. The 2007 CMP EIR and related documents are available at http://cpdc.sfsu.edu/plan. As stated in Section 4.5.1 of this Final EIR (page 4.5-5), detailed descriptions of other regional transit providers are provided in Section 4.11 of the 2007 CMP EIR.

2-8 This comment provides additional information regarding transit improvements, specifically regarding the 28R line and the Geneva Harvey BRT.
Text describing the new combined route for the 28R Line with the Geneva Harney bus rapid transit has been added to Final EIR Section 4.5, Transportation (page 4.5-6).

2-9 This comment requests more detailed information on the SF State shuttle including ridership, capacity, schedule, and frequency.

More details regarding the campus shuttle service have been added to Final EIR Section 4.5, Transportation (page 4.5-8). Once available data from 2016 has been processed, ridership information will be provided to SFMTA.

2-10 This comment questions the assumption that new on-campus student housing would be occupied by existing students.

As stated in Final EIR Chapter 3, Project Description (page 3-4), the Project would not result in substantial increases in SF State campus population over existing 2015–2016 levels. The student housing/mixed-use building would serve existing students that are currently commuting to campus. Although the building would continue to house students into the future, this additional housing capacity would serve existing enrollment levels and would not cause enrollment growth. Therefore, no changes to the description in Section 4.5, Transportation (page 4.5-12), are required. The campus is approaching its full-time-equivalent (FTE) ceiling (25,000 FTE students), based on Fall 2015 enrollment data, which was the most recent enrollment data available at the time the NOP was released. Additionally, the total number of students (headcount) has been flat since the 2007 CMP EIR was prepared. Therefore, the Project would not result in enrollment growth.

2-11 This comment asks for clarification on the sum of the trips in Table 4.5-4 as well as notes a missing footnote.

Footnote 4 was added to Table 4.5-4 in Section 4.5, Transportation (page 4.5-16). The first row of this Table shows the total person-trips to the Creative Arts replacement building and concert hall, including on- and off-campus trips. However, the mode splits in rows two through five only accounted for trips made by off-campus visitors. For clarity, the table has been revised to show all trips, regardless of whether they are on-campus or off-campus trips in rows two through five. As stated in Table 4.5-2 (Footnote 1), it is assumed that on-campus attendees would walk, bicycle, or use a form of transportation other than driving or transit. Therefore, the revision to Table 4.5-4 shows an increase in walk/bike trips, which accounts for the on-campus attendees who were formerly omitted and the sum of trips adds to 804 person trips once vehicle occupancy for carpools is accounted for. The changes to this table do not change the impact conclusions, as the pedestrian and bicycle trips...
can be accommodated with campus and Project sidewalk widths and bicycle facilities, as stated in Project Impacts TRA-3 and TRA-4 (pages 4.5-29 and 4.5-30).

2-12 This comment asks for extraction of the bike trips from the walk/bike mode split.

As stated in Section 4.5, Transportation (Table 4.5-3, Footnote 3, page 4.5-16), due to differences in the way the source data was collected, bike trips for the Project cannot be further extracted.

2-13 This comment asks for more information regarding M-line improvements, how SFMTA can respond to West Portal shuttle triggers, as well as the potential for consolidation of the Parkmerced and SF State shuttles.

As discussed in Final EIR Chapter 2, Introduction (page 2-1), the Board of Trustees of the California State University certified the SF State CMP EIR (SCH No. 2006102050) in 2007 (SF State 2007a). The Project conforms to the CMP building program and, therefore, the CEQA analysis for the Project is tiered to the 2007 CMP EIR.

As described in Section 4.5, Transportation (page 4.5-25), the 2007 CMP EIR concluded that implementation of the CMP could result in transit impacts, which would be mitigated by implementing improvements to service on 19th Avenue, providing interim shuttle service to West Portal if certain criteria are met, and extending shuttle service to the Daly City Bay Area Rapid Transit (BART) Station if the campus shuttle exceeds 85% capacity between campus and the BART station.

In 2007, the City and SF State entered into a Memorandum of Understanding (MOU) (SF State 2007c) that provided more detailed information on the conditions of funding from SF State for contribution to off-campus mitigation measures. SF State continues to maintain the M-line platform. SF State also contributed to the 19th Avenue Transit Study (SFCTA 2014). Funding contributions outlined in the MOU are triggered by milestones for improvements to the M-line, which have yet to occur. Funding will be provided in compliance with the criteria provided in the MOU.

The criteria for extending shuttle service to West Portal include the condition that the M-line improvements have not been implemented; that M-line average peak-period, peak-direction passenger loading between campus and West Portal Station exceeds 85% capacity; and if the cordon survey shows that peak-period transit trips on the M-line between campus and West Portal Station are greater than 5% above the baseline throughout the corridor. If all of these criteria are met, then SF State will extend campus shuttle service to West Portal Station. As of the end of 2016, during preparation of this Final EIR, the 5% increase in M-line transit trips criteria
had not been met, based on the most recent transportation survey conducted in 2016 (Nelson/Nygaard 2016).

The development of Parkmerced would include implementation of a new shuttle service to the Daly City BART Station. A low-emissions-vehicle shuttle to the Daly City BART Station would enter Parkmerced via Chumasero Drive, circulate through the site, then head south nonstop to the Daly City BART Station. Shuttles would operate every 7.5 minutes during peak periods, and every 15 minutes during off-peak periods. Although there have been no formal agreements with Parkmerced, SF State would consider combining shuttle service to provide one comprehensive service between Parkmerced, SF State, and the Daly City BART Station, if mutually beneficial.

2-14 This comment asks for the specific location of the bike parking.

Site plans are still conceptual and, therefore, the exact location of Class I bicycle parking has not yet been determined. However, as stated in Final EIR Chapter 3, Project Description (page 3-15), and Section 4.5, Transportation (page 4.5-28), secure, covered bicycle storage would be provided on the first floor of the new student housing/mixed-use building.

2-15 This comment notes that SFMTA’s Transit Service Planning section is reviewing the Draft EIR and may have additional comments.

Comment noted. The San Francisco Municipal Transportation Agency Transit Service Planning section did not submit comments on the Draft EIR.
INTENTIONALLY LEFT BLANK
INTER-OFFICE MEMORANDUM

DATE: November 7, 2016
TO: Wendy Bloom, Campus Planner
 Analis Schenck, Environmental Specialist/Planner, Dudek
FROM: Irina Torrey, Manager
 SFPUC Bureau of Environmental Management
SUBJECT: San Francisco State University (SF State) Creative Arts &
 Holloway Mixed Use Project

The attached table provides SFPUC comments on the SF State Creative Arts &
Holloway Mixed Use Project Draft Focused Tiered Environmental Impact
Report.

If you require further information or have any questions, please contact Angela
Yu, Environmental Project Manager, at (415) 854-3127 or angyu@sfwater.org.
Thank you for the opportunity to provide input.

Attachment: SFPUC Table of Compiled Comments

Services of the San Francisco Public Utilities Commission
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Commentor Name & SF-PUUC Division</th>
<th>Document Section Title or Section Number</th>
<th>Page Number and Line or Paragraph Number</th>
<th>Figure Number</th>
<th>Review Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Poli & Partners, Inc.</td>
<td>3.5.5 - Stormwater</td>
<td>3.17, paragraph 1</td>
<td>N/A</td>
<td>Remove reference to LEED credit 6.3.1. This credit is no longer applicable for the new LEED Version 4.0, which became effective in October 2016. Change "compatibility" to "compliance" in the later portion of this sentence.</td>
</tr>
<tr>
<td>2</td>
<td>Poli & Partners, Inc.</td>
<td>General</td>
<td>General</td>
<td>N/A</td>
<td>Why are the hydrologic impacts of this project not discussed in the DEIR?</td>
</tr>
<tr>
<td>3</td>
<td>J. Arm, CDD</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>The project site is located within an area that is hydraulically served by water mains that are owned, operated, and maintained by Poli & Partners. In the event that these water mains are transferred to SF-PUUC ownership in the future, all water facilities, including potable, fire-suppression, and non-potable water systems, must conform to the current SF-PUUC City Distribution Division (CDD) and San Francisco Fire Department (SFFD) standards and practices. These include, but are not limited to, the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- SF-PUUC CDD Protection of Existing Water and AMSS Facilities;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- SF-PUUC Wastewater & Water Standards for Surface Improvement Projects (June 2016);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Rules and Regulations Governing Water Service to Customers;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- SF-PUUC CDD Design Criteria for Potable Water Systems;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Application for Water Supply and Responsibility of Applicants;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- San Francisco Fire Code and Regulations;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- California Waterborne Standards, California Code of Regulations Title 17 and 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Auxiliary Water Supply System (AWSS) Distribution Piping; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Any other regulation governing the installation and protection of water facilities not already stated.</td>
</tr>
<tr>
<td>4</td>
<td>J. Arm, CDD</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>To ensure adequate fire suppression reliability and capacity, the Project Sponsor may be required to include one of more of the following: two sources of water delivery (connections to two separate water mains), AWSS high pressure distribution piping, AWSS control, and/or Portable Water Supply System equipment.</td>
</tr>
</tbody>
</table>
Response to Comment Letter 3

San Francisco Public Utilities Commission
Irina Torrey
November 7, 2016

3-1 This comment requests that references to Leadership in Energy and Environmental Design (LEED) credit SS 6.1 be removed since the credit is no longer applicable in LEED Version 4. Additionally the comment recommends that “compatible” be changed to “comply.”

References to LEED credit SS 6.1 in the first complete paragraph of Final EIR Chapter 3, Project Description (page 3-17) and in the Tiered Initial Study (Appendix A, page 19), have been removed.

The San Francisco Public Utilities Commission (SFPUC) also recommended that “compatible” be changed to “comply” in the later part of the same sentence to indicate that SF State would comply with the City’s Stormwater Management Requirements and Design Guidelines. This change was not made, given that SF State, as a state agency, does not fall under the jurisdiction of the City or the SFPUC, and is not required to meet the City’s Stormwater Management Requirements and Design Guidelines. However, SF State acknowledges the importance of achieving the design standards included in the City’s guidelines in reducing the effects of new development on the City’s combined sewer system, providing for groundwater recharge and other environmental benefits. Therefore, the Project stormwater management approach would be compatible and consistent with the SFPUC’s requirements, as the Project would implement the stormwater design criteria identified in these guidelines, as described in Final EIR Chapter 3, Project Description (page 3-17).

3-2 This comment asks why hydrological impacts are not discussed in the Draft EIR.

As described in Final EIR Chapter 2, Introduction, the EIR for this Project is tiered to the 2007 CMP EIR. Tiering refers to using the analysis of general matters contained in a broader EIR, such as the CMP EIR, with later EIRs or Negative Declarations on narrower projects, incorporating by reference the general discussions from the broader EIR and concentrating the later EIR or Negative Declaration on the issues specific to the relevant activities/project (14 CCR 15152(a)).

A Tiered Initial Study was prepared and is attached as Appendix A to this Final EIR to identify the issues that were adequately addressed in the 2007 CMP EIR and to identify the issues that would require further analysis. The tiered project-level
evaluation provided in the Tiered Initial Study (Section 4.9 of the Initial Study) addresses the potential impacts of the Project related to hydrology and water quality. The Tiered Initial Study found that there are no new or increased impacts over and above those identified in the 2007 CMP EIR related to hydrology and water quality; therefore, the Final EIR does not include additional analysis of this topic.

3-3 This comment outlines the SFPUC City Distribution Division and San Francisco Fire Department standards and requirements for water mains.

Final EIR Chapter 3, Project Description, Section 3.5.6 (page 3-16), states that any connections with SFPUC mains required for the Project would be consistent with City standards. The comment about Parkmerced water mains and the condition that transfer of ownership of these water mains to SFPUC would require conformance with current standards and practices is noted for the record.

3-4 This comment notes the requirements to ensure adequate fire suppression reliability and capacity.

Final EIR Chapter 3, Project Description, Section 3.5.6 (page 3-16), states that any new connections with SFPUC mains would be consistent with City standards. Additional text has been added to page 3-16 to clarify that this would provide for adequate fire suppression reliability and capacity.
SAN FRANCISCO STATE UNIVERSITY
CREATIVE ARTS & HOLLOWAY MIXED-USE PROJECT

Name: Ralph Chorn
Organization (if any): LPFA
Do you represent this Organization? Yes No
Address:
City, State, Zip:
E-mail: ralph_chorn@yahoo.com Telephone:

Written Comments
Parking - needs to be more parking - especially for peak times or peak events.
Traffic - particularly the 14th & Park Merced
Overlap in construction with Park Merced so concerns about dust, noise, traffic.
Feels there should not necessarily be as much additional housing on campus - the need now may be because of the current economy and soon there will be a recession.

Wants to make sure there are mitigations that address those concerns.

Please either leave this sheet at the “comment table” before you leave today or mail, email, or fax to the address below.

(See Reverse for Additional Information)
Written Comment Form

Please note that your address, phone number, e-mail address, or other personal identifying information in your comment, is part of your entire comment, including your personal identifying information—may be made publicly available at any time. While we can ask us in your comment to withhold your personal identifying information from public review, we cannot guarantee that we will be able to do so.

Mail comments to:
Wendy Bloom
Director of Campus Planning
Capital Planning, Design & Construction
San Francisco State University
1600 Holloway Avenue
San Francisco, California 94132
wbloom@sfsu.edu (subject line of emails: “Creative Arts & Holloway Mixed-Use Project”)

Public Review Ends: November 11, 2016

To ensure that your comments are responded to in writing and included in the Final EIR, San Francisco State University must receive written comments by the close of the public review period (November 11, 2016, no later than 5:00pm).
Response to Comment Letter 4

Lakeside Park Owners Association
Ralph Chern
October 18, 2016

4-I This comment indicates that there should be more parking, especially for peak times or peak events.

Consistent with the 2007 CMP (SF State 2007b), parking in the new student housing/mixed-use building on Holloway Avenue would relocate a portion of the campus parking supply to the perimeter of campus, removing existing parking along Tapia Drive and from elsewhere on campus, such that the Project would result in no net increase in the overall campus parking supply. The 2007 CMP EIR (SF State 2007a), to which this EIR is tiered, concludes that the parking strategy proposed by the 2007 CMP would not have a significant impact because it is consistent with the City’s Transit First policy and is designed to ensure that single-occupant vehicle mode split does not increase and that new single-occupant vehicle trips are not generated.

As discussed in Section 4.5, Transportation (page 4.5-11), since the 2007 CMP EIR was certified, parking deficits in and of themselves have been removed from the CEQA Guidelines and are no longer considered in Appendix G of the CEQA Guidelines as an impact category evaluated in CEQA documents. This is because new parking can encourage automobile use and discourage transit and other alternative forms of transportation. Therefore, parking is not considered in the standards of significance or the impact analysis for the Project in Final EIR Section 4.5, Transportation.

The 2007 CMP objectives include reducing parking demand through transportation demand management (TDM) measures that serve to reduce drive-alone vehicles (SF State 2007b). The absence of available parking spaces, the available alternatives to vehicular travel (transit, bicycling, and walking), and the dense pattern of urban development could induce many drivers to seek other modes of travel or change their overall travel behavior. The success of SF State’s TDM measures is demonstrated by the overall reduction of campus-related vehicle trips in 2016, as compared to the 2007 CMP EIR baseline (see Final EIR Section 4.5, Transportation, page 4.5-18 for additional information).

The addition of student housing and neighborhood retail services would reduce the need for student automobile use, which would reduce parking demand and support SF State’s goal to minimize drive-alone auto trips to reduce traffic congestion and
greenhouse gas emissions. The Creative Arts replacement building would not result in an increase in student enrollment. At most, four additional staff members would be hired to support operations of the new building. Therefore, there would not be a substantial increase in parking demand due to the Creative Arts replacement building.

Most weekday events at the concert hall would not begin until 7:30 p.m. or 8:00 p.m. During this time, parking demand on campus is lower, as evidenced by a reduced number of vehicles entering the cordon study area and an increased number of vehicles leaving (Nelson Nygaard 2016). Event attendees would be able to use parking spaces that are unoccupied during the evening, including new parking in the student housing/mixed-use building. Overall, the Project would not result in secondary physical effects on the environment, such as increased traffic congestion, due to the removal of parking on the Project site. Final EIR Section 4.5, Transportation (page 4.5-11), has been revised to describe the Project’s parking demand based on the above information.

This comment identifies concern with traffic, particularly at 19th Avenue near Parkmerced.

As discussed in Final EIR Chapter 2, Introduction, Section 2.1 (page 2-1), this EIR is tiered to the 2007 CMP EIR. Transportation impacts and mitigation measures for the Project are discussed in Final EIR Section 4.5, Transportation, Section 4.5.2. As indicated in Project Impact TRA-1 (page 4.5-23), since the adoption of the 2007 CMP, the campus has achieved the no-net-increase in vehicle trips objective identified in the CMP (CMP Impact TRA-1). To date, a net reduction of PM peak-hour vehicle trips has been achieved since 2007. SF State adopted a TDM Plan and has conducted an online transportation survey and cordon count at least every 3 years beginning in April 2008 as part of CMP EIR Mitigation TRA-1. Based on the 2016 cordon counts, the number of peak-hour trips, automobile trips per day, and respondents driving alone has decreased over 2008 conditions. Given that, the intersection improvements identified in CMP EIR Mitigation TRA-1 have not been required.

On typical, non-event days, the Project would contribute to the reduction of vehicle trips due to the provision of on-campus housing for students who would otherwise be living off campus. On event days (up to 80 per year or approximately 7 per month), the Project would remain within the Adjusted CMP Trip Envelope, which means the Project trips have already been accounted for and mitigated in the CMP EIR traffic analysis (SF State 2007a). On most days during the year, the Project would result in many fewer, if any, new vehicle trips to SF State’s campus. Additionally, with Project implementation, campus-wide trip generation would remain below the CMP
EIR base year, and the impact would be less than significant. As described in Project Impact TRA-1, there are no new or increased impacts compared to the CMP EIR as a result of vehicle trips generated by the Project.

4-3 This comment indicates concern about dust, noise, and traffic associated with the overlap of Project construction with the Parkmerced project.

As described in Final EIR Chapter 3, Project Description, Section 3.6, construction plans and specifications would incorporate stipulations regarding standard California State University requirements and acceptable construction practices, including grading and demolition, safety measures, vehicle operation and maintenance, excavation stability, erosion control, drainage alteration, groundwater disposal, traffic circulation, public safety, dust control, and noise.

In particular, in accordance with CMP EIR Mitigation HAZ-5A, a construction traffic control plan would be prepared by SF State and/or the construction contractors to address potential lane closures, construction vehicle access routes and parking, hours of construction, and other traffic concerns. The traffic control plan would comply with the City’s Encroachment Permit or Major Encroachment Permit requirements, if applicable. Given that Phase 1 of the Parkmerced project would be under construction at the same time as the Project, SF State’s traffic control plan would be coordinated with the traffic control plan for that project to minimize temporary impacts on vicinity roadways.

Final EIR Section 4.2, Air Quality (Project Impact AIR-4B, page 4.2-28) provides a cumulative analysis of Project construction. The only known active project in the Project vicinity that could contribute to cumulative, localized construction emissions would be Phase 1 of the Parkmerced project, with the nearest development site (300 Arballo) approximately 500 feet from the Block 1 portion of the Project site. Accumulation of cumulative particulate matter (PM_{10} and PM_{2.5}) (dust) emissions would be minimized based on the substantial distance between the Project site and this Parkmerced development site, and because all projects in the Bay Area Air Quality Management District (BAAQMD) jurisdiction are subject to BAAQMD construction best management practices, which set forth general and specific emissions reduction requirements for all construction sites in the BAAQMD. These best management practices are included in CMP EIR Mitigation AIR-1, which will be implemented with the Project.

As this EIR is tiered to the 2007 CMP EIR, a Tiered Initial Study was prepared and is attached as Appendix A to this Final EIR to identify the issues that were adequately
addressed in the 2007 CMP EIR and to identify the issues that would require further analysis. The tiered project-level evaluation provided in the Tiered Initial Study (Section 4.12, pages 58–59) addressed the potential impacts of the Project related to construction noise. The Tiered Initial Study found that there would be no new or increased impacts over and above those identified in the 2007 CMP EIR related to construction noise. Implementation of CMP EIR Mitigation NOIS-1 with the Project would control Project construction noise at sensitive receptor locations surrounding the Project site to the extent practicable and feasible, and would reduce the potential impact at most locations to less than significant. Similarly, Parkmerced construction activities would be required to implement mitigation measures to reduce noise levels during construction, as documented in the Parkmerced EIR mitigation measures M-NO-1a, M-NO-1b, and M-NO-2 (CCSF 2010). See Appendix A, Section 4.12, pages 58–59 for additional information about the construction noise analysis for the Project.

4-4 This comment indicates that there is not a need for additional housing on campus.

As stated in Final EIR Chapter 3, Project Description, Section 3.3.1 (page 3-2), the 2007 CMP addresses all aspects of future physical development and land use on the campus to accommodate the enrollment ceiling of 25,000 full-time-equivalent students. To accommodate the projected growth in enrollment and academic activities, the adopted CMP accommodates a building program that envisions development of 0.9 million gross square feet of new and replacement non-residential building space on campus, and development or conversion of approximately 1,198 additional units of housing on campus for faculty, staff, and students.

Over the last decade, SF State has been admitting increasingly more first-time freshmen, many from outside of the Bay Area, who need housing. In addition, there are a large number of junior transfer students who require housing. As rents have soared in the area, the need for both groups has become even greater, and providing housing for this wider population is important. In addition, upper-division students require a different housing typology than entering freshmen. Holloway Block 6 is slated for upper-division housing, and SF State anticipates building residence halls for freshmen and sophomores in the future.

One of the goals of the 2007 CMP was to create more of a community and less of a transient, commuter campus. Housing for students, faculty, and staff is key to creating community, with more people around during all hours of the day. Currently, the freshman 4-year graduation rate is at 18%, which is very low. Building a supportive community would help improve graduation rates. Overall, campus housing has many benefits. As part of creating community, it contributes to student
retention and graduation rates; it increases the supply of affordable housing in a fiercely competitive market; and by reducing commute trips, it reduces greenhouse gas emissions. See also Response to Comment 7-2 for additional information about the need for housing.

4-5 This comment indicates that mitigation should be identified to address concerns raised in Comments 4-1 through 4-3.

See Response to Comments above for reference to CMP EIR mitigation measures that apply to the Project related to air quality, hazards, noise, and traffic. See also Final EIR Chapter 4, Introduction to the Analysis (page 4.0-1), for a description of how impacts are analyzed and how the need for project-specific mitigation measures above and beyond those identified in the CMP EIR was determined.

4-6 This comment asks whether SF State has looked into online learning as a way to increase student population without increasing facilities and expenses.

Online learning at SF State has grown from 35 class sections and 1,885 student enrollments in academic year 2005–2006 to approximately 412 class sections and 25,300 student enrollments in academic year 2016–2017. In academic year 2016–2017, approximately 2–3% of the class sections and approximately 11% of the student enrollments are in fully online classes. This represents more than 1,000% increase in the past decade. The use of fully online classes has grown in selected areas that do not require a physical presence for effective student learning to take place.

Even though the number of class sections and student enrollments in online learning has grown considerably over the past decade, SF State has no fully online degree programs, and remains a state and regionally focused institution with a primarily classroom-based instructional program. There are many hybrid and HyFlex classes in addition to fully online classes, and almost all classes (approximately 75%) use online technologies to enhance or complement their classroom instruction. There are no current strategic efforts to build a substantial number of online degree programs, which means that the classroom would remain the dominant place for instruction in SF State’s degree programs for the foreseeable future.

Programs such as those in Creative Arts (including Department of Broadcast & Electronic Communication Arts) may find some value in delivering carefully chosen elements of their curriculum online, but due to the nature of their instructional programs, the physically present, hands-on learning approach supported by a traditional classroom/lab environment on campus remains a fundamental requirement for students to succeed in those academic programs.
8

November 9, 2016

Wendy Bloom
Director of Campus Planning
Planning and Design
San Francisco State University
1600 Holloway Avenue, San Francisco, California, 94132

Re: Comments Related to the Focused Tiered Draft Environmental Impact Report (Draft EIR) for the Creative Arts & Holloway Mixed Use Project

Dear Ms. Bloom,

Thank you for the opportunity to comment on the Focused Tiered Draft Environmental Impact Report (the "Draft EIR") for the Creative Arts & Holloway Mixed Use Project (the "Project"). The Trustees of San Francisco State University issued the Draft EIR for public review and comment and have established a 45-day public review period from September 27, 2016 to November 11, 2016. This letter provides comments on the Draft EIR.

As you know, in July 2011, Parkmerced received approval by the City and County of San Francisco (the "City") of a long-term (20 to 30 year) mixed-use development project to comprehensively replan and redesign Parkmerced, which project, upon implementation, would construct additional multi-family residential structures and open space areas, demolish existing apartments, provide a neighborhood core with new commercial and retail services, reconfigure the street network and public realm, improve and enhance the open space amenities, modify and extend existing neighborhood transit facilities, and improve utilities within Parkmerced Property (the "Parkmerced Project").

During the entitlement process for the Parkmerced Project, we worked collaboratively with SFState to ensure that the street and other public space improvements located on the boundaries between Parkmerced and SFState (including the portions of the Parkmerced development that were formerly sold to SFState) were thoughtfully designed and in keeping with the City’s Better Streets Plan. As noted in the Draft EIR, the streets surrounding SFState are under the jurisdiction of the City. These discussions between multiple stakeholders (including SFState, the SFMTA, DPW, and San Francisco Planning Department)
between 2006 and 2011 resulted in the Parkmerced Design Standards and Guidelines (the “DS&G”) and Transportation Plan, which are the foundational master planning documents for the Parkmerced Project. Based on this collaboration, Parkmerced and the City were hopeful that SFSU would in good faith consent to the construction of the improvements shown in the DS&G and the Transportation Plan to the streets bounding Parkmerced that are shared by Parkmerced and SFSU, including Vidal Drive and Font Boulevard.

Since 2011, the same collaboration in implementing the street system envisioned in the DS&G and Transportation Plan has not continued. SFSU’s rejection of the intersection planned at Vidal Drive and Lake Merced Boulevard is particularly troubling. Increasing the permeability of Parkmerced by expanding the number of intersections connecting Parkmerced to the surrounding street network was one of the fundamental components of the DS&G and the Transportation Plan, and is one of the City’s key goals in implementing the Parkmerced Project.

Parkmerced is now concerned that certain aspects of the Project as described in the SFSU’s Draft EIR conflict with the DS&G and the Transportation Plan, and would further impede construction of the street improvements as shown in those documents. Page 3 of the Draft EIR states that the Project’s design “guidelines were prepared for consistency, where relevant, to the Parkmerced Design Standards and Guidelines (SOM 2014).” We disagree with this statement as it relates to one aspect of the Project in particular:

Per Section 3.5.5 of the Draft EIR, the Project envisions Varela Avenue as a shared street that “would include eliminating parking on Varela Avenue, a strategy to modify and reduce curbs so that ease of movement is promoted across Varela Avenue, and pavers that strengthen the pedestrian connections as well as provide a safe street crossing.” As proposed, a Woonerf street conflicts with the proposed improvements for Varela Avenue in the DS&G (See Section D2.18), which anticipate the street remaining open to vehicular traffic. Additionally, Varela Avenue would need to be designed to accommodate SFMTA bus service, specifically the 29-Sunset, per the Parkmerced Transportation Plan (See Figure 11). Given that both SFSU and Parkmerced own frontage along Varela Avenue, we are hopeful that SFSU will coordinate the design of Varela Avenue with Parkmerced and keep the street design consistent with that shown in the DS&G.

Increasing the permeability of Parkmerced to the surrounding street system is one of the key components of the DS&G; unfortunately, closing Varela would decrease the permeability of Parkmerced and would channel traffic onto other intersections.

Section 4.5-18 of the Draft EIR indicates that “the CMP EIR Project and cumulative intersection level of service analysis was not updated for this EIR” because “the PM peak-hour trips from the campus have declined substantially since 2007/2008 due to an effective TDM program and changing demographics and population.” We request that SFSU include a complete level of service analysis for the intersections bounding Parkmerced and SFSU, in
order to provide evidence that the closure of Varela Avenue to traffic would not result in decreased level of service at adjacent intersections. The Draft EIR provides no evidence related to the effect of closing Varela on level of service. Whether the total number of peak hour trips has been reduced since 2007/2008 is not relevant to the effects of the distribution of those trips.

In addition, Parkmerced very respectfully requests that any anticipated future improvements to Holloway Drive, Font Boulevard, or any other streets bordering Parkmerced and SFSU be adequately studied in the responses to the Draft EIR to understand all traffic, transit, bicycle, and pedestrian circulation impacts to the City's streets and the greater neighborhood. In particular, future street improvements along Font Boulevard between Lake Merced Boulevard and Arballo/Tapia Drive, and Arballo Drive between Font Boulevard and Vidal Drive should be coordinated with Parkmerced and the City to ensure that proposed improvements are consistent with the DS&G and applicable traffic mitigation measures for Font Boulevard at Lake Merced Boulevard. We remain concerned that SFSU's plans to Holloway Drive and Font Boulevard are not analyzed in the future cumulative scenario for the Project in the Draft EIR, given that these improvements are reasonably foreseeable. We further request that the Draft EIR include an analysis of level of service and other transportation effects to Font Boulevard and Holloway Drive that would result from the conceptual plans that SFSU has shared with Parkmerced, the City, and other stakeholders but that are not shown in the Draft EIR. The Draft EIR risks improperly segmenting the analysis of these transportation improvements, to the extent that SFSU has already created conceptual plans for these roadway improvements but has not included them in its transportation analysis in the Draft EIR.

We look forward to working with SFSU and are hopeful that these comments will be thoroughly addressed in the responses to comments in the final Project EIR.

Sincerely,

Bert Polacci
Director, Government Relations
Maximus Real Estate Partners

Cc: Les Wong, President, San Francisco State University
 Jason Porth, San Francisco State University
 Seth Mallem, Maximus Real Estate Partners
Response to Comment Letter 5

Parkmerced, Maximus Real Estate Partners
Bert Polacci
November 9, 2016

5-1 This comment expresses concern about the Project’s consistency with the street system envisioned in the Parkmerced Design Standards and Guidelines and Transportation Plan relating to Varela Avenue.

It is SF State’s intention to be compatible with the Parkmerced Design Standards and Guidelines and Transportation Plan, and to coordinate with the City and Parkmerced on proposed changes to the public right-of-way in the southern portion of the campus adjacent to Parkmerced. SF State is not pursuing closure of Varela Avenue as part of this Project and has removed references to its closure. Final EIR Chapter 3, Project Description (page 3-14), and Section 4.5, Transportation (page 4.5-28), have been revised to eliminate reference to closure of Varela Avenue to vehicle travel.

5-2 This comment indicates that a complete level of service analysis for the intersections bounding Parkmerced and SF State should be conducted to assess the effect of closing Varela Avenue.

As indicated in Response to Comment 5-1, Varela Avenue would not be closed to vehicle travel with the Project. Therefore, a complete level of service analysis of these intersections is not warranted.

5-3 The comment indicates that SF State’s future plans for Holloway Avenue and Font Boulevard should be analyzed in the future cumulative scenario for the Project. Specifically, the comment indicates that level of service and other transportation effects of future plans for Holloway Avenue and Font Boulevard should be studied in the EIR or there may be a risk of improper segmentation.

Early concept plans for the Holloway Avenue/Font Boulevard corridor through the campus that SF State shared with Parkmerced, the City, and other stakeholders in April and May 2016 were conceptual and are not definitive at this time. SF State is not currently pursuing the design of corridor improvements on Holloway Avenue or Font Boulevard, and there is no existing or pending funding for these improvements. These improvements could include bicycle and pedestrian facilities and would not include a reduction in the number of vehicle lanes or roadway capacity. However, without a proposed design concept, the improvements and
associated effects on the transportation system are too speculative to consider as part of a detailed level of service analysis or other transportation analysis. The next Master Plan update process may develop and incorporate conceptual or schematic plans for the Holloway Avenue/Font Boulevard corridor through the campus, and the CEQA document for that effort would evaluate the effects of such improvements on the adjacent transportation system.

As indicated in Response to Comment 5-1, it is SF State’s intention to be compatible with the Parkmerced Design Standards and Guidelines and Transportation Plan. Toward that end, SF State will coordinate with the City and Parkmerced on future proposed changes to the public right-of-way in the southern portion of the campus adjacent to Parkmerced.
Anais Schenk

From: Wendy Bloom <wbloom@sfsu.edu>
Sent: Thursday, November 10, 2016 3:01 PM
To: Linda Jo Morton
Cc: Ann Escamilla, Anais Schenk, Nicholas Holmes
Subject: RE: CEQA

Linda,

Thank you very much for your comments on the Draft EIR. We’ll respond in the Final EIR.

Wendy

From: Linda Jo Morton
Sent: Thursday, November 10, 2016 12:51 PM
To: Wendy Bloom <wbloom@sfsu.edu>
Subject: CEQA

Hi Wendy,

I was reading over the Housing portion and just wanted to show my support for the following:

3.5.6

Water — I hope someone strongly advocates for installing the recycled water infrastructure now. When the trench is open for the potable water add the additional purple piping. It much cheaper to install now than after the building is built.

Storm water — Keep as much storm water on site as possible and having a plate palette for Bioswales.

Solid waste — Will there be an area for Recology to pick up waste from the different blocks or will the Housing staff have to collect waste separately and transport it to another location on campus?

Landscaping — Block 1 has a Sequoia at the corner that I think is worth saving. Additionally the language regarding tree replacement seems weak “replace some trees”. What is the actual quantity of trees being planted. As a rule of thumb I like to plant 3 trees for every 1 that was removed so space allowing of course.

Thanks for your time,

Linda Jo Morton

Gardening Specialist

EFOP, OAC

B&A Environmental Studies

UPM Grounds

limorton@sfsu.edu

405-2228
Response to Comment Letter 6

SF State, University Property Management
Linda Jo Morton
November 10, 2016

6-1 This comment provides support for installing recycled water infrastructure as part of the Project.

As discussed in Final EIR Chapter 3, Project Description, Section 3.5.6 (page 3-16), the Project would aim to include installation of recycled water infrastructure. It is acknowledged that installation of “purple” piping during initial project construction would be more cost effective than retrofitting the building in the future.

6-2 This comment indicates that SF State should keep as much stormwater on site as possible.

As discussed in Final EIR Chapter 3, Project Description, Section 3.5.6 (page 3-16), the Project would implement a stormwater management approach that reduces the existing stormwater runoff flow rate and volume by 25% for a 2-year, 24-hour design storm. The actual design of the stormwater management system would be developed as the design process proceeds. By implementing these design criteria, the Project would surpass the requirements of the 2007 Campus Master Plan, calling for no net increase in storm flow discharge from the campus to the combined sewer system.

6-3 This comment asks detailed operational questions about collection and transport of waste from the Project.

As discussed in Final EIR Chapter 3, Project Description, Section 3.5.6 (page 3-17), all proposed buildings would have trash, composting, and recycling services. Standard campus practices for collection and transport of waste would be implemented with the Project.

6-4 This comment asks for more definitive information about tree replacement with the Project.

The Board of Trustees of the California State University will consider approval of schematic designs at the same time as they consider certification of the EIR for this Project. Due to this timeline, detailed design and landscaping plans are not yet available. Therefore, specific information about tree removal and replacement is not currently available. As indicated in Final EIR Chapter 3, Project Description (page 3-18), some removed trees on SF State property would be replaced. Replacement
would depend on the availability of planting space for trees on the Project site, given building, pathway, and stormwater management system coverage on the site. SF State would comply with the permitting requirements of the City’s tree protection legislation for any trees removed in the City’s right-of-way.
Anais Schenk

From: Wendy Bloom <wbloom@sfsu.edu>
Sent: Friday, November 11, 2016 4:30 PM
To: Mani Drayton
Cc: Ann Sarcevich; Anais Schenk; Nicholas Holmes
Subject: RE: SFSU Draft EIR: Holloway Ave Construction & Expansion

Mani,

Thank you for your comments on the Draft EIR. You will receive a response in the Final EIR.

Best,

Wendy

From: Mani Drayton [mailto:manidrayton@yahoo.com]
Sent: Friday, November 11, 2016 11:29 AM
To: Wendy Bloom <wbloom@sfsu.edu>
Subject: SFSU Draft EIR: Holloway Ave Construction & Expansion

Hello San Francisco State and CSU Board of Trustees,

Thank you for reading. This is a very important issue that if it goes forward will NOT be reversible, and may create long-term harm for students, our region, our community's, local residents, and more.

All comments stated are regard SFSU Draft EIR for the Holloway housing and concert hall expansion. The below assertions are based on SFSU and the CSU in conjunction is not living up to its mission statement; furthermore, is not being driven by such a robust and powerfully stated mission for a better California.

SF State Master Plan
http://opde.sfsu.edu/plan

SFSU Will NOT Achieve its Stated Goals Based on THE CURRENT PLAN

- SFSU and CSU system is not focused on high quality affordable education, which means its student population must work to eat, have shelter, pay off student loans, etc. The CSU's mission, quality affordable education meant for Californians is not being achieved. SFSU (CSU Board of Trustees) are creating a less and less affordable higher education system, and there is NO long-term strategy to REVERSE this 30 year trend creating what can be considered as a modern day indentured servitude for its student population. With this being said, only those students that come from families that have the financial means or those that take on excessive amounts of debt will be spending their time enjoying this model urban university concept, them and them alone. SF State will literally be create a two tier student body of have and have nots.
Paying 3 Times More - Chart: The Cost of Tuition at UC and CSU Over the Years, Adjusted for Inflation

You have a serious issue that is NOT isolated to one campus, student hunger, homelessness, and more:
http://www.pbs.org/newshour/ bb/college-students-difficult-test-may-basic-survival/

There was a time not so long ago when a student attending SFSU or other CSUs could pay off their current student debt and live independently by working a minimum wage part-time job during the school year, and work full-time during the summer, this way of college life is gone but it doesn’t have to be. At this time, what should take precedence is a re-commitment by SFSU, CSU Board of Trustees, and Sacramento to achieve this stated multi-generational California goal, and SFSU should lead the way.

SFSU IS MEANT TO HELP WHO

- SFSU was established to serve San Francisco residents and the 5 other local counties (*Alameda, Contra Costa, Marin, San Francisco, San Mateo & *Santa Clara counties). It is my assertion that it is inappropriate of SF State to be actively seeking and recruiting large numbers of students and staff outside its historic boundaries. SFSU is a public institution, NOT private or exclusive, instead an important public common, and it is meant to meet the needs of the local community.

Sourced from SFSU’s master plan, pg 10
http://cppc.sfsu.edu/sac/cg/default/files/chapter_4_10.pdf

Historically, the majority of new SF State students already lived in the Bay Area region at the time of their enrollment at SF State; however, this trend is shifting with increasingly more students relocating to the Bay Area from other areas to attend SF State. Therefore, this EIR assumes that about 50 percent of all the additional students (or 2,760 students) would be “new” to the study area, that would relocate in order to study at SF State. This EIR also assumes that all of the faculty will be new to the study area, as faculty is likely to be recruited...
from outside the area. Although staff positions are typically filled by persons already living in the
Bay Area, conservatively this EIR assumes that the additional staff will also be new to the study
area. Based on these assumptions approximately 3,470 SF State affiliates will be new to the
study area and therefore will be seeking housing, as shown in Table 4.10-5, below.

- SF State and CSU system seemed to have abandoned their responsibility without having
a significant multi year discussion with all counties that are supposed to comprise SFSU student
body. SF State seems to have unilaterally pursued a DRASTICALLY different policy direction,
which they should had to receive full acceptance for from the historic 6 counties that comprise
SFSU in order to make ANY change.

DOES SFSU NEED ANY MORE HOUSING

- Parkmerced proposed 300% increase in housing (8,900 units).
Is additional SFSU housing essential with over 6,500 units of NEW housing is slated to be
built (population growth, from 10,000 to 30,000) in Parkmerced starting before
January. Furthermore, Stonestown ownership is looking to build a large apartment complex on
its property. Huge amounts of housing straddling both sides of SF State main campus will be
added over the next 20-30+ year period just from Parkmerced and potentially Stonestown
alone.
http://www.som.com/projects/parkmerced_vision_plan

- If SFSU focused on the historic 6 counties as it was established to for (75-90%) local
residents to build a healthier Bay Area with that being said, will SF State need any additional
housing. Important question for TODAY, does SFSU have enough students from the
aforementioned 6 Bay Area counties to absorb its CURRENT housing stock, plus the proposed
Holloway 550 unit (not bed) apartment style student housing with 75-90% local students? A
study should be conducted on the long-term ability of the region being able to provide
enough students to SFSU to achieve its student housing ambitions, creating a new
master plan. Hence, SFSU should be discouraged from eroding our commons any further, and
focus on VERY affordable higher education for San Franciscans and the other 5 counties
residents.

Student Enrollment Data:

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Bay Area Counties*</td>
<td>3520</td>
<td>3948</td>
</tr>
<tr>
<td></td>
<td>56%</td>
<td>57%</td>
</tr>
<tr>
<td>All other</td>
<td>2820</td>
<td>2822</td>
</tr>
<tr>
<td></td>
<td>44%</td>
<td>43%</td>
</tr>
<tr>
<td>All Under-graduate First-time Freshmen & Transfers</td>
<td>6340</td>
<td>6570</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>* SF, San Mateo, Santa Clara, Marin, Contra Costa and Alameda</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Fall '06</th>
<th>Fall '06</th>
<th>Fall '16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student headcount enrollment</td>
<td>27,420</td>
<td>29,628</td>
<td>29,045</td>
</tr>
<tr>
<td>Full-time equivalent student (FTES) enrollment</td>
<td>20,258</td>
<td>23,953</td>
<td>24,108</td>
</tr>
</tbody>
</table>
SFSU Student Enrollment for FALL YEARS: 1996/27,420 | 2006/29,628 | 2016/29,045
official data from SFSU Campus Planning

With the purchase of the once called Stonestown Apartment Complex and a portion of Parkmerced, SF State has add in roughly the past 10 years over 800 units of housing. As one can see, over the past 20 years, SFSU student housing has increased tremendously but its population has dropped almost 600 students. This is a clear indication that fewer local students are attending the University, and far MORE are from other places are being admitted.

The Holloway redevelopment project seem to be more about the increased financials and revenue generated on the backs of students coming from places further than the designated 6 counties, other parts of California, out of state, and international students, than it has anything to do with helping fill the serious need for local SFSU students to have housing as what is repeatedly stated, those that live a 1½ away.

Source SF Chronicle

7-2
Cont.

RECOMMITE TO SFSU STUDENTS + MISSION

- What guarantee does SFSU's leadership have to re-enforcing that the vast majority of all students will be coming from the 6 counties. SFSU must guarantee that 75-90% of current and new housing will ONLY be for those that are residents coming from their mission of serving the 6 counties, if not, then they are pursuing a clear eroding of this California common at the expense of Bay Area students and taxpayers. As mentioned, SFSU is not a private institution, which means it is suppose to, if not mandated to, be serving San Francisco and the other aforementioned 5 local counties. SF State funding is based, especially construction, on the California taxpayer for Californians. Pursuing such a harmful policy agenda may create a backlash. SF State is taking ever more and more students outside of the major designation of San Francisco and the other historic 5 counties, in which means it is NOT serving the region. Furthermore, SFSU should today, from its existing housing stock, create a portion of student emergency housing, something that will help those in greatest need with services attached to help transition them into regular (on or off campus) housing.

- SF State already has a Creative Arts Building, so does it need another 800 seat auditorium when the student population hasn't changed in any dramatic way. Is this more a monument to sell people on coming to the University. How is this project really needed over reducing student learning cost, creating long-term affordable quality education. The moneys for this project should be reinvested into the students by reducing any burden of debt.

SFSU MAJOR DISCONNECT WITH THE COMMUNITY

- SFSU sad historical Ohlone desecration, potentially 15,000 Ohlone remains were paved over in building the current SFSU campus. A full reconciliation must be addressed based in equality, fully amicable resolution between the University and the Ohlone people should be achieved, hence living true values expressed in SFSU's mission statement.

*Attending SF State is more than an education -- it's an experience, and true preparation for living a life of principle and value.
http://puboff.sfsu.edu/ makehappen

7-3

7-4

7-46
- M MUNI line reconfiguration and discriminatory Ingleside stoppage,
 SFMTA (MUNI), SFSU, Parkmerced, and Stonestown are all focused on having the MUNI M line
go underground from West Portal all the way into Parkmerced. Parkmerced will be its final
destination, effectively shutting all service to the Ingleside district. The Ingleside district is
COMPLETELY against such a discriminatory practice, and SFSU should not be pursuing such a
project. SF State needs to publicly and privately change their policy, and encourage in every
way possible MUNI to have the M Line continue servicing those to be discriminated against all the
way to Balboa Station, as it currently does.
https://www.sfmta.com/about-sfmta/blog/subway-sfsu-our-plan-take-m-line-down-under

- Centralized Commission should be formed (20-40 yrs of construction)
Since this area has been designated for 20-40 years of redevelopment, all members of the
community old and new should be well informed about all aspects of construction taking place in
the area and how it’s not only projected to impact but is impacting. As an example but not
limited to, a centralized commission should be created so all information related to the area’s
building and various developers is aggregated and easily known. Information gathering on start
and end construction dates, all current construction locations, current air, water, and soil
quality. Legally removing of trees. Trees are not ornaments; we need them! Trees are one of the
most essential ways our air gets filtered, and oxygen is created. All findings of Chlone
remains must be properly addressed. In addition, noise level testing. Furthermore, a place one
can register a complaint. SF State should be with other stakeholders actively working to make
this a reality and in doing so, showing it is a valuable member of the community.

- SFSU Poor outreach on Draft EIR
The vast majority of people in the surrounding community (neighborhoods), current SF State
students, and alumni are totally unaware that the Holloway mixed use project and concert hall is
to be constructed, let alone by fall 2017. Hence, very few participated to the on campus
Draft EIR held on Oct 18, 16. During the time I was there only a handful of people from the
public was there, however, based on the populations mentioned or just the surrounding
neighborhoods, there should have been hundreds. Let’s be clear, this is an incredibly large
project taking up MULTIPLE BLOCKS, but only a small number of people of the community were
there. It’s not likely that there is only a few individuals that care about such a dramatic change
that is slated to begin in less than 12 months, and this is their final opportunity to state their
fervent concerns. Furthermore, the room it was held in probably couldn’t comfortably hold a
capacity above 50. Hence, I haven’t met one person from any of these populations that are
knowledgeable of any construction, and I have asked MANY DOZENS of people. This level of
engagement should be concerning to all that care about a healthy community. This process
needs to be fixed and redone before this project is accepted by the CSU.

- This project will add greater greenhouse gases, damaging neurotoxins, like but not
limited to asbestos and lead will be in the air. Furthermore, it will add toxic carbon to our
atmosphere, and we have to seriously start thinking about our choices in a long term way, what
impacts are we creating today for today and future generations. The selfish attitude of now
never worked, and is dangerous for today’s world. Furthermore, green building in it of itself
can’t fix this. We must question and reassess our collective thinking.

Living Warmer: How 2 Degrees Will Change Earth
Living Warmer: How 2 Degrees Will Change Earth
In Cancun, climate negotiators are working toward the goal of capping warming below two degrees. A picture of wh...

SFSU Holloway Housing and Concert Hall Development Should Only go Forward

This proposed project should go forward only if ALL communities stated feel the above issues have been achieved satisfactorily. Furthermore, SFSU MUST guarantee that all current and future student housing is and will be occupied 70+% from students coming from the historic 6 counties. In addition, this new site and all future sites of housing is affordable based on students family economics, sliding scale. Further, SF State should designate five to ten percent of all of its student housing as emergency student housing with proper services as spoken about prior. As a final piece, a study must be conducted proving that it is probable that over the next 30+ years this region will be able to provide enough students to SFSU to achieve this NEW above stated master plan, reinvesting and a re-committing, then making it economically viable to allow housing be built along Holloway Av.

In closing, if this project is allowed to go through as currently devised by the CSU Board of Trustees, SF State’s Master Plan is in direct opposition to the 6 counties and its Mission Statement, in which this should NEVER happen! VERY seriously, if this project goes forward it will be very difficult, if not impossible, for SFSU to live up to what is a 6 county pact with the University, creating proud QUALITY AFFORDABLE higher education for such students coming from those counties, which means it might take up to 50 years for SF State to achieve 75+% throughout the student body, counting in its student housing. Whether realizing it or not, the University is actively DESTROYING this pact, and the Master Plan’s 50% coming from outside of the Bay Area (local) goal might GROW HIGHER, to 60% or 70% all because of this proposed project. Due to this, until ALL of the above is fully addressed, SFSU and CSU Board of Trustees should indefinitely hold off on such project.

I thank San Francisco State leadership and CSU Board of Trustees who care about the gravity shared regarding the above statement, and is looking at this through a thoughtful, deliberate, and genuine focus on reinforcing a healthier young adult (8 youth) population and beyond for the Bay Area. SF State as an essential common, not a private institution unconnected to the community for it resides, means all current and future decisions for the University must be based on strengthening just that, our local common for the local populous.

Sincere regards,
Mani Drayton
Response to Comment Letter 7

Mani Drayton
November 11, 2016

This comment indicates that SF State will not achieve its stated goals with the Project, and further indicates that the mission of California State University to provide an affordable, quality education for Californians is not being achieved.

For information purposes, SF State’s Mission Statement can be found at http://senate.sfsu.edu/policy/revision-mission-statement-policy. The policy is as follows:

From the heart of a diverse community, San Francisco State University honors roots, stimulates intellectual and personal development, promotes equity, and inspires the courage to lead, create, and innovate.

SF State is a major public urban university, situated in one of the world’s great cities. Building on a century-long history of commitment to quality teaching and broad access to undergraduate and graduate education, the University offers comprehensive, rigorous, and integrated academic programs that require students to engage in open-minded inquiry and reflection. SF State encourages its students, faculty, and staff to engage fully with the community and develop and share knowledge.

Inspired by the diversity of our community that includes many first-generation college students, and the courage of an academic community that strives to break down traditional boundaries, SF State equips its students to meet the challenges of the 21st century. With the unwavering commitment to social justice that is central to the work of the university, SF State prepares its students to become productive, ethical, active citizens with a global perspective.

An EIR is an informational document that is required to identify the potentially significant impacts of a project on the environment. According to the CEQA Guidelines, economic or social effects of a project are not treated as significant effects on the environment (14 CCR Section 15131) in this EIR.

This comment indicates that it is inappropriate for SF State to actively seek and recruit large numbers of students and staff outside its historic boundaries.
As indicated in Final EIR Chapter 3, Project Description (pages 3-3 and 3-4), the adopted 2007 Campus Master Plan (CMP) accommodates an enrollment increase to 25,000 full-time-equivalent (FTE) students. The campus is currently approaching this FTE ceiling and additional FTE students beyond 25,000 cannot be added under the current 2007 CMP and related approvals. The change in total campus population (also called headcount) has been flat since the 2007 CMP EIR base year, given that the number of full-time students has been increasing and the number of part-time students has been declining. The Project would not result in substantial increases in SF State campus population over existing 2015–2016 levels. The Project would not substantially increase SF State's population. General information about SF State's local admission and service areas is provided below. The need for new housing is also discussed.

Admission Area. The 23 CSU campuses are distributed across the state to provide broad access to higher education. The larger, established campuses have defined local admissions areas to give priority to their communities, but all campuses serve the entire statewide population.

The local admission area describes a geographic area within which prospective students are given preferential admission. The service area is the geographic area for which each campus is responsible for providing school-college relations and outreach on behalf of the entire CSU system (CSU 2013). The service area does not delimit the right or opportunity of any campus to communicate to high schools and community colleges because all campuses are statewide (CSU 2010). Moreover, the delineation of service area is not a basis for defining or restricting the admission of qualified students (CSU 2010).

SF State’s campus-specific outreach and recruitment efforts are focused primarily on the six Bay Area counties that comprise its local admissions area, including Alameda, Contra Costa, Marin, San Francisco, San Mateo, and Santa Clara Counties. In particular, San Francisco and San Mateo Counties are the primary focus. The top three feeder public and private high schools in 2015 were located in San Francisco. City College of San Francisco continues to be SF State’s top community college feeder, followed by Skyline College (San Mateo), Diablo Valley College (Contra Costa), De Anza Community College (Santa Clara), and College of San Mateo (San Mateo) (SF State 2016). Over the past decade, the majority of the combined number of freshmen and transfer students admitted to SF State has been residents of the six Bay Area counties.
To strengthen the pipeline of first-time freshmen and upper division transfer students coming from the City to San Francisco State, SF State has partnered with the local community and other local educational institutions. One such effort is Bridge to Success, a partnership between the City, San Francisco Unified School District, City College of San Francisco, SF State, and the community to double the number of youth who achieve college credentials (Bridge to Success 2017).

Need for New Housing. As stated in Final EIR Chapter 3, Project Description (page 3-2), to accommodate the projected growth in enrollment and academic activities, the adopted 2007 CMP envisions a building program that would develop of 0.9 million gross square feet of new and replacement non-residential building space on campus, and development or conversion of approximately 1,198 additional units of housing on campus for faculty, staff, and students. The housing proposed as part of the Project is consistent with the CMP building program, as demonstrated in Final EIR Chapter 3, Project Description (Table 3-2, page 3-7).

With the acquisition in the early 2000s of the former Stonestown apartments (now University Park North) and the northernmost blocks of Parkmerced (now University Park South), SF State added 959 units of housing. Approximately 27% of these housing units continue to be occupied by non-SF-State affiliates, reducing that number to 703 apartments available for SF State students and affiliates. These remaining units, together with the core housing—Mark Park, Mary Ward, the Village, and the Towers—allow SF State to house approximately 4,100 students out of a total headcount enrollment of approximately 30,000 students or approximately 14%.

The demand for on-campus housing exceeds the current supply. Priority is given to incoming freshmen, who occupy approximately 85% of the available on-campus housing. This leaves little opportunity for sophomores or upper-division students to live on campus, which is a limiting factor to their success. It is well established that on-campus living enhances the student experience. Students residing on campus have a higher GPA, on average, than their off-campus counterparts. These students also experience higher retention and persistence to graduation, and more often than not go on to earn advanced degrees.

As the cost of rental housing has soared in San Francisco and the Bay Area, finding affordable housing within a reasonable commute of campus has become increasingly difficult, further limiting the options for SF State students. As a result of the lack of affordable housing in the area and SF State’s limited supply of on-campus housing, many students choose not to enter SF State or leave after their first year. Currently,
the freshman 4-year graduation rate is at 18%, which is very low. Expanding the supply of on-campus housing would enable SF State to guarantee housing to first-year, transfer, and graduate students for a sufficient period to settle into campus life, establish themselves, and become stable members of the campus community.

Overall, on-campus housing has multiple benefits: it supports student retention and success; it eliminates long commutes and their associated greenhouse gas emissions; and it reduces the number of students competing for a limited supply of off-campus affordable housing, making that housing available to the larger community.

7-3 This comment questions why SF State needs another auditorium.

As discussed in Final EIR Chapter 3, Project Description (page 3-9), the Project would replace instructional and performance space in the current Creative Arts building that is outmoded, has multiple deficiencies, and cannot be renovated cost effectively. To prepare Broadcast & Electronic Communication Arts (BECA) students to enter the broadcast profession, the new Creative Arts replacement building would house instructional space that is right-sized and equipped with current technology. The concert hall would provide SF State with needed up-to-date assembly, lecture, and performance space that also would serve as a living lab for BECA students. The Creative Arts replacement building would be the first new academic building added to the campus in more than 20 years.

7-4 This comment indicates that Ohlone remains were paved over in building the current SF State campus, and that full reconciliation between SF State and the Ohlone should be achieved.

The subject of this EIR is the proposed Project, which is the Creative Arts & Holloway Mixed-Use Project. CEQA requires that the effects of the Project be compared to existing conditions, also called the baseline. As indicated in the Tiered Initial Study for the Project (Final EIR Appendix A), the 2007 CMP EIR provided an analysis of the cultural resources impacts associated with the CMP and identified a range of mitigation measures to reduce identified impacts to the extent possible. The Project is consistent with the 2007 CMP, and the Tiered Initial Study indicates that no new or increased cultural resource impacts would result with implementation of the Project.

The Tiered Initial Study also indicates that State Assembly Bill 52, effective July 1, 2015, recognizes that California Native American prehistoric, historic, archaeological, cultural, and sacred places are essential elements in tribal cultural traditions, heritages, and identities. The law establishes a new category of resources for CEQA called “tribal
cultural resources” that considers tribal cultural values, in addition to scientific and archaeological values, when determining impacts and mitigation.

California Public Resources Code Section 21084.2 establishes that “[a] project with an effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment.” The Public Resources Code Section 21080.3.1(b) requires a lead agency to consult with any California Native American tribe that is traditionally and culturally affiliated with the geographic area of a proposed project if the California Native American tribe requested in writing to be informed by the lead agency of proposed projects in conjunction with negative declarations, mitigated negative declarations and environmental impact reports.

There are no known resources on or adjacent to the Project site that would be considered a tribal cultural resource. No Native American tribe has contacted SF State or the Board of Trustees of the California State University to request consultation. Therefore, the Project would not result in impacts to archaeological resources or cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code 21074. If a tribe contacts SF State in the future as outlined in the above paragraph, the campus would consult with the tribe per Assembly Bill 52.

7-5 This comment expresses concern over discontinuation of service to the Ingleside district due to M-line improvements.

The 19th Avenue Transit Study Final Report (SFCTA 2014) considers a few potential options for the southern portion of the route: service at-grade, underground, or aerial. The concept of undergrounding the M-line and terminating it in Parkmerced is one idea under study by the SFMTA but has not yet undergone environmental review or project approvals. In this alternative, service to the Ingleside district would not be eliminated, but instead would be provided by the J-Church, with a transfer station between the M-line and the J-line at SF State.

7-6 This comment indicates that, given the lengthy construction period, a centralized commission should be created so that all information related to construction projects and the various developers is aggregated and readily available. Information requested includes start and end of construction; all construction locations; and current environmental conditions and impacts related to air, water, soil, cultural remains, and trees.
Development of a centralized commission for the above-stated purposes is outside of the scope of this EIR and beyond the jurisdiction of SF State. However, information about the Parkmerced project, the Creative Arts & Holloway Mixed-Use Project, and other future SF State constructions projects are readily available, as described below.

Parkmerced. The Parkmerced project has already been approved by the City. Information about that project, including a project description, purpose of the project, documents for download (e.g., the EIR), development process and phasing, and implementation documents and applications are provided at http://sfplanning.org/parkmerced-project. Information about current environmental conditions and impacts associated with that project is included in that EIR. Information about the timing of Phase 1 of the Parkmerced project is provided in the section on implementation documents and applications. City contact names are also provided if there are questions about this project.

Creative Arts & Holloway Mixed-Use Project. Information about the Project, including the Tiered Initial Study, Draft EIR, and this Final EIR, is provided at http://cpdc.sfsu.edu/plan. Information about current environmental conditions and impacts associated with this Project is included in this Final EIR and the Tiered Initial Study attached to this Final EIR as Appendix A. In advance of construction, this Project, and any other future SF State project that has been approved and is pending or under construction, will be posted at http://cpdc.sfsu.edu/campus-design under “Current Projects.” This website shows the location of approved projects pending and under construction, and provides a link to details about those projects, including the construction schedule; project description and mapping; construction noise limits and notification requirements; and project team, including the construction manager. Contact information is also provided on this website for anyone who has questions about any project under construction. SF State also typically posts signs at campus construction sites with contact information and where to learn more about the project.

Construction Coordination. Additionally, as indicated in Final EIR Chapter 3, Project Description (page 3-19), a construction traffic control plan would be prepared by SF State and/or the construction contractors to address potential lane closures, construction vehicle access routes and parking, hours of construction, and other concerns in accordance with CMP EIR Mitigation HAZ-5A. The traffic control plan would comply with the City’s Encroachment Permit and/or Construction Permit requirements, if applicable. Given that Phase 1 of the Parkmerced project would be under construction at the same time as the proposed Project, SF State’s
traffic control plan would be coordinated with the traffic control plan for that project to minimize temporary impacts on vicinity roadways.

7-7 This comment indicates that SF State conducted poor outreach about the Draft EIR.

SF State provided public noticing and outreach in accordance with the CEQA Guidelines. CEQA noticing and outreach included the following actions:

- **Notice of Preparation (NOP)** – An NOP was prepared and sent to applicable agencies and interested parties. The distribution list included representatives from Parkmerced, in addition to people, including a number of Parkmerced residents who had previously expressed interest in SF State projects. The NOP and Initial Study were made available on the SF State CMP website (http://cpdc.sfsu.edu/plan). Contact information for the Project planner was provided in the NOP and on the website for parties interested in receiving notification of future actions.

- **San Francisco Chronicle Ad** – An ad was placed in the San Francisco Chronicle to provide notice that an NOP was released, that the scoping period had begun, and that a scoping meeting would be held.

- **Scoping Meeting** – A meeting was held at the J Paul Leonard Library at SF State on July 27, 2016, for interested parties who wanted more information about the Project or to provide comments on the scope and content of the EIR. Notice of the meeting was sent to the Project distribution list (see the first bullet, above) and to nearby residents. People were provided the option to sign onto the distribution list to receive further notices about the Project.

- **Notice of Availability (NOA) of the Draft EIR** – Upon completion of the Draft EIR, an NOA was distributed to relevant local agencies and the Project distribution list (see the first bullet). All information was also posted on the SF State CMP website.

- **San Francisco Chronicle Ad** – An ad was placed in the San Francisco Chronicle to publish the NOA, which provided notice that the Draft EIR was released, that the public review period had begun, and that a Draft EIR public review meeting would be held.

- **Draft EIR Public Meeting** – A meeting was held at the J Paul Leonard Library at SF State on October 18, 2016, for interested parties who wanted more information about the Project or to provide comments on the Draft EIR. Notice of the meeting was sent to the Project distribution list (see first bullet) and nearby residents. The meeting was also advertised in the San
Francisco Chronicle. People were provided the option to sign the distribution list to receive further notices about the Project.

In addition to the public notifications required by CEQA, SF State sent individual letters and email messages to non-SF State residents of Block 1 to inform them of CEQA public meetings (the scoping meeting and the Draft EIR public meeting). In addition, SF State met with the staff of elected City officials to brief them on the Project and coordinated with various City departments throughout the EIR preparation process.

7-8

This comment indicates that the Project will increase greenhouse gas emissions.

As described in Final EIR Section 4.3, Greenhouse Gas Emissions (pages 4.3-26 through 4.3-34), Project-generated greenhouse emissions would be below the Bay Area Air Quality Management District’s thresholds, and, therefore, would not have a significant impact on the environment. The Project would not conflict with any plans, policies, or regulations adopted for the purposes of reducing greenhouse gas emissions, and would be consistent with the applicable strategies and measures in the California Air Resources Board Scoping Plan, which provides a framework for actions to reduce California’s greenhouse gas emissions.

See Response to Comment 1-2, which indicates that building materials containing lead, asbestos, or other regulated materials would be abated prior to building demolition. This abatement prior to building demolition would limit airborne lead and asbestos during demolition.

7-9

This comment summarizes concerns expressed throughout the letter.

Please see Responses to Comments 7-1 through 7-8 for a response to this comment.
Anais Schenk

From: Wendy Bloom <wbloom@sfsu.edu>
Sent: Thursday, October 20, 2016 5:21 PM
To: Aaron Goodman
Cc: Noriko T Shirato, Roberta Boomer, Jason M Porth, MTA Board, John Rahaim; Ann San Severo; Anais Schenk
Subject: RE: Comments on the Focused Tiered Draft Environmental Impact Report (Draft EIR) for the Creative Arts & Holloway Mixed Use Project proposed on the San Francisco State University campus

Aaron,

Thanks very much for your comments on the Draft EIR.

Wendy

From: Aaron Goodman [mailto:agoodman@yahoo.com]
Sent: Wednesday, October 19, 2016 9:36 PM
To: Wendy Bloom <wbloom@sfsu.edu>
Cc: Noriko T Shirato, Roberta Boomer, Jason M Porth, MTA Board, John Rahaim
Subject: Comments on the Focused Tiered Draft Environmental Impact Report (Draft EIR) for the Creative Arts & Holloway Mixed Use Project proposed on the San Francisco State University campus

Wendy Bloom,

I was unable to attend the meeting on Tuesday night due to a conflict in scheduled meetings. The EIR for SFSU-CSU’s Creative Arts and Holloway Mixed Use Project proposed for SFSU-CSU. Please accept this email as my brief comments on the EIR and scope.

My concerns on the proposed project and its impacts on the Parkmerced community and the overall EIR for the SFSU-CSU Masterplan have been documented prior the SFSU-CSU initial Masterplan as formally submitted on the EIR and issues/concerns with its approach and view of the Parkmerced UPS blocks and impacts, and still are valid concerns based on the proposed development and demolition of the sound housing stock that exists in Parkmerced. No report of documentation has been issued on the condition (post SFSU-CSU’s renovations) on the existing conditions and need to demolish sound affordable housing nor the costs expended on the UPS renovations to date this information should be made public as an example of rehabilitation costs of the SFSU-Housing Department for an understanding of the costs of running the purchased blocks, and the pricing issues, and how the SFSU-U Corp needs to create “value” and profit on the housing of the neighborhood vs. development on its own and prior defined borders pre- UPS and UPN purchases. If the UPS blocks continue forward as an alternative it should be shown and considered that it could be utilized as Staff and faculty housing for families, and should be considered an alternative with infill housing concepts on the parking areas of those blocks with small well designed pencil thin towers that could go up 8-12 stories as infill student housing on the existing layout without destroying the low-scale quality of the park-like setting. Other alternatives should include development and density of the UPN blocks initially to off-set the immediate impacts of multiple construction sites on the Parkmerced blocks, which already are drastically going to affect quality of life, and living conditions of the residents of Parkmerced. Having multiple sites by SFSU and Parkmerced’s ownership occurring simultaneously is a severe and avoidable impact if SFSU-CSU looks at
the UPN blocks initially for housing density and infill prior to the UPS blocks and should be looked at as an alternative to lessen the environmental impacts of noise, dust, and construction parking impacts on site.

SFSU-CSU has not addressed the loss-of-use of the former open-spaces of Parkmerced, nor the amenities lost (example: the Frederick Burke Elementary School, community building, tennis courts, basketball courts, softball fields, and smaller game/planted areas and open space) and how this has affected the livability of the prior community. The loss of access to the larger open-space parcel with the build-out of the "wellness-center" has not been indicated if the new buildings will be available to Parkmerced long-term residents at a lower rate, or if the impacts created by the large structure have or will have any physical impacts on the surrounding community currently or in the future when in full use. The impacts on the community should be documented as a tiered EIR to determine if any environmental impacts are being ignored such as the housing impacts and transit/traffic/parking issues noted below.

SFSU-CSU has not addressed the housing impacts they have created in the purchase of the larger apartment complex of UPN (Stonestown Apartments) and UPS (Parkmerced blocks) as prior affordable rental housing for families, seniors, and working class San Franciscans. The impacts of student increases on the general housing stock, and the impacts of students (CSU-Campus laws) no-smoking, no pets, and no-drinking. Which are not enforceable in Parkmerced as general housing stock, and therefore incentivizing further student encroachment into the remaining Parkmerced blocks. The loss of housing impact will not be solved with these smaller projects, and SFSU-CSU needs to show a longer term planning effort on housing along 19th Ave. and adjacent to the Eastern and NE corner of campus, near shopping and transit facilities.

SFSU-CSU has failed to address the parking, traffic and mass transportation impacts created by their approval and the impacts the removal of the parking central structure will have on the surrounding streets and neighborhoods. There has been no indication of garage replacement and Parkmerced's below grade garages appear to be the only locations for future SFSU-CSU parking needs, and this will likely be at an inflated rate which students will not pay, thus leading to more concerns about off-street and neighborhood parking impacts if transportation issues are not adequately addressed up front prior to the densification proposed. The gate pass was a small step, but without a future direct connection to Daly City BART the real TDM, and transit vision for the SFSU-CSU sustainability issues is questionable since the impacts will continue to worsen traffic and parking wise, unless their is a serious decision to ramp up the discussions between Stonestown, SFSU-CSU and Parkmerced on the future M-Line extension out to Daly City as part of the Tier-5 Level Federal Funding being sought for planning and implementation of the extension. Transportation alternatives should include a larger capacity and/or frequency West-side shuttle line route that goes around the UPN/UPS sites and connects to Daly City's shopping areas, as well as BART so students can get to mass transit options easily. This should be considered a transit alternative, to ensure that until and including the M-Line extension, SFSU-CSU is asked to work together with the other developments through an MOU to fund and help pay for the future extension to Daly City BART. Funds garnered from parking facilities and price increases on transit related fares, or programs through the TDM should be forward towards the goal of extending the M-Line to Daly City BART.

Capacity of the M-Line and the concerns of overcrowded platforms, and trains create a serious safety issue for seniors, children and the disabled on the existing platform. Alternatives for a temporary fix inclusive of a two-sided platform access design and cross-over should be implemented until the shift to a west-side alternative, or underground/airrise design is decided and completed to improve pedestrian safety at this station. Parking/Traffic and Transit impacts will need to be recorded and documented due to the Tiered impact study of this draft EIR report. There needs to be documentation of parking trends, and the impacts on the surrounding streets and communities to determine how and in what ways SFSU-CSU needs to be held accountable for their transit/traffic and parking impacts.

As the project's proposal will drastically change and blur the prior Holloway "border" line which was a distinct separation between the university and Parkmerced community this blurring of boundaries and its impacts on the protected class of families and family styled housing, should be documented to determine if their has been a
large enough net-loss of family sized and scaled housing that there needs to be a revision to the SF General Plan to incentivize affordable rental housing construction in surrounding neighborhoods that are primarily homeownership to ensure a proper and adequate balance of housing types per the SF General Plan being constructed equitably in the surrounding areas and district adjacent to the enlargement of SFU-UCU. The need to ensure in the documentation of this EIR like the changes in roadways and road-way diets, that there is enough housing capacity in D7 to absorb the loss of low-scaled family housing due to SFU-UCU’s construction impacts and the need to re-balance or re-zone other single family home areas in the district, so that one neighborhood is not disproportionately impacted by all the housing construction impacts should be brought to the SF Planning Department and planning commission as a nexus study on the overall impacts of family housing in the western neighborhoods of SF, and the need to pro-actively promote new alternatives to density, that lessen the impacts on families and seniors, due to institutional growth.

Thank you for your time and efforts in considering these comments, alternatives, and studies suggested, and providing responses in regards to the universities Tiered EIR for the creative arts and mixed use proposal projects;

Sincerely

Aaron Goodman
email: aaronbarnes@yahoo.com

BCC - recipients please do submit comments on the impacts of this project if so inclined, or if you would want to be removed from any further bcc’s...on this project please email me directly at the email provided.
INTENTIONALLY LEFT BLANK
Response to Comment Letter 8

Aaron Goodman
October 20, 2016

8-1 This comment indicates that no report or documentation has been issued on the condition of the existing housing on the Project site and the need to demolish sound affordable housing.

The SF State campus is landlocked. With the acquisition in the early 2000s of the former Stonestown apartments (now University Park North) and the northernmost blocks of Parkmerced (now University Park South), SF State was able to expand the campus to support the growth of academic and other programs and housing. The Block 1 portion of the Project site would be developed for academic and related uses with the Creative Arts replacement building and the concert hall. Use of this site for these uses meets both 2007 CMP and project-specific objectives provided in Chapter 3, Project Description (pages 3-4 through 3-6).

The need for new housing on the SF State campus is discussed in Response to Comment 7-2 under the subheading “Need for New Housing.”

8-2 This comment indicates that an alternative should be considered that retains the University Park South blocks for staff and faculty housing, with infill student housing on the parking areas of those blocks with small, well-designed, pencil-thin towers that could go up to 8–12 stories.

This Final EIR provides a reasonable range of alternatives as required under CEQA Guidelines Section 15126.6(f), including a Reduced Project Alternative (Partial Reuse/Preservation), see Chapter 6, Alternatives (pages 6-13 through 6-17). This alternative looks at partial reuse and redevelopment of Block 6, while retaining a portion of the original apartments on the block. There is no off-street parking on Block 6 so redevelopment of such a parking area was not considered under this alternative. This alternative does not consider partial reuse/preservation on Block 1, as the existing residential buildings on this site are not conducive to reuse and rehabilitation for academic uses. Therefore, this alternative includes the Creative Arts replacement building and concert hall on Block 1, as planned for the Project.

A partial reuse/preservation alternative on Block 5, instead of Block 6 for example, where off-street parking does exist, would likely have similar impacts and ability to meet the Project’s objectives, as described for the Reduced Project Alternative (Partial Reuse/Preservation) (see Chapter 6, Alternatives, Tables 6-2 and 6-3, pages
6-23 through 6-32). Similar to the Reduced Project Alternative (Partial Reuse/Preservation) that involves Block 6, a partial reuse/preservation alternative that involves Block 5 would also reduce the impacts of the Project. However, it would not meet many of the basic objectives of the Project, as discussed in Table 6-2. Given that the Final EIR provides a reasonable range of alternatives, further detailed analysis of a partial reuse/redevelopment alternative that involves Block 5, instead of Block 6 is not provided.

8-3 This comment indicates that redevelopment of the University Park North blocks should go forward before redevelopment of the University Park South blocks to lessen the environmental impacts of noise, dust, and construction parking associated with SF State and Parkmerced construction projects.

Final EIR Chapter 6, Alternatives does consider an alternative that would redevelop a block in University Park North for housing, instead of Block 6 in University Park South (see the Alternative Site Locations – Avoidance of Former Parkmerced Properties, pages 6-19 through 6-22). This alternative would also avoid Block 1 in University Park South and use the adjacent West Campus Green for the Creative Arts replacement building and the concert hall. This alternative would reduce the historic resource impacts of the Project and is considered the environmentally superior alternative (Final EIR Chapter 6, Alternatives, page 6-22). However, it would not meet many of the basic objectives of the Project, as described on page 6-20 and shown in Table 6-2.

See also Response to Comment 4-3 for information about noise, dust, and construction parking associated with SF State and Parkmerced construction projects.

8-4 This comment indicates that SF State has not addressed the loss of use of the former open spaces of Parkmerced, nor the amenities lost. The comment notes the loss of access to the larger open-space parcel with the build-out of the Mashouf Wellness Center and the lack of clarity about whether the new building will be available to Parkmerced long-term residents. The comment states that a tiered EIR should document the environmental impacts of the Mashouf Wellness Center when it is in full use.

The Tiered Initial Study addresses the potential for parks and recreational impacts of the Project (see Appendix A, Section 4.15 of this Final EIR, page 64). It reports that implementation of the 2007 CMP would not result in a significant use of off-campus parks or recreational facilities, given the presence of existing and planned recreational facilities on campus (see CMP EIR Impact UTL-5). The Project would
not increase the demand for parks or recreational services, as the Project would not result in a substantial population increase, as documented in Tiered Initial Study Section 4.13 (pages 59 through 61).

Students living in the new Project housing, as well as local visitors to neighborhood retail, would be able to use the urban open spaces planned for Block 6, including an open-air interior courtyard with tables and seating, and an exterior plaza with benches. The Tapia Drive street vacation would also create open space for pedestrian and bicycle use, as it would result in a major east/west walkway connecting the central academic core with sites to the west. All SF State students and affiliates would be able to use the new Mashouf Wellness Center once completed and other recreational facilities on campus.

As the Project would not substantially increase the demand for parks and recreational services, it would not result in substantial physical deterioration of existing facilities, or the need for new or expanded facilities. Therefore, environmental impacts associated with the construction of such facilities would not occur and the impact would be less than significant, as concluded in the CMP EIR. Thus, no new or increased impacts on off-campus parks and recreational facilities would result with the Project.

The Project would not change current campus practices related to the public use of outdoor fields and courts. SF State fields and courts that would continue to be available for public use, when not being used for campus classes and organized activities include: the West Campus Green (until developed in the future); the Mashouf Wellness Center field, once construction is complete; the tennis courts; and Cox Stadium and track.

The environmental impacts of the Mashouf Wellness Center Project were evaluated in a Tiered Initial Study/Mitigated Negative Declaration that was adopted by the Board of Trustees of the California State University in May 2014.

This comment indicates that SF State has not addressed the affordable housing impacts created in the purchase of University Park North and University Park South. The comment also indicates that the loss of affordable housing impact will not be solved with these smaller projects and SF State needs to show a longer-term planning effort on housing along 19th Avenue and adjacent to the northeast corner of the campus near shopping and transit facilities.

The Tiered Initial Study addresses the population and housing impacts of the Project, within the context of the CMP EIR population and housing analysis (see Appendix A,
Section 4.13 of this Final EIR, pages 59 through 61). A comment received during the Scoping period for the Project indicates that the impact should be considered a potentially significant new or increased impact due to the lack of affordable housing options on the westside of San Francisco. The Tiered Initial Study analysis and the analysis provided in the CMP EIR are based on an evaluation of the CEQA standards of significance for population and housing. The standards would be exceeded and a significant impact identified, if the Project would result in the displacement of housing or people that would necessitate the construction of new housing elsewhere. The physical effects on the environment of the construction of new housing elsewhere, are the impacts covered by the standards. As indicated in the Tiered Initial Study, the displacement of existing tenants in seven units on Block 1 of the Project site would not result in the need to construct new housing elsewhere in San Francisco or the region, and therefore the impact under CEQA would be less than significant.

There are City policies and regulations in place to address and provide for an adequate housing supply and affordable units, such as the City’s Housing Element (CCSF 2015) and the Major’s Office of Housing and Community Development. The 2007 CMP does include a broader, longer-term housing program that looks at redevelopment of existing housing in University Park North and University Park South to provide for more campus housing. The student housing being provided with the Project and in the future under the 2007 CMP would result in existing students relocating from other housing in San Francisco and elsewhere, which would result in new vacancies and available units elsewhere, some of which may be affordable. Overall, the Project would increase the local supply of housing and would provide for new housing that is affordable to students.

See Response to Comment 8-3 for information about why redevelopment in University Park South is preceding redevelopment in University Park North.

This comment indicates that SF State has not addressed parking, traffic and mass transportation impacts created by campus enlargement and the impacts of removal of the central parking structure. The comment also indicates a need for a direct M-line connection to the Daly City BART station as well as frequent shuttle service to University Park North, University Park South and Daly City shopping areas.

Please refer to Response 4-1 above for a discussion of parking. A detailed analysis of potential impacts related to vehicle trip and transit trip generation is provided in Section 4.5, Transportation (pages 4.5-24 through 4.5-28).
The campus currently provides shuttle service to University Park South, University Park North, and Daly City BART. The development of Parkmerced would include implementation of a new shuttle service to the Daly City BART Station with 7.5 minute frequencies during peak periods, and 15 minute frequencies during off-peak periods. Although there have been no formal agreements with Parkmerced, SF State would consider combining shuttle service to provide one comprehensive service between Parkmerced, SF State, and the Daly City BART Station, if mutually beneficial.

In 2007, the City and SF State entered into a Memorandum of Understanding (MOU) (SF State 2007c) that provided more detailed information on the conditions of funding from SF State for contribution to off-campus mitigation measures. SF State continues to provide maintenance of the M-line platform. SF State also contributed to the 19th Avenue Transit Study (CCSF 2014). From the Daly City BART station riders can connect to Routes 120 or 121, which provide service to the Daly City Serramonte Shopping Center.

8-7

This comment indicates that a revision to the San Francisco General Plan may be needed to incentivize affordable rental housing construction in surrounding neighborhoods to ensure a proper balance of housing types. It further asks whether there is enough housing capacity to absorb the loss of low-scaled family home areas so that one neighborhood is not disproportionately affected by all of the housing construction impacts. Lastly, the comment asks for a nexus study by the SF Planning Department and planning commission on the overall impacts on family housing in the western neighborhoods of San Francisco and the need to proactively promote new alternatives to density that lessen the impacts on families and seniors.

As indicated in Response to Comment 7-6, the City already approved the Parkmerced project. The need for a nexus study or other actions to retain and/or facilitate the development of low-scale affordable rental housing in other western neighborhoods is outside the scope of this EIR and within the jurisdiction of the City and not within the jurisdiction of SF State to pursue. See Response to Comment 8-5 above for information about affordable housing.
7.3 REFERENCES

Nelson/Nygaard. 2016. *San Francisco State University 2016 Transportation Survey Results*.

SF State. 2007c. Memorandum of Understanding: City and County of San Francisco and California State University/ San Francisco State University. October 29, 2007.

CHAPTER 8
LIST OF PREPARERS

8.1 LEAD AGENCY

Board of Trustees of the California State University

California State University Chancellor’s Office

Steven Lohr, Ed.D.
Chief of Land Use Planning and Environmental Review, Capital Planning Construction and Design

8.2 SAN FRANCISCO STATE UNIVERSITY

Leslie E. Wong
President

Administration and Finance

Ronald S. Cortez
Vice President and Chief Financial Officer

Ann M. Sherman
Interim Vice President

University Corporation

Jason Porth
Executive Director

University Advancement

Noriko Shinzato
Associate Director, Government and Community Relations

Physical Planning and Development

Thomas E. Lollini
Senior Associate Vice President

Simon Y. Lam
Associate Vice President, Capital Project Management

Jill Anthes
Executive Director, Planning and Design
Wendy Bloom – Project Lead
Director of Campus Planning, Planning and Design

Nicholas Holmes
Assistant Planner, Planning and Design

Environmental Consultant

Brad Samuelson
Provost & Pritchard Consulting Group

8.3 CEQA CONSULTANT TEAM

Dudek – CEQA Consultant

Ann Sansevero, AICP
Principal and Project Manager

Anais Schenk
Environmental and Transportation Planner

Matthew Morales
Technical Resource Specialist

Nicole Peacock
Technical Resource Specialist

Rachel Strobridge
GIS Technician

Anne McDonnell
Technical Editor

Devin Brookhart
Publications Specialist Lead

David Mueller
Publications Specialist

Fehr & Peers – Traffic Subconsultant

Matt Goyne, PE
Associate
Ingrid Ballus Armet
Transportation Engineer/Planner

Nelson/Nygaard – Transportation Survey Subconsultant

Jessica Alba
Principal and Director of Staff Development

Joshua Karlin-Resnick
Associate

Page & Turnbull – Historic Resources Subconsultant

Christina Dikas
Associate/Senior Architectural Historian
INTENTIONALLY LEFT BLANK
APPENDIX A

Notice of Preparation & Revised Tiered Initial Study
NOTICE OF PREPARATION

TIERED ENVIRONMENTAL IMPACT REPORT FOR THE SAN FRANCISCO STATE UNIVERSITY CREATIVE ARTS & HOLLOWAY MIXED-USE PROJECT

DATE: July 6, 2016

TO: Agencies, Organizations, and Interested Parties

PROJECT TITLE: Creative Arts & Holloway Mixed-Use Project

LEAD AGENCY: The Board of Trustees of the California State University
401 Golden Shore
Long Beach, California 90802-4210

San Francisco State University
1600 Holloway Avenue
San Francisco, California 94132

SUBJECT: Notice of Preparation of a Tiered Environmental Impact Report for the San Francisco State University Creative Arts & Holloway Mixed-Use Project

The Board of Trustees of the California State University (Trustees) is the lead agency for the preparation of a focused and tiered environmental impact report (EIR) in accordance with the California Environmental Quality Act (CEQA) (California Public Resources Code, Section 21000 et seq.), and the CEQA Guidelines (14 CCR 15000 et seq.). The EIR will be tiered to the Campus Master Plan (CMP) EIR (SCH #2006102050), certified as a Program EIR under CEQA Guidelines Section 15168, by the California State University Board of Trustees in November 2007. Under CEQA Guidelines Section 15152, tiering refers to using the analysis of general matters contained in a broader EIR, such as the CMP EIR, with later EIRs and negative declarations on later, site-specific projects, such as the proposed Project.

The Trustees have prepared this Notice of Preparation (NOP) in accordance with CEQA Guidelines Sections 15082(a) and 15375. The EIR will address the environmental effects of the proposed Creative Arts & Holloway Mixed-Use Project (Project) at San Francisco State University (SF State). The Project would include construction of the Creative Arts replacement building; an associated 800-seat concert hall; and a mixed-use development to include student housing, neighborhood-serving retail, and student support services.
The CMP, adopted by the Trustees in 2007, addresses all aspects of future physical development and land use on the campus to accommodate the enrollment ceiling of 25,000 full-time equivalent (FTE) students. The adopted CMP accommodates a building program of 0.9 million gross square feet of new and replacement non-residential building space, and development or conversion of approximately 1,198 additional units of housing for faculty, staff, and students. The proposed Project is consistent with the CMP building program; however, a revision to the Master Plan map is required to allow for the proposed uses on the identified sites.

Agencies: The Trustees request agencies’ views on the scope and content of the environmental information that is germane to an agency’s statutory responsibilities in connection with the Project, in accordance with CEQA Guidelines Sections 15082(b) and 15103. Agencies may need to use the EIR to consider permits or other approvals.

Organizations and Interested Parties: The Trustees request comments and concerns regarding the scope and evaluation of potential environmental issues associated with the proposed Project.

Project Location: The approximately 3.6-acre Project site is located in the southern part of the SF State campus, with one parcel (Block 6) on the south side of Holloway Avenue between Cardenas and Varela Avenues, and one parcel (Block 1), referred to as the Tapia Triangle, bounded by Tapia Drive, Holloway Avenue, and Font Boulevard. The Project site is part of University Park South, which was purchased by SF State between 2000 and 2005 and includes a portion of the original Parkmerced development, which extends beyond the campus boundaries to the south. Most of the existing units are occupied by SF State students and affiliates. See attached figures for the regional and project site location and setting.

Project Description: The Project would include demolition of existing housing and construction of new student housing, neighborhood-serving retail, and student support services on Block 6 on the south side of Holloway Avenue. The proposed residences would include apartment-style student housing. Redevelopment of the block would allow for a more compact configuration to increase the supply of on-campus housing in conformance with the CMP’s objectives. This development pattern is also in alignment with Parkmerced’s redevelopment plans. The retail and support services space would include uses such as neighborhood-serving retail, student support services, bike storage, study rooms, a copy center, and retail dining, and a modest amount of underground parking to replace parking being removed elsewhere on campus in the vicinity of the Project site. The retail and student support services space would be intended to serve SF State and neighbors in the immediate vicinity of the campus. Proposed retail would not have a regional draw that would attract people from outside of the Project vicinity.

The Project would also include demolition of existing housing and construction of the Creative Arts replacement building and concert hall on Block 1 on the north side of Font Boulevard and Holloway Avenue. This development assumes relocation of the existing Department of Broadcast & Electronic Communication Arts (BECA) program from the existing Creative Arts building, but does not include an increase in enrollment or full-time employees beyond the total campus enrollment cap of 25,000 FTE students analyzed in the 2007 CMP EIR. A concert hall would be located adjacent to the Creative Arts replacement building. The concert hall would
have recording and broadcast capabilities that would provide hands-on learning for BECA students and would serve as a performance venue and state-of-the-art recording studio for chamber orchestras, choral/vocal music, instrumental ensembles, and music groups. It also could host and simulcast lecture series, film festivals, and debates. Events may be open to the campus community only or to the neighborhood and larger community, similar to SF State’s current program of performing arts and lectures housed in the McKenna and Knuth Theaters.

Parking would be provided in the basement of the new residential building on Holloway Avenue to serve neighborhood retail, concert hall events, and visitors to campus. Student residential parking would be limited to accessible spaces. Consistent with the 2007 CMP, parking on Holloway Avenue would relocate a portion of the campus parking supply to the perimeter of campus, removing existing parking along Tapia Drive, and would constitute no net increase in the overall campus parking supply. Table 1 provides a summary of the key elements of the Project.

TABLE 1. PROJECT SUMMARY

<table>
<thead>
<tr>
<th>Project Element</th>
<th>Existing Site Conditions</th>
<th>Proposed Site Conditions</th>
<th>Net Change with Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student housing (Block 6)</td>
<td>168 beds (Blocks 1 & 6) 8 units (Block 1)(^1)</td>
<td>550 beds</td>
<td>360 beds</td>
</tr>
<tr>
<td>Neighborhood-serving retail/student support services (Block 6)</td>
<td>None</td>
<td>25,000 gross square feet (GSF)</td>
<td>25,000 GSF</td>
</tr>
<tr>
<td>Parking facilities</td>
<td>53 auto spaces(^2) 9 motorcycle spaces(^2)</td>
<td>70 parking spaces</td>
<td>0 parking spaces(^3)</td>
</tr>
<tr>
<td>Creative Arts replacement building (Block 1)</td>
<td>None</td>
<td>75,000 GSF</td>
<td>75,000 GSF</td>
</tr>
<tr>
<td>Concert hall seats (Block 1)</td>
<td>None</td>
<td>60,000 GSF 800 seats</td>
<td>60,000 GSF 800 seats</td>
</tr>
</tbody>
</table>

Source: Data compiled by SF State 2016.

\(^1\) The eight units are occupied by approximately 2.75 people per unit, which is equivalent to 22 beds.

\(^2\) Parking located on Tapia Drive.

\(^3\) Parking would be removed elsewhere on campus to provide for no net increase in parking with the Project.

The Project would also include preparation and implementation of urban design and sustainability guidelines, and the target of Leadership in Energy and Environmental Design (LEED) Platinum and Net Zero Energy in support of the campus’ Climate Action Plan and core value of resiliency. Transportation improvements would include secured bicycle parking, loading and emergency access, streetscape improvements to benefit pedestrians, and vacating (removing) Tapia Drive to integrate Tapia Triangle into the campus academic core. The Project would connect to existing water and combined sewer services adjacent the site. Stormwater measures would be implemented such that the post-Project site would reduce by 25% the storm flow discharge for a 2-year, 24-hour event compared to pre-Project conditions.

Potential Environmental Effects: Based on the preliminary scope of the Project and the attached Initial Study (IS), the Trustees have determined that the Project could have a potentially significant environmental effect in the following areas: Aesthetics, Air Quality, Greenhouse Gas Emissions, Historic Resources, and Transportation/Traffic. A focused tiered
EIR will be prepared to evaluate the Project’s potential impacts on the environment related to these environmental issues, present feasible mitigation, and analyze potential alternatives.

Public Review Period: The Trustees have issued this NOP for public review and comment pursuant to CEQA Guidelines Sections 15082(a) and 15375. The Trustees have established a 30-day public review and scoping period from **July 7, 2016 to August 8, 2016**, in accordance with the CEQA Guidelines (14 CCR 15082). During this period, the NOP/IS will be available for review online at the following website: http://cpdc.sfsu.edu/plan

The NOP/IS will also be available for review at the following locations during regular business hours for the locations:

- **J. Paul Leonard Library at SFSU**
 1600 Holloway Avenue
 San Francisco, California 94132

- **Merced Branch Library**
 155 Winston Drive
 San Francisco, California 94132

- **Ocean View Branch Library**
 345 Randolph Street
 San Francisco, California 94132

Scoping Comments: At this time, the Trustees are soliciting comments on the scope and content of the EIR. Comments may be submitted by mail, email, or fax, or by attending the Public Scoping Meeting (see details below) and submitting a written comment. All comments should indicate a contact person for your agency or organization, if applicable. All comments should be sent to the following address, to arrive no later than 5 p.m. on **August 8, 2016**:

 Wendy Bloom
 Campus Planner
 Capital Planning, Design & Construction
 San Francisco State University
 1600 Holloway Avenue
 San Francisco, California 94132
 T: 415.338.3838
 F: 415.338.2960
 wbloom@sfsu.edu
Public Scoping Meeting: The Trustees will hold a scoping meeting to give the public an opportunity to receive more information on the proposed Creative Arts & Holloway Mixed-Use Project, and to provide comments and suggestions on the scope of the EIR. All members of the public and interested persons are welcome to attend and provide comments. The details of this meeting are as follows:

Date: July 27, 2016
Time: 6:00 pm to 8:00 pm
Place: J Paul Leonard Library, Events Room (LIB 121)
Visitor & Travel Information: http://parking.sfsu.edu/visitor-information
Campus Map: http://www.sfsu.edu/~sfsumap/

FURTHER INFORMATION: For environmental review information or questions about the Project, please contact Wendy Bloom by phone at 415.338.3838 or by email at wbloom@sfsu.edu.

Thomas E. Lollini, FAIA
Senior Associate Vice President
Physical Planning & Development
San Francisco State University

July 6, 2016
Date
FIGURE 2
Project Location

Creative Arts & Holloway-Mixed Use Project
Revised* Tiered Initial Study

Creative Arts & Holloway Mixed-Use Project

San Francisco State University

September 2016
(Revised March 2017)

Lead Agency:
Board of Trustees of the California State University
401 Golden Shore
Long Beach, California 90802-4210

San Francisco State University
1600 Holloway Avenue
San Francisco, California 94131

Prepared by:
Dudek
725 Front Street, Suite 400
Santa Cruz, California 95060

*Revisions to this IS were made in underline/strikeout to respond to comments received during the Scoping period and Draft EIR Public Review period for the Project and to account for needed revisions resulting from the preparation of the EIR.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRONYMS AND ABBREVIATIONS</td>
<td>III</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Project Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 California Environmental Quality Act Compliance</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Public Review Process</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Project Location and Setting</td>
<td>2</td>
</tr>
<tr>
<td>2 PROJECT DESCRIPTION</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Project Background</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Project Objectives</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Campus Master Plan Objectives</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Project-Specific Objectives</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Project Components</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1 Housing</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2 Retail and Student Support Services</td>
<td>12</td>
</tr>
<tr>
<td>2.3.3 Creative Arts Replacement Building and Concert Hall</td>
<td>12</td>
</tr>
<tr>
<td>2.3.4 Design and Design Guidelines</td>
<td>14</td>
</tr>
<tr>
<td>2.3.5 Transportation Improvements</td>
<td>16</td>
</tr>
<tr>
<td>2.3.6 Utilities and Energy Use</td>
<td>18</td>
</tr>
<tr>
<td>2.3.7 Landscaping</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Demolition and Construction</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Project Approvals</td>
<td>22</td>
</tr>
<tr>
<td>3 FINDINGS & ENVIRONMENTAL DETERMINATION</td>
<td>24</td>
</tr>
<tr>
<td>4 INITIAL STUDY CHECKLIST</td>
<td>26</td>
</tr>
<tr>
<td>4.1 Aesthetics</td>
<td>30</td>
</tr>
<tr>
<td>4.2 Agriculture and Forestry Resources</td>
<td>31</td>
</tr>
<tr>
<td>4.3 Air Quality</td>
<td>32</td>
</tr>
<tr>
<td>4.4 Biological Resources</td>
<td>33</td>
</tr>
<tr>
<td>4.5 Cultural Resources</td>
<td>36</td>
</tr>
<tr>
<td>4.6 Geology and Soils</td>
<td>40</td>
</tr>
<tr>
<td>4.7 Greenhouse Gas Emissions</td>
<td>44</td>
</tr>
<tr>
<td>4.8 Hazards and Hazardous Materials</td>
<td>45</td>
</tr>
<tr>
<td>4.9 Hydrology and Water Quality</td>
<td>49</td>
</tr>
<tr>
<td>4.10 Land Use and Planning</td>
<td>53</td>
</tr>
<tr>
<td>4.11 Mineral Resources</td>
<td>58</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>4.12</th>
<th>Noise</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13</td>
<td>Population and Housing</td>
<td>61</td>
</tr>
<tr>
<td>4.14</td>
<td>Public Services</td>
<td>64</td>
</tr>
<tr>
<td>4.15</td>
<td>Recreation</td>
<td>65</td>
</tr>
<tr>
<td>4.16</td>
<td>Transportation and Traffic</td>
<td>67</td>
</tr>
<tr>
<td>4.17</td>
<td>Utilities and Service Systems</td>
<td>69</td>
</tr>
<tr>
<td>4.18</td>
<td>Mandatory Findings of Significance</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>REFERENCES AND PREPARERS</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>References Cited</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>List of Preparers</td>
<td>77</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Lead Agency</td>
<td>77</td>
</tr>
<tr>
<td>5.2.2</td>
<td>San Francisco State University</td>
<td>77</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Dudek – CEQA Consultant Team</td>
<td>78</td>
</tr>
</tbody>
</table>

ATTACHMENTS

A-1 2007 Campus Master Plan EIR Mitigation Measures That Apply to the Project
A-2 Tapia Drive Street Vacation Policy Conformity Analysis

FIGURES

1 Regional Map .81
2 Project Location .83
3 Project Setting .85
4 City Zoning Districts .81

TABLES

1 Project Summary .11
2 Project Approvals .22
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym/Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAAQMD</td>
<td>Bay Area Air Quality Management District</td>
</tr>
<tr>
<td>BECA</td>
<td>Department of Broadcast & Electronic Communication Arts</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>City</td>
<td>City and County of San Francisco</td>
</tr>
<tr>
<td>CMP</td>
<td>Campus Master Plan</td>
</tr>
<tr>
<td>CSU</td>
<td>California State University</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>FTE</td>
<td>full-time equivalent</td>
</tr>
<tr>
<td>gpd</td>
<td>gallons per day</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GSF</td>
<td>gross square feet</td>
</tr>
<tr>
<td>IS</td>
<td>Initial Study</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>LUST</td>
<td>leaking underground storage tank</td>
</tr>
<tr>
<td>NOP</td>
<td>Notice of Preparation</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>fine particulate matter</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>coarse particulate matter</td>
</tr>
<tr>
<td>Project</td>
<td>Creative Arts and Holloway Mixed-Use Project</td>
</tr>
<tr>
<td>SF State</td>
<td>San Francisco State University</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>TDM</td>
<td>transportation demand management</td>
</tr>
<tr>
<td>Trustees of the California State University</td>
<td>Board of Trustees of the California State University</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Project Overview

San Francisco State University (SF State) proposes to develop the Creative Arts and Holloway Mixed-Use Project (Project) in the southern portion of the SF State campus. The Project would include construction of the Creative Arts replacement building; an associated concert hall; and a mixed-use development including student housing, neighborhood-serving retail, student support services, transportation and parking improvements, utility connections, stormwater improvements, landscaping, and lighting.

1.2 California Environmental Quality Act Compliance

The California Environmental Quality Act (CEQA) serves as the main framework of environmental law and policy in California. CEQA emphasizes the need for public disclosure and identifying and preventing environmental damage associated with proposed projects. Unless the project is deemed categorically exempt, CEQA is applicable to any project that must be approved by a public agency in order to be processed and established. This Project does not fall under any of the statutory or categorical exemptions listed in the 2013 CEQA Statute and Guidelines (California Public Resources Code, Section 21000 et seq.; 14 California Code of Regulations (CCR) 15000 et seq.), and, therefore, must meet CEQA requirements.

The Board of Trustees of the California State University Board of Trustees (Trustees of the California State University) certified the SF State Campus Master Plan Environmental Impact Report (CMP EIR) (SCH No. 2006102050) in 2007. The Project conforms to the CMP building program and, therefore, the CEQA analysis for the Project will be tiered to the 2007 CMP EIR. Tiering refers to using the analysis of general matters contained in a broader EIR, such as the CMP EIR, with later EIRs or Negative Declarations on narrower projects, incorporating by reference the general discussions from the broader EIR, and concentrating the later EIR or Negative Declaration solely on the issues specific to the project (14 CCR 15152(a)). A later EIR is required when the Initial Study (IS) or other analysis finds that the later project may cause a significant effect on the environment that was not adequately addressed in the prior EIR (14 CCR 15152(f)). As indicated in Section 2, a focused, tiered EIR will be prepared for the Project, based on the results of this tiered Initial Study.

The 2007 CMP EIR is hereby incorporated by reference and referred to throughout this tiered Initial Study. The CMP EIR and related documents (e.g., Board of Trustees of the California State University Approval, Mitigation Monitoring and Reporting Program, Findings of Fact, Notice of Determination) are available to the general public at http://cpdc.sfsu.edu/plan.
1.3 Public Review Process

Scoping

The intent of this IS is to provide an overview of the environmental impacts associated with the Project and to identify those issues that will be further evaluated in the pending EIR. This IS is attached to the Notice of Preparation (NOP) for the Project, which provides notice to involved agencies and the public that an EIR will be prepared for the Project. The NOP/IS is distributed directly to numerous agencies, organizations, and interested groups and persons during the scoping period. During the 30-day scoping period, the Trustees of the California State University are soliciting comments on the scope and content of the EIR. The NOP provides the web and library locations where the NOP/IS can be downloaded and/or reviewed, the SF State contact where comments can be submitted, and the dates of the scoping period.

Once the scoping period closes, SF State will consider the comments received in the scope and contents of the Draft EIR that will be prepared. The comments also resulted in additions and revisions to this Revised IS. These are documented in underline/strikeout text in this document so that the nature of the revisions is clear to the reader.

Public Review of Draft EIR

The Draft EIR will be distributed for a 45-day public review period. During the public review period, written comments on the adequacy of the Draft EIR can be submitted. Following the close of the public review period on the Draft EIR, written responses will be prepared for all significant environmental issues raised in the comments received. The Final EIR includes the comments, responses, and changes to the Draft EIR document as a result of comments and responses will be published in the Final EIR. The Draft EIR and Final EIR volumes will constitute the Final EIR. Minor changes were also made to this Initial Study. As required by CEQA, written response to comments submitted by public agencies will be provided to those agencies for review at least 10 days prior to the Trustees of the California State University’s consideration of certification of the Final EIR. The Final EIR will also be available to the public in advance of the Trustees of the California State University’s consideration of EIR certification.

1.4 Project Location and Setting

The Project is on the existing 144-acre SF State campus located in the southwestern corner of the City and County of San Francisco, in California (see Figure 1, Regional Map). The SF State campus is generally bounded by Lake Merced Boulevard and the lake and its associated open spaces, including Harding Park, public and private golf courses, Fort Funston, and the San...
Francisco Zoo, on the west; 19th Avenue (State Route 1) and residential development in the Ingleside neighborhood on the east; the Stonestown Galleria shopping center, Lowell High School, and Lakeshore Alternative Elementary School to the north; and Parkmerced and other residential development to the south (see Figure 2, Project Location). The Pacific Ocean lies to the west of the campus, beyond Lake Merced.

The approximately 3.6-acre Project site is located in the south campus, with one parcel (Block 6) on the south side of Holloway Avenue between Cardenas and Varela Avenues, and one parcel (Block 1), referred to as the Tapia Triangle, bounded by Tapia Drive, Holloway Avenue, and Font Boulevard (see Figure 3, Project Setting). The Project site is part of University Park South, which was purchased by SF State between 2000 and 2005 and includes a portion of the original Parkmerced development, which extends beyond the campus boundaries to the south. Block 1 and Block 6 are composed primarily of two-story housing around the perimeter of the block, with an interior courtyard. Of the 46 housing units in Block 1 and Block 6, most are occupied by SF State students and are licensed by the bed space.
2 PROJECT DESCRIPTION

2.1 Project Background

2.1.1 CMP Building Program and Master Plan Map

The CMP, adopted by the Trustees of the California State University in 2007, addresses all aspects of future physical development and land use on the campus to accommodate the enrollment ceiling of 25,000 full-time equivalent (FTE) students (SF State 2007). The CMP provides a comprehensive framework for the physical development of the SF State campus through 2020. It addresses the acquisition of property, older facilities, changing student demographics, and the need for additional academic building space and other support space to accommodate the anticipated growth in enrollment. To accommodate the projected growth in enrollment and academic activities, the adopted CMP accommodates a building program that envisions development of 0.9 million gross square feet (GSF) of new and replacement non-residential building space on campus, and development or conversion of approximately 1,198 additional units of housing on campus for faculty, staff, and students.

The existing adopted CMP includes a land use map and urban design plan map that locate major uses and buildings to guide the siting of future campus facilities. The land use map maintains the current general configuration of land uses on the campus, which consist of a concentrated academic core surrounded by residential and other campus uses. Most of the growth in facilities would occur through demolition and replacement of existing buildings, as a number of existing buildings are at or beyond their useful life.

The 2007 CMP included a new Creative Arts complex located on Lot 41, at the intersection of Font and Lake Merced Boulevards. The current Master Plan map was recently revised and approved in May 2014 to allow for relocation of the planned Mashouf Wellness Center on Lot 41 and relocation of the planned Creative Arts replacement buildings from Lot 41 to two adjacent sites located closer to the academic core. Based on the May 2014 approved map, the Creative Arts complex would consist of four replacement buildings, with an 800-seat auditorium and a building housing the Theatre Arts program located on the West Campus Green, and two buildings to house the Department of Broadcast & Electronic Communication Arts (BECA) and Music & Dance programs located on the Tapia Triangle. Since approval of the Master Plan map revision in 2014, the programs have reorganized into the School of Theatre and Dance and the School of Music.

The 2007 CMP proposed redeveloping the University Park South block on the south side of Holloway Avenue between Cardenas and Arellano Avenues with denser housing and ground-
floor retail, and assumed that Block 6 to the east would remain in its current use through the CMP development window (2020).

The proposed Project is consistent with the 2007 CMP building program; however, a Master Plan map revision is required to allow for the proposed uses on the identified sites, as described below. The map revision is required to (1) repurpose the planned auditorium as an 800-seat concert hall, (2) co-locate the 800-seat concert hall on the Tapia Triangle with the building that would house BECA, (3) rename and co-locate the Music building on the West Campus Green with the renamed building for Theatre and Dance, and (4) relocate planned future housing from its current location to Block 6 and re-designate the site for housing/mixed-use development.

2.1.2 CMP Population Growth

As indicated above, the 2007 CMP accommodates an enrollment increase to 25,000 FTE students. The campus is currently approaching its FTE ceiling and therefore additional FTE cannot be added under the current 2007 CMP and related approvals. For master planning and academic planning purposes, the CSU System uses the full-time equivalent (FTE) unit of measure to calculate enrollment. One FTE is defined as one student taking 15 course units, which represents a full course load. Students taking fewer course units are considered to constitute a fraction of an FTE. Whereas headcount is the total number of students or people enrolled, headcount is the unit used for the purpose of conducting various types of analysis in this Draft EIR. For this reason, Table 1 below shows the change in campus total population since the 2007 CMP EIR base year using headcount rather than FTE. As shown in Table 1, total headcount has been flat since the base year given that the number of full-time students has been increasing and the number of part-time students has been declining.

<table>
<thead>
<tr>
<th>Year (Fall Semester)</th>
<th>Students</th>
<th>Faculty</th>
<th>Staff</th>
<th>Total Campus Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-2007</td>
<td>29,628</td>
<td>1,783</td>
<td>1,615</td>
<td>33,026</td>
</tr>
<tr>
<td>2007-2008</td>
<td>30,125</td>
<td>1,818</td>
<td>1,669</td>
<td>33,612</td>
</tr>
<tr>
<td>2008-2009</td>
<td>30,014</td>
<td>1,727</td>
<td>1,699</td>
<td>33,440</td>
</tr>
<tr>
<td>2009-2010</td>
<td>30,469</td>
<td>1,506</td>
<td>1,670</td>
<td>33,645</td>
</tr>
<tr>
<td>2010-2011</td>
<td>29,718</td>
<td>1,591</td>
<td>1,620</td>
<td>32,929</td>
</tr>
<tr>
<td>2011-2012</td>
<td>29,541</td>
<td>1,602</td>
<td>1,536</td>
<td>32,679</td>
</tr>
<tr>
<td>2012-2013</td>
<td>30,500</td>
<td>1,724</td>
<td>1,503</td>
<td>33,727</td>
</tr>
<tr>
<td>2013-2014</td>
<td>30,905</td>
<td>1,724</td>
<td>1,519</td>
<td>33,148</td>
</tr>
<tr>
<td>2014-2015</td>
<td>29,465</td>
<td>1,683</td>
<td>1,551</td>
<td>32,699</td>
</tr>
<tr>
<td>2015-2016</td>
<td>30,256</td>
<td>1,728</td>
<td>1,579</td>
<td>33,563</td>
</tr>
<tr>
<td>CMP EIR 2020</td>
<td>32,113</td>
<td>4,139</td>
<td></td>
<td>36,251</td>
</tr>
</tbody>
</table>
Table 1
SF State Campus Population (Headcount)
Since CMP EIR Base Year

<table>
<thead>
<tr>
<th>Year (Fall Semester) (Projected)</th>
<th>Students</th>
<th>Faculty</th>
<th>Staff</th>
<th>Total Campus Population</th>
</tr>
</thead>
</table>

The Project would not result in substantial increases in SF State campus population over existing 2015-2016 levels reported in Table 1 above. The student housing/mixed-use building would serve existing students that are currently commuting to campus. Given that the campus is approaching its FTE ceiling (25,000 FTE students) the Creative Arts replacement building and the concert hall will not result in enrollment growth or associated faculty growth. The concert hall would result in the hiring of four new staff to support the event activities in that building. The Project would not result in any other increases in students, faculty or staff.

2.2 Project Objectives

CEQA indicates that the statement of project objectives should be clearly written to define the underlying purpose of a project in order to permit development of a reasonable range of alternatives and aid the lead agency in making findings when considering the project for approval. The objectives of the adopted 2007 CMP originate in the obligation SF State has to meet its educational mission as defined by the California Education Code. The Project objectives that are drawn from the CMP are based on the physical planning principles derived from the long-term vision for the SF State campus, consistent with SF State’s strategic plan. The CMP objectives and Project-specific objectives are provided below.

2.2.1 Campus Master Plan Objectives

1. Provide facilities for expansion of academic programs and administrative functions to support the proposed [now adopted] enrollment ceiling increase to 25,000 FTEs, required by the CSU [California State University] and California Education Code.

2. Provide student, faculty, and staff housing to aid in recruitment and retention.

3. Implement the planning principles provided in the proposed Campus Master Plan, as follows:
 - A vibrant on-campus community:
 - Reinforce the academic core and extend it westward.
 - Integrate residential properties to create a unified campus.
Creative Arts & Holloway Mixed-Use Project

- Provide more close-in, affordable housing that enables faculty, staff, and students to walk to school and work.
- Redefine Holloway Avenue and Buckingham Way as “college main streets” offering neighborhood retail and services.

- Strong connections to the surrounding city:
 - Strengthen the University’s connections to Lake Merced and the surrounding neighborhoods.
 - Work with neighbors, the City of San Francisco, and other entities to improve public transportation and other services that benefit the entire district.

- Emphasis on the pedestrian and alternative transportation:
 - Cluster development around high-frequency transit connections to encourage transit use.
 - Establish bicycle and pedestrian networks that provide safe, direct and attractive connections to work and school.
 - Develop the 19th Avenue edge as a transit-, bicycle-, and pedestrian-friendly parkway.
 - Implement Transportation Demand Management strategies to reduce parking demand.
 - Decentralize campus parking over time from the current central garage to a series of smaller perimeter parking facilities to disperse traffic and parking impacts, claim the campus core for pedestrians and bicycles, and allow for the eventual removal of the central parking garage from the valley.

- Recognition in the city and region:
 - Position semi-public uses at the corners of campus, creating icons that redefine the University’s external identity and engage the larger community.
 - Create an identifiable and inviting campus perimeter.

- A continuous greenbelt between 19th Avenue and Lake Merced:
 - Establish the valley as the central open space of campus.
 - Provide expanded recreational fields.
 - Restore ecological landscapes in the valley.

- Universal design and access:
Creative Arts & Holloway Mixed-Use Project

- Ensure that all aspects of the campus physical environment—notably primary circulation routes and main building entrances—are comfortably usable by and inviting to the widest group of people possible.
- Organize and design primary pathways and graphic signage to facilitate wayfinding, using a combination of visual, tactile, and auditory cues.
- Establish strong north/south connections across the valley and Buckingham Way and Holloway Avenue that link the University to its residential districts and to the surrounding neighborhoods.
- Establish clear east/west functional and visual connections across campus and to the surrounding district.

- A campus that models sustainability:
 - Develop transportation and land use patterns that encourage greater use of transit, walking, and bicycle commuting and reduce dependence on automobiles.
 - Make efficient use of redevelopment sites.
 - Promote sustainability through green building and site design, native landscape, natural stormwater management, alternative transportation, higher-density housing, and walkable neighborhood retail.

2.2.2 Project-Specific Objectives

1. Replace significant portions of the existing Creative Arts building, which has various deficiencies and no longer supports the academic program, and construct a new concert hall with recording and broadcast capability to provide hands-on learning for BECA students and support University and community programs.

2. Reinforce the academic core and extend it westward to create a contiguous, uninterrupted academic core. The Creative Arts replacement building and concert hall would be located at the occupied pivotal location at Holloway Avenue and Font Boulevard, in proximity to residential mixed-use development and adjacent to College of Liberal and Creative Arts facilities to provide for programmatic collaboration.

3. Position semi-public uses, such as the concert hall, at the corners or edges of campus, creating icons that redefine the University’s external identity and engage the larger community.

4. Provide for the most efficient and effective use of the West Campus Green and the Tapia Triangle for planned future Creative Arts programs.
5. Provide new on-campus student housing to aid in recruitment and retention of students and to provide close-in housing that enables students to walk to school, thereby reducing commute trips to campus and associated greenhouse gas (GHG) emissions.

6. Begin to integrate and make efficient use of more recently acquired residential properties located along the southern edge of the campus.

7. Locate new student housing, neighborhood retail, and support services in proximity to the existing Muni M line and bus lines and to the future planned underground Muni M line and station and to planned 19th Avenue bicycle and pedestrian facilities. Additionally, locate the above uses in immediate proximity to the academic core of the campus, where pedestrian access to the core is readily available.

8. Locate higher-density student housing with ground-floor neighborhood retail and services along Holloway Avenue to redefine Holloway Avenue as a “college main street.”

9. Ensure that new construction achieves at least Leadership in Energy and Environmental Design (LEED) Gold or equivalent performance and energy efficiency beyond California Energy Commission Title 24 requirements. LEED Platinum certification (or an equivalent rating under WELL or another green building rating system) and ZNE (zero net energy) should be targeted, and the Project should meet other CMP and Climate Action Plan (SF State 2010) sustainability objectives.

2.3 Project Components

The Project would include construction of new housing, neighborhood-serving retail, and student support services on the south side of Holloway Avenue, and construction of the Creative Arts replacement building and concert hall on the north side of the Holloway Avenue/Font Boulevard intersection. The Project would also include preparation and implementation of design guidelines, transportation and parking improvements, utility connections, storm drainage improvements, landscaping, and lighting. As described in Section 2.1, a revision to the existing Master Plan map would be required to allow for the proposed uses on the identified sites. All elements of the Project are further described below and summarized in Table 42.
TABLE 4. PROJECT SUMMARY

<table>
<thead>
<tr>
<th>Project Element</th>
<th>Existing Site Conditions</th>
<th>Proposed Site Conditions</th>
<th>Net Change with Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student housing (Block 6)</td>
<td>168 beds (Blocks 1 & 6)</td>
<td>550 beds</td>
<td>360 beds</td>
</tr>
<tr>
<td>Neighborhood-serving retail/student support services (Block 6)</td>
<td>None</td>
<td>33,000 GSF</td>
<td>33,000 GSF</td>
</tr>
<tr>
<td>Parking facilities</td>
<td>53 auto spaces</td>
<td>72 parking spaces</td>
<td>0 parking spaces</td>
</tr>
<tr>
<td>Creative Arts replacement building (Block 1)</td>
<td>None</td>
<td>75,000 GSF</td>
<td>75,000 GSF</td>
</tr>
<tr>
<td>Concert hall seats (Block 1)</td>
<td>None</td>
<td>60,000 GSF</td>
<td>60,000 GSF</td>
</tr>
</tbody>
</table>

Source: Data compiled by SF State in 2016.

1 The eight-seven units are occupied by approximately 2.75 people per unit, which is equivalent to 22 beds.
2 Parking located on Tapia Drive.
3 Parking would be removed elsewhere on campus to provide for no net increase in parking with the Project.

2.3.1 Housing

The existing residential block on the south side of Holloway Avenue between Varela and Cardenas Avenues (Block 6) contains 27 residential units, which would be demolished and replaced with a multiple-story, mixed-use building with a maximum height of 90 feet. The proposed building would include apartment-style student housing. Redevelopment of the block would allow for a more compact configuration to increase the supply of on-campus housing in conformance with the 2007 CMP’s objectives. This development pattern is also in alignment with the City-approved Parkmerced redevelopment plan.

The existing residential block at Tapia Triangle (Block 1) contains 27 residential units, which would be demolished and replaced with the Creative Arts replacement building and the concert hall (see Section 2.3.3). As listed in Table 1, accounting for the loss of existing housing units on the two parcels, the net increase in housing would be 360 beds. Most of the 54 units in Block 1 and Block 6 are currently occupied by students and licensed as bed space; however, approximately eight units are currently licensed as apartments to SF State affiliates and non-affiliates.

Given that the Project would involve demolition of existing housing, SF State will comply with the California Relocation Assistance Act (California Government Code 7260 et seq.), which applies to state entities that may displace residents and businesses. This act generally requires that public entities provide relocation assistance to persons who are displaced as the result of
the acquisition of property for a public use. Since the acquisition of University Park South by SF State, the number of legacy tenants has declined substantially. Any remaining legacy tenants would be offered relocation assistance, as required by law. SF State would provide displaced non-University affiliates with the option to relocate to units in other campus housing.

2.3.2 Retail and Student Support Services

Up to 33,000 square feet of neighborhood-serving retail and student support services space would be provided with the Project. The area of retail would be primarily confined to building frontages accessible from the Holloway Avenue and Varela Avenue and linked to the future retail corridor along Crespi Drive, described in the future Parkmerced vision (Maximus Real Estate Partners 2016). This space would provide for uses such as neighborhood-serving retail, student support services, bike storage, study rooms, a copy center, and retail dining. The retail and student support services would be intended to serve SF State and neighbors in the immediate vicinity. Proposed retail would not have a regional draw that would attract people from outside the Project vicinity.

The 2007 CMP envisioned Holloway Avenue as a campus main street; the proposed Project would be designed to contribute to main street character. Project design would include a gateway presence, including a street that prioritizes pedestrians and bicycles. Where possible, “green” infrastructure would be incorporated in the streetscape design to manage stormwater runoff. The new campus main street character would be reinforced by including retail and/or student support services along Holloway Avenue and Varela Avenues.

2.3.3 Creative Arts Replacement Building and Concert Hall

The 2007 CMP included a new Creative Arts complex located on Lot 41, at the intersection of Font and Lake Merced Boulevards. A Master Plan revision approved by the Trustees of the California State University in 2014 relocated the Creative Arts complex, consisting of four replacement buildings housing academic and performance space, to the West Campus Green on Font Boulevard and the Tapia Triangle. This 1.7-acre site, located on the north side of Font Boulevard and Holloway Avenue, currently contains 27 residential units. This development assumes relocation of the existing BECA program from the existing Creative Arts building, but does not include an increase in enrollment or full-time employees beyond the total campus enrollment increase to 25,000 FTE students analyzed in the 2007 CMP EIR. A concert hall would be located adjacent to the Creative Arts replacement building. These two buildings are further described below.
Creative Arts Replacement Building

The Creative Arts replacement building would be approximately 51,000 assignable square feet/75,000 GSF, and would include instructional and support space and faculty office space. It would be located on the north side of the Tapia Triangle site, across from the existing Humanities Building. The new Creative Arts replacement building would be two to three stories over a basement, with a maximum height of 90 feet, which is within the height limit of up to 100 feet identified for Creative Arts buildings in the 2007 CMP. The building would house two full-height television studios; a television newsroom; a radio station; video post-production space; audio recording; production and post-production space; and related classroom space for the BECA program. The building would also house interdisciplinary lecture classrooms.

The building would likely be steel-frame construction with concrete, glass, and exterior cladding. Exterior circulation located on the north side of the building would reinforce east/west circulation between the academic core and the new Mashouf Wellness Center at Font Boulevard and Lake Merced Boulevard, and future academic buildings planned to the west.

Concert Hall

An 800-seat concert hall would be located adjacent to the Creative Arts replacement building on the southeast portion of the Tapia Triangle. The concert hall would have recording and broadcast capabilities that would provide hands-on learning for BECA students, and would serve as a performance venue and state-of-the-art recording studio for chamber orchestras, choral/vocal music, instrumental ensembles, and music groups. It also could host and simulcast lecture series, film festivals, and debates. Events may be open only to the campus community or to the neighborhood and larger community, similar to SF State’s current program of performing arts and lectures housed in McKenna and Knuth Theaters.

The concert hall would be approximately 40,000 assignable square feet/60,000 GSF, and would have a maximum height of 90 feet, which is within the height limit of up to 100 feet identified for Creative Arts buildings in the 2007 CMP. The building likely would be steel-frame construction with concrete, glass, and exterior cladding, using materials complementary to the Creative Arts replacement building. Glass would provide views into the building’s lobby and gathering spaces. Located at the intersection of Holloway Avenue and Font Boulevard, the concert hall with its south-facing glass lobby would clearly identify an important entry into the campus from these two major streets.
2.3.4 Design and Design Guidelines

The Project includes design standards and guidelines that would apply to Project development. These design standards build on the CMP design guidelines and also on Block 6 to ensure compatibility with the adjacent Parkmerced complex, as specified in CMP EIR Mitigation AES-3 (SF State 2007). These guidelines were prepared for compatibility consistency, where relevant, to the Parkmerced Design Standards and Guidelines (SOM 2010), and include building massing, design, exterior treatments and design details, and building heights as specified by CMP EIR Mitigation AES-3.

The student housing/mixed-use building on (Block 6) site is likely the first in a series of development projects along the Holloway Avenue corridor that would define the southern edge of the campus, as envisioned in the 2007 CMP and contemplated in the future vision for the campus beyond the 2007 CMP 2020 horizon. As the farthest east site, it would also provide a gateway presence at the southern end of the campus near the busy 19th Avenue and Holloway Avenue San Francisco Municipal Transportation Agency Metro stop.

Height Limits

After adoption of the 2007 CMP, Parkmerced’s development plan received City and County of San Francisco (City) approval. The Parkmerced plan includes significantly higher density and height limits than the conditions that existed when SF State’s CMP and EIR were approved. Given the anticipated changes at Parkmerced and SF State’s interest in providing student housing responsive to demand, the proposed building heights would be greater than the 50-foot height limit referenced in the 2007 CMP, but would not exceed 90 feet. This additional height would also allow for the possibility of a rooftop-mounted solar array to support the goals of zero net energy.

The maximum height of 90 feet, inclusive of parapets and mechanical equipment, is compatible with the Parkmerced Design Standards and Guidelines (SOM 2014) and the City’s Parkmerced Special Use District (CCSF 2012), which allows for mid-rise buildings of 85 to 145 feet, excluding parapets and mechanical equipment, as well as lower-rise buildings. Adjacent to the SF State campus’s southern edge, future Parkmerced mid-rise buildings likely range from 85 feet to 130 feet, according to Parkmerced’s maximum height plan (SOM 2014).

The Creative Arts replacement building and concert hall would not exceed 90 feet, which is within the height limit of up to 100 feet identified for Creative Arts buildings in the 2007 CMP.
Building Design

Building placement and orientation is critical to enhancing a development's character and promoting pedestrian activity. Adherence to build-to lines creates a consistent, but permeable, edge that defines and shapes the streets. The build-to lines should determine each new building’s configuration and major frontages.

As envisioned in the 2007 CMP, the intention is to develop Holloway Avenue as a mixed-use corridor with sufficient frontage to form a consistent streetscape. Thus, at a minimum, the building would abut the property line along at least half of the length of the block on Holloway Avenue. Recessed plazas may mark points of entry or activity. Bay windows may project above and beyond this street wall in classic San Francisco patterns to take advantage of views up and down the street. Arcades may be employed to hold the street wall, but also to expand the public realm and create opportunities for outdoor seating, merchandise displays, or protection from the elements. Along side streets and Serrano Drive, the building line may vary.

Arcades, porches, balconies, portals, and courtyards would be used to encourage pedestrian activity and to provide shade, natural ventilation, and day-lighting to interior spaces. Building entrances would be bright, glazed, and easy to find.

Roof spaces would be usable roof terraces, providing additional open space; planted as green roofs, allowing the roof to reduce heating and cooling loads and reduce stormwater runoff; and/or used for the placement of solar arrays, which would also reduce heating and cooling loads. These strategies can be used in combination.

Lighting and Ventilation

Natural ventilation would be used for all spaces wherever possible. Where code requires mechanical ventilation, it would be provided. Because of SF State’s benign ocean-side climate and wind patterns, natural ventilation is easily achieved through operable windows, louvers, and the use of skylights and clerestories.

Interior corridors would be naturally lit and could provide exterior views or vistas at changes in direction. “Racetrack” corridors are strongly discouraged. Vertical circulation would be near the edges of the floor plates to allow long-term flexibility in use, reduce the amount of conditioned space, and provide legibility to the building plan. Common areas would be located adjacent to amenities or along primary vertical circulation paths, and be naturally lit and ventilated.
Daylight would be used as the primary means of lighting the interiors of new buildings. Because of the ambient light and frequent occasions when the campus is shrouded in fog, the majority of building elevations may be transparent. Daylighting as the primary means of illumination is encouraged. Exterior lighting would adhere to LEED–New Construction (NC) guidelines for light pollution reduction and energy efficiency, per CMP EIR Mitigation AES-4 (SF State 2007), and would be Dark-Sky Friendly. Additionally, reflective metal, mirrored glass, or any other reflective building materials shall not be used as primary building materials for facades, consistent with CMP EIR Mitigation Measure AES-4B and the City’s Design Guide Standards for Bird-Safe Buildings (City 2012).

Building Materials

Concrete paving, including poured-in-place and unit pavers, would be used, reserving distinctive visual and tactile effects to highlight areas of importance and help with wayfinding. Permeable paving options would be explored and used, if effective.

Construction of the Project would use locally sourced materials with recycled content when possible, whether raw materials or manufactured items, and maximize their use as a means of limiting the environmental impacts of transporting goods. Construction of the Project would explore the possibility of reused construction and demolition materials and maximize their use as a means of limiting the environmental impacts of extracting and manufacturing new materials.

2.3.5 Transportation Improvements

Revisions to the Closure of Tapia Drive section are included below. Other revisions and details added to the Project’s transportation improvements during EIR preparation are included in Chapter 3, Project Description of the EIR.

Closure of Tapia Drive

SF State is applying to the City to “vacate” Tapia Drive. This would allow SF State to incorporate the street right-of-way into the Project site and to integrate the site into the academic core and overall campus, specifically the academic core. SF State owns the property on both sides of Tapia Drive, and closing the street is consistent with the 2007 CMP, which envisioned a major east/west walkway connecting the central academic core with sites to the west, including the Mashouf Wellness Center. Some vehicular access would be required for loading at the existing Creative Arts and Humanities buildings, but the area currently occupied by the street right-of-way would be developed as part of the site for the proposed Creative Arts replacement building and concert hall, and would be used primarily by pedestrians.
Any modification of the public right-of-way that deviates from the City’s Public Works Standard Plans and Specifications may require an Encroachment Permit or Major Encroachment Permit from the City and County of San Francisco (City) Bureau of Street Use and Mapping. Street vacation requests are subject to City Planning Department review for conformity with the City’s General Plan and Better Streets Plan. SF State has submitted an application for street vacation and has determined that no MEP will be required—an Encroachment Permit or Major Encroachment Permit may be required. See Attachment A-2, Tapia Drive Street Vacation Policy Conformity Analysis, for preliminary information about the conformance of the street vacation with relevant plans. The ultimate determination of conformance will be made by the City during its consideration of the street vacation application.

Automobile Parking

The addition of housing and neighborhood retail services supports SF State’s goal to minimize drive-alone auto trips to reduce traffic congestion and GHG emissions. Consistent with the SF State transportation demand management (TDM) plan (Nelson/Nygaard 2009), new residential and retail development should use strategies that minimize the need for parking, such as car sharing, bike facilities, and access to transit.

Parking would be provided in the basement of the proposed student housing/mixed-use building on Block 6 to serve neighborhood retail, concert hall events, and visitors to campus. Student residential parking would be limited to accessible spaces. Consistent with the 2007 CMP, parking in the new student housing/mixed-use building on Holloway Avenue would relocate a portion of the campus parking supply to the perimeter of campus, removing existing parking along Tapia Drive and from elsewhere on campus, such that the Project would result in no net increase in the overall campus parking supply, as shown in Table 21.

The absence of available parking spaces, the available alternatives to vehicular travel (transit, bicycling, and walking), and the dense pattern of urban development would induce many drivers to seek other modes of travel or change their overall travel behavior. Any such resulting shifts to transit service in particular would be in keeping with the City’s “Transit First” policy. The City’s Transit First Policy (CCSF 2007) provides that parking policies for areas well-served by public transit, such as the SF State campus, be designed to encourage travel by public transportation and alternative transportation.

Bicycle Parking and Pedestrian Improvements

The new student housing building at the southeast corner of Holloway Avenue and Varela Avenue would include secure, covered bicycle storage on the first floor of the building. Bicycle parking would also be provided in the vicinity of the Creative Arts replacement building and
concert hall. Proposed changes at or near the student housing/mixed-use site (Block 6), include new access ramps, bulbouts, crosswalks, improved sidewalks, and other pedestrian amenities which would improve connections between the adjacent Parkmerced area, the student housing/mixed-use site (Block 6), and the SF State campus.

Loading Facilities

The loading and service area for the Creative Arts replacement building and concert hall would likely be accessed from the vacated Tapia Drive adjacent to the existing Creative Arts building, and would be located internal to the Project site, where possible, to avoid conflicts with perimeter pedestrian circulation. The loading and service area for the student housing building would be along Cardenas Avenue, preserving continuous, ground-level retail frontage along Holloway and Varela Avenues.

Emergency and Accessible Access

Emergency and accessible access would be provided via the main building entrances at street level. Emergency access could also be provided via the loading and service areas identified above.

2.3.6 Utilities and Energy Use

Water

The Project would include installation of new potable water infrastructure to support the new buildings. Several 2-inch-diameter lateral pipes would be installed to connect to the existing 8-inch-diameter line north of Holloway Avenue and Font Boulevard; 3- to 4-inch-diameter fire service lateral pipes would also be installed to provide fire water services to the buildings. The exact size of these lateral pipes are contingent upon pressure and flow requirements and have not undergone final engineering analysis. Any connections with SFPUC mains would be consistent with City standards. The Project would aim to include installation of recycled water infrastructure to accept recycled water from the City when available and SF State would explore and other water reuse strategies for the Project. Targeted strategies could include ultra-water-efficient bathroom fixtures, dual plumbing to allow use of recycled water for toilet and urinal flushing, and recycled water infrastructure for irrigation.
Wastewater

The Project would involve installation of new 8-inch-diameter wastewater infrastructure to support the new buildings. A connection to the existing wastewater pipeline located on the north side of Holloway Avenue and Font Boulevard would be installed.

Stormwater

The Project would be located in a City combined sewer area. To minimize impacts of the Project on the combined sewer system, SF State would implement a stormwater management approach compatible with the City’s Stormwater Management Requirements and Design Guidelines (CCSF 2016). The Project site has an impervious area greater than 50%. Accordingly, the Project would implement a stormwater management approach that reduces the existing stormwater runoff flow rate and volume by 25% for a 2-year, 24-hour design storm. The Project would minimize disruption of natural hydrology by implementing low-impact design approaches such as reduced impervious cover, reuse of stormwater, or increased infiltration. The actual design of the stormwater management system would be developed as the design process proceeds, but it is expected that the following types of features would be incorporated into the design evaluated to achieve the above criteria: infiltration zones/dry wells, use of permeable materials for walking surfaces permeable pavement, planted roof, cistern, and bio-retention zones.

By implementing these design criteria, the Project would surpass exceed the requirements of the 2007 CMP, calling for no net increase in storm flow discharge from the campus to the combined sewer system. The stormwater management plan for the Project would be designed consistent with LEED credit SS 6.1 (as described by the U.S. Green Building Council) and would be compatible with the City’s Stormwater Management Requirements and Design Guidelines (CCSF 2016).

Energy

Project buildings would be connected to the existing electrical and natural gas system on campus, though efforts would be made to minimize or eliminate the use of natural gas. New buildings would be designed to achieve at least LEED Gold or equivalent performance, and energy efficiency beyond Title 24 requirements. LEED Platinum and zero net energy would be targeted using a combination of advanced green building and energy efficiency measures, on-site renewable energy, district energy strategies, and/or renewable energy credits. On-site renewable energy could include roof-mounted solar arrays. The efficiency measures to be incorporated could include above-code enclosures and heating, ventilation, and air conditioning...
HVAC equipment, daylighting harvesting, highly insulated wall assemblies, high-performance glazing, and similar strategies.

The only emergency generator planned is required by the California Building Code to power the elevators and emergency lighting in the case of a power outage. No optional standby power is planned for the Project.

Solid Waste

All proposed buildings would be provided with traditional trash, composting, and recycling services and associated receptacles.

2.3.7 Landscaping

The Project would incorporate water-efficient landscape. The selected plant species would require zero or minimal irrigation after plants are established, and would reflect the ecological landscape zones and plant list detailed in the 2016 San Francisco State University Landscape Framework and Forest Management Plan, outlined in the 2007 CMP and the specific function and character of adjacent uses and landscapes. In low areas and natural collection points, stormwater management zones would capture, convey, and detain stormwater runoff within vegetated bio-detention “meadow” landscape elements.

Construction of the Project would likely include the removal of all existing on-site trees, but the Project would replace some trees and provide other planting on the site, as described above. If the Project would result in tree removal in the City’s right-of-way, SF State would comply with the permitting requirements of the City’s tree protection legislation.

2.3.8 CMP EIR Mitigation Monitoring & Reporting Program

As part of the 2007 CMP approval, the Trustees adopted a Mitigation Monitoring & Reporting Program. The mitigation measures included in this program are already being implemented as part of the CMP, the certified CMP EIR, and the proposed Project and therefore they are considered to be part of the proposed Project and do not need to be readopted. The applicable mitigation measures from the Mitigation Monitoring & Reporting Program are included in Attachment A-1. If additional mitigation measures are required to address project-level impacts, those measures are identified in Chapter 4 of the EIR.

2.4 Demolition and Construction

Demolition of the existing housing on the Tapia Triangle would be anticipated to occur in late summer 2017. Demolition of existing housing at the southeast corner of Holloway Avenue and Varela Avenue would likely occur somewhat later than the demolition on the Tapia Triangle.
Construction staging would occur on the Project site in areas not proposed to support the new buildings. Construction workers would access the construction site primarily via Holloway Avenue and Font Boulevard.

Construction of the Creative Arts replacement building and concert hall would take approximately 24 months to complete, beginning in fall 2017, with completion in fall 2019. Construction of the student housing building would take approximately 24 months, beginning somewhat later than the Creative Arts buildings, with completion in 2019/2020. There could be up to a 24-month overlap in the construction schedules for the Creative Arts buildings and the student housing building.

Construction would be performed by qualified contractors. Plans and specifications and construction contracts would incorporate stipulations regarding standard California State University requirements and acceptable construction practices, including abatement of hazardous building materials per regulatory requirements and best building practices prior to demolition, grading and demolition, safety measures, vehicle operation and maintenance, excavation stability, erosion control, drainage alteration, groundwater disposal, traffic circulation, public safety, dust control, and noise generation.

In particular, in accordance with CMP EIR Mitigation HAZ-5A, a construction traffic control plan would be prepared by SF State and/or the construction contractors to address potential lane closures, construction vehicle access routes and parking, hours of construction, etc. The traffic control plan would comply with the City’s Encroachment Permit and/or Construction Major Encroachment Permit requirements, if applicable. Given that Phase I of the Parkmerced Project will be under construction at the same time as the proposed Project, SF State’s traffic control plan will be coordinated with the traffic control plan for that project to minimize temporary effects on vicinity roadways. Traffic control would not encroach onto the State right-of-way on 19th Avenue and therefore an encroachment permit from Caltrans would not be required for the Project.

1 Hazardous building materials include, but are not limited to, asbestos building materials, lead-based paint, and other regulated materials such as fluorescent lights and electrical ballasts. Termiticides, which are not regulated, are also considered to be hazardous and any building materials treated with termiticides, such as chlordane, would also be properly abated before building demolition, per applicable Department of Toxics Substances Control guidance.
2.5 Project Approvals

This section describes actions required for Project approval by state and regional agencies. Discretionary approvals include certification of the EIR under CEQA; approval and adoption of the proposed revision to the Master Plan map; and approval of schematic plans for the Creative Arts replacement building, concert hall, and student housing/mixed-use building by the Trustees of the California State University, as summarized in Table 32. Other approvals could also be necessary.

TABLE 32. PROJECT APPROVALS

<table>
<thead>
<tr>
<th>Authorizing Jurisdiction or Agency</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board of Trustees of the California State University</td>
<td></td>
</tr>
<tr>
<td>Final EIR</td>
<td>Certification</td>
</tr>
<tr>
<td>San Francisco State University Master Plan Map Revision</td>
<td>Approval and Adoption</td>
</tr>
<tr>
<td>Amendment to the Self-Support Capital Outlay Program</td>
<td>Approval and Adoption</td>
</tr>
<tr>
<td>Schematic Plans for the Creative Arts Replacement Building, Concert Hall, and Student Housing/Mixed-Use Building and other related actions and approvals, as necessary</td>
<td>Approval</td>
</tr>
<tr>
<td>Division of the State Architect</td>
<td></td>
</tr>
<tr>
<td>Accessibility Compliance</td>
<td>Approval</td>
</tr>
<tr>
<td>State Fire Marshal</td>
<td></td>
</tr>
<tr>
<td>Facility Fire and Life Safety Compliance</td>
<td>Approval</td>
</tr>
<tr>
<td>Regional Water Quality Control Board</td>
<td></td>
</tr>
<tr>
<td>National Pollutant Discharge Elimination System Permit (NPDES) – Storm Water Pollution Prevention Plan (SWPPP) and Notice of Intent to Comply with NPDES Construction Permit</td>
<td>Approval/Enforcement</td>
</tr>
<tr>
<td>Bay Area Air Quality Management District</td>
<td></td>
</tr>
<tr>
<td>Authority to Construct and/or Permits to Operate Hazardous Materials Removal and Asbestos Demolition</td>
<td>Approval</td>
</tr>
<tr>
<td>Rule Compliance</td>
<td></td>
</tr>
<tr>
<td>City and County of San Francisco</td>
<td></td>
</tr>
<tr>
<td>Fire Flow and Hydrants – San Francisco Fire Department</td>
<td>Review/Verification</td>
</tr>
<tr>
<td>Tapia Drive Vacation and Street/Sidewalk Improvements – Department of Public Works Bureau of Street-Use and Mapping in coordination with other City departments, including San Francisco Metropolitan Transportation Agency (SFMTA), Bureau of Urban Forestry, and others</td>
<td>Approval</td>
</tr>
<tr>
<td>Water and Sewer Connections/Services/Encroachment– Department of Public Works and San Francisco Public Utilities Commission</td>
<td>Approval</td>
</tr>
<tr>
<td>Stormwater Management Compatibility with Stormwater Management Requirements and Design Guidelines – San Francisco Public Utilities Commission</td>
<td>Review</td>
</tr>
</tbody>
</table>
3 FINDINGS & ENVIRONMENTAL DETERMINATION

The Trustees of the California State University find that the Project could have a “potentially significant impact” or “potentially significant unless mitigated” impact on the environment, but most effects (1) were adequately analyzed in the 2007 CMP EIR pursuant to applicable legal standards and (2) were addressed by mitigation measures based on that earlier analysis, as described on Section 4, Initial Study Checklist. An EIR is required to analyze only the effects that remain to be addressed. The Project could result in a potentially significant new or increased impact over and above those identified in the 2007 CMP EIR based on the results of the Initial Study Checklist. The Trustees of the California State University have decided to prepare a focused, tiered EIR to address the following potential impacts:

1. **Aesthetics**: The 2007 CMP EIR determined that the impacts of CMP buildout on scenic vistas and scenic resources would be less than significant. The impacts related to visual character and light and glare were determined to be less than significant with identified mitigation measures. The tiered focused EIR will evaluate potential aesthetic impacts to determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR. See Section 4.1, Aesthetics, for additional information.

2. **Air Quality**: The 2007 CMP EIR determined that the impacts of CMP buildout related to potential conflicts with the applicable air plan and construction emissions of coarse particulate matter (PM$_{10}$) and fine particulate matter (PM$_{2.5}$) would be less than significant with identified mitigation measures. Impacts related to the exposure of sensitive receptors to substantial pollutant concentrations and objectionable odors were determined to be less than significant. The focused tiered EIR will evaluate potential air quality impacts to determine whether there may be new or increased impacts compared to those identified in the 2007 CMP EIR. See Section 4.3, Air Quality, for additional information.

3. **Greenhouse Gas Emissions**: The CMP EIR approved in 2007 did not analyze potential campus-wide impacts related to GHG emissions, as Appendix G of the CEQA Guidelines at that time did not address GHG emissions and there were no established thresholds. The tiered EIR will quantify the net increase in GHG emissions with the Project; determine whether those emissions could have a significant impact on the environment; and determine whether the Project would conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing GHG emissions.

4. **Historic Resources**: The 2007 CMP EIR determined that the impacts of CMP buildout related to historic resources could be significant and unavoidable if CMP EIR Mitigation
CULT-2C, requiring documentation of historical resources, would not fully mitigate the effects of demolition of those resources to less than significant. Since the certification of the CMP EIR in 2007, more is now known about the eligibility of the Parkmerced area as a Historic District. The existing housing on the Project site, which consists of former Parkmerced properties, is proposed to be demolished as part of the Project. The tiered EIR will evaluate potential historic resource impacts of the Project on the former Parkmerced properties to determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR.

5. Transportation and Traffic: The 2007 CMP EIR indicated that the combined effect of the TDM, parking, transit, and housing programs of the CMP would likely be to maintain campus-related auto traffic levels at their then-current (2006) rates through 2020. The 2007 CMP EIR considered this no-net-increase in vehicle trips scenario in a traffic analysis that also provided a more conservative traffic scenario that estimated trip generation from proposed campus growth more traditionally. The more conservative analysis indicated that campus growth would potentially result in significant traffic-related impacts on vicinity roadways. The tiered EIR will estimate trip generation associated with Project vehicle and transit trips, and evaluate transportation hazards, emergency access, and conflicts with adopted transportation policies to determine whether the Project could result in new or increased impacts over and above those identified in the 2007 CMP EIR.

6. Mandatory Findings of Significance/Cumulative Impacts: The 2007 CMP EIR evaluated the cumulative effects associated with growth and development contemplated under the CMP. In general, the cumulative effects associated with the Project have already been adequately analyzed and assessed as part of the 2007 CMP EIR in most impact categories, and no new significant or substantially more severe increased cumulative impacts are anticipated with the Project in most impact categories. However, cumulative impacts associated with reasonably foreseeable cumulative development will be updated and reassessed, as relevant and necessary to determine whether new significant impacts or substantially more severe cumulative impacts could occur with the Project for the topics that will be carried into the forthcoming EIR, including for the those topics listed above, to determine whether new or increased cumulative impacts would result with the Project.
4 INITIAL STUDY CHECKLIST

The evaluation of potential environmental impacts provided in Section 4 of this IS determined that the Project would not result in new or increased environmental impacts over and above those identified in the 2007 CMP EIR for the topics that are not checked below. Topics with a check mark below warrant further analysis and will be examined in an EIR to determine whether the Project would have a significant new or increased impact that was not previously addressed in the 2007 CMP EIR.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

<table>
<thead>
<tr>
<th>Aesthetics</th>
<th>Agriculture and Forestry Resources</th>
<th>Air Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Resources</td>
<td>Cultural Resources</td>
<td>Geology and Soils</td>
</tr>
<tr>
<td>Greenhouse Gas Emissions</td>
<td>Hazards and Hazardous Materials</td>
<td>Hydrology and Water Quality</td>
</tr>
<tr>
<td>Land Use and Planning</td>
<td>Mineral Resources</td>
<td>Noise</td>
</tr>
<tr>
<td>Population and Housing</td>
<td>Public Services</td>
<td>Recreation</td>
</tr>
<tr>
<td>Transportation and Traffic</td>
<td>Utilities and Service Systems</td>
<td>Mandatory Findings of Significance</td>
</tr>
</tbody>
</table>
DETERMINATION: (To be completed by the Lead Agency)

On the basis of this initial evaluation:

☐ I find that the proposed Project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☐ I find that although the proposed Project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the Project have been made by or agreed to by the Project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

☐ I find that the proposed Project could have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

☒ I find that the proposed Project could have a “potentially significant impact” or “potentially significant unless mitigated” impact on the environment, but at least one effect (1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and (2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

☐ I find that although the proposed Project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier ENVIRONMENTAL IMPACT REPORT or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier ENVIRONMENTAL IMPACT REPORT or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed Project, nothing further is required.

Thomas E. Pollini, FAIA, Senior Associate Vice President, Physical Planning & Development

September 21, 2016
TIERED EVALUATION OF ENVIRONMENTAL IMPACTS:

1) The purpose of evaluating the Project’s potential environmental impacts is to determine whether the Project could result in new significant impacts not identified in the 2007 CMP EIR (SCH No. 2006102050), or a substantial increase in the impacts identified in the EIR. If the Project would result in a significant unavoidable impact that was already identified in the EIR, no additional environmental evaluation is required and the “No New Impact” box is checked in the following Environmental Checklist. Where the Project would result in a significant impact that was already identified in the prior EIR and where mitigation identified in the EIR will still be implemented as part of the Project to reduce the impact to less than significant, no additional environmental evaluation is needed or required, and the “No New Impact” box is checked in the Environmental Checklist. However, some explanation is provided so that it is clear to the reader why “No New Impacts” would be anticipated for the Project. The Checklist issues not evaluated in the prior EIR, such as GHG emissions, are evaluated herein.

2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.

3) Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant new or increased impact, less than significant new or increased impact with mitigation, less than significant new or increased impact, or no new or increased impact. “Potentially Significant New or Increased Impact” is appropriate if there is substantial evidence that an effect may be significant. If there are one or more “Potentially Significant New or Increased Impact” entries when the determination is made, a tiered EIR is required to address those impacts.

4) “Negative Declaration: Less Than Significant New or Increased Impact With Mitigation Incorporated” applies where the incorporation of mitigation measures has reduced an effect from “Potentially Significant New or Increased Impact” to a “Less Than Significant New or Increased Impact.” The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less-than-significant level (mitigation measures from “Earlier Analyses,” as described in (5) below, may be cross-referenced).

5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration (see Item 1 above). Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:

a) Earlier Analysis Used. Identify and state where they are available for review.
b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.

c) Mitigation Measures. Describe the mitigation measures, which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the Project.

6) Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.

7) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.

8) This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.

9) The explanation of each issue should identify:

a) The significance criteria or threshold, if any, used to evaluate each question; and

b) The mitigation measure identified, if any, to reduce the impact to less than significance.
4.1 Aesthetics

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>AESTHETICS – Would the project:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a)</td>
<td>Have a substantial adverse effect on a scenic vista?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b)</td>
<td>Substantially damage scenic resources including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c)</td>
<td>Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d)</td>
<td>Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION

The evaluation below reflects the aesthetics analysis provided in the 2007 CMP EIR. See Section 4.1 of the CMP Draft EIR for the analysis of aesthetic impacts associated with the CMP.

a–d) Potentially significant new or increased impact. The 2007 CMP EIR determined that the impacts of CMP buildout on scenic vistas and scenic resources would be less than significant. The impacts related to visual character and light and glare were determined to be less than significant with identified mitigation measures.

The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus: the Creative Arts replacement building and the concert hall on Block 1, also referred to as the Tapia Triangle, and the student housing/mixed-use building on Block 6, located on the south side of Holloway Avenue. Although the proposed uses are included in the CMP building program, the student housing/mixed-use buildings would be substantially taller than contemplated in the 2007 CMP and CMP EIR. Additionally, there is information in the Parkmerced Project EIR (SCH No. 2009052073) (CCSF 2010) about the scenic visual characteristics of Parkmerced buildings that was not previously available during preparation of the 2007 CMP EIR. Given the above, the pending EIR will evaluate potential aesthetic impacts related to scenic vistas, scenic resources, visual character, and light and glare to determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR.
II. AGRICULTURE AND FORESTRY RESOURCES – In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?

c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

d) Result in the loss of forest land or conversion of forest land to non-forest use?

e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?

The evaluation below reflects the agricultural analysis provided in the 2007 CMP EIR. See Section 4.13 of the CMP Draft EIR for the analysis of agricultural impacts associated with the CMP.

a–e) No new or increased impact. The campus, which includes the Project site, is in a highly developed urban setting. There are no Williamson Act contracts or land zoned for agricultural purposes on the SF State campus. Additionally, there is no prime farmland or other agricultural land of importance on the SF State campus. No
agricultural land, forest, or timber lands are present in the vicinity of the SF State campus. Therefore, no impacts were identified in the 2007 CMP EIR and no new or increased impacts are anticipated with the Project.

4.3 Air Quality

III.	AIR QUALITY – Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:				
a)	Conflict with or obstruct implementation of the applicable air quality plan?	☒	☐	☐	☐
b)	Violate any air quality standard or contribute substantially to an existing or projected air quality violation?	☒	☐	☐	☐
c)	Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?	☒	☐	☐	☐
d)	Expose sensitive receptors to substantial pollutant concentrations?	☒	☐	☐	☐
e)	Create objectionable odors affecting a substantial number of people?	☒	☐	☐	☐

DISCUSSION

The evaluation below reflects the air quality analysis provided in the 2007 CMP EIR. See Section 4.2 of the CMP Draft EIR and Section 3.6 of the CMP Final EIR for the analysis of air quality impacts associated with the CMP.

a–e) **Potentially significant new or increased impact.** The 2007 CMP EIR determined that the impacts of CMP buildout related to potential conflicts with the applicable air plan and construction emissions of PM_{10} and PM_{2.5} would be less than significant with identified mitigation measures. The impacts related to the exposure of sensitive receptors to substantial pollutant concentrations and objectionable odors were determined to be less than significant.
The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus: the Creative Arts replacement building and the concert hall on Block 1, also referred to as the Tapia Triangle, and the student housing/mixed use building on Block 6, located on the south side of Holloway Avenue. Since the certification of the CMP EIR in 2007, the Bay Area Air Quality Management District (BAAQMD) has updated its Clean Air Plan and CEQA Guidelines and associated emissions-based thresholds (BAAQMD 2010, 2012). Additionally, the California Emissions Estimator Model is the land use and air quality model now in use to estimate construction and operational emissions of proposed projects. Given the above, the pending EIR will evaluate potential air quality impacts of the Project related to conflicts with the current Clean Air Plan, contributions to air quality violations, exposure of sensitive receptors to substantial pollutant concentrations, and creation of objectionable odors to determine whether there may be new or increased impacts compared to those identified in the 2007 CMP EIR.

4.4 Biological Resources

<table>
<thead>
<tr>
<th>IV. BIOLOGICAL RESOURCES – Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
</tr>
<tr>
<td>c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
</tr>
</tbody>
</table>
Creative Arts & Holloway Mixed-Use Project

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The following project-level evaluation of biological resources impacts of the Project reflects the campus-wide biological resources analysis provided in the 2007 CMP EIR. See Section 4.3 of the CMP Draft EIR and Section 3.7 of the Final EIR for the analysis of biological impacts associated with the CMP. At the time the 2007 CMP EIR was prepared, potential impacts to biological resources on the SF State campus were evaluated based on a review of the available literature regarding the status and known distribution of the special-status species or their habitats on the campus and in the surrounding areas. Additionally, a qualified biologist conducted a survey of the entire campus in 2006 and no special-status species or sensitive habitats were identified.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in biological resource impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) **No new or increased impact.** Based on the results of the literature review and biological survey of the campus conducted in 2006, development anticipated under the 2007 CMP EIR was not expected to result in impacts to special-status plants. No special-status plant species or their habitats were present on the SF State campus in 2006. The Project site is developed with existing housing. Landscaping includes street...
trees and lawn around the periphery of the site, and landscaped trees, shrubs, and lawn in interior courtyards. No native vegetation or habitats exist on the Project site. Given its developed nature, no special-status plant species or their habitats exist on the Project site. Therefore, no impacts to special-status plant species would occur as a result of the Project, as was concluded in the 2007 CMP EIR. No new or increased impacts on special-status plants would occur.

Based on the results of the literature review and biological survey of the campus conducted in 2006, there were no known occurrences of special-status birds or wildlife species, and no evidence of bird nests or nesting activities were observed on the campus. However, Impact BIO-2 in the 2007 CMP EIR indicated that there is low potential that the landscaped habitats on campus provide suitable nesting habitat for special-status birds, and, therefore, such nesting may be occurring on the campus, or may occur in the future. Accordingly, development under the CMP could potentially result in the loss or abandonment of active nests of special-status birds, as a result of tree removal or construction-related noise and disturbance, a potentially significant impact. CMP EIR Mitigation BIO-2A would be implemented in conjunction with the Project, which requires preconstruction nesting bird surveys and other measures, if construction occurs during the typical avian nesting season.

Implementation of this mitigation measure would reduce this potentially significant impact related to construction activities to less than significant, as was concluded in the 2007 CMP EIR. Therefore, no new or increased impacts on special-status wildlife would result with implementation of the Project.

Additionally, reflective metal, mirrored glass, or any other reflective building materials would not be used as primary building materials for facades, consistent with CMP EIR Mitigation Measure AES-4B and the City’s Design Guide Standards for Bird-Safe Buildings (City 2012). Implementation of these measures and standards should minimize bird strikes associated with the new buildings.

b–d) No new or increased impact. As indicated in Impact BIO-1 of the 2007 CMP EIR, there were no sensitive habitats or wetlands present on the campus, based on the 2006 biological survey done in support of that EIR. Therefore, development on campus under the CMP would not result in any impacts on wetlands or other sensitive habitats. The Project site is developed, and the only vegetation consists of landscape trees and shrubs. Further, there is no evidence of any wetland features on the Project site, including wetland hydrology or other vegetation typical of wetland features. Therefore, the Project site does not contain wetlands or other sensitive habitats under federal or state
regulations, as was concluded in the 2007 CMP EIR. No new or increased impacts to sensitive habitats or wetlands would result with implementation of the Project.

e) **No new or increased impact.** There are no local biological ordinances or policies of the City that would apply to projects on the SF State campus, as the City does not have jurisdiction over campus lands. The City does have tree protection legislation (CCSF 2012), but it would not apply to the state-owned property on the SF State campus. If the Project would result in tree removal in the City’s right-of-way, SF State would comply with the permitting requirements of the tree protection legislation. Therefore, the Project would not conflict with policies contained in that legislation. Construction of the Project would likely include the removal of all existing on-site trees, but the Project would replace some trees and provide other planting on the site using native and drought-tolerant species. Therefore, no new or increased impacts related to policies for the protection of biological resources would result with implementation of the Project.

f) **No new or increased impact.** According to the 2007 CMP EIR Impact BIO-3, implementation of the CMP would not conflict with the provisions of an adopted Habitat Conservation Plan, National Community Conservation Plan, or other applicable Habitat Conservation Plan. The campus does not fall within the boundaries of a Habitat Conservation Plan or Natural Communities Conservation Plan, nor is it adjacent to any properties that have an adopted plan. Therefore, no new or increased impact related to conflicts with an adopted plan would result with implementation of the Project.

4.5 Cultural Resources

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. CULTURAL RESOURCES – Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Disturb any human remains, including those interred outside of formal cemeteries?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The project-level evaluation of cultural resource impacts of the Project reflects the campus-wide cultural resources analysis provided in the 2007 CMP EIR. See Section 4.4 of the Campus Master Plan Draft EIR and Section 3.8 of the Final EIR for the analysis of cultural resources impacts associated with the CMP. A historic resources evaluation is underway for the former Parkmerced buildings located on the Project site, and the results will be included in the EIR.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in cultural resource impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) **Potentially significant new or increased impact.** The 2007 CMP EIR determined that the impacts of CMP buildout related to historic resources could be significant and unavoidable if CMP EIR Mitigation CULT-2C, requiring documentation of historical resources, would not fully mitigate the effects of demolition of those resources to less than significant. In such cases, CMP EIR Mitigation CULT-2C would reduce the impact to the extent feasible; however, the impact would remain significant and unavoidable.

The Project would involve construction of three buildings on Block 1 and Block 6 in the southern portion of the SF State campus. The existing housing on the two sites, which are former Parkmerced properties, are proposed to be demolished as part of the Project. Since the certification of the CMP EIR in 2007, more is now known about the eligibility of the Parkmerced area as a Historic District. The Parkmerced area is eligible as a Historic District, based on a Historical Resource Evaluation prepared for the Parkmerced area (Page & Turnbull 2009), which included the former Parkmerced properties located on the SF State campus.
Given the above, the EIR will evaluate potential historic resource impacts of the Project on the former Parkmerced properties on the campus to determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR.

b, d) **No new or increased impact.** The Project would include demolition of existing residential buildings on Block 1 and Block 6 in the southern portion of the SF State campus. Demolition and construction activities would occur on land that has been previously disturbed in some fashion. Although the Project site is primarily disturbed, portions of the site (e.g., the courtyards) may have received only surficial disturbance. Impacts of the Project include demolition of buildings on these blocks and construction of three new buildings and related facilities. Impacts to archaeological resources and human remains most often occur, as a result of excavating or grading on undisturbed land and native soils. Traffic, erosion, vibration, and other activities can also affect the physical integrity of archaeological deposits. Demolition and construction activities would be located mostly on previously disturbed land; however, grading and excavating has some potential for extending into undisturbed native soils. Therefore, there is some potential that such activities could result in the inadvertent discovery of archaeological resources and human remains. CMP EIR Mitigation CULT-1A, CULT-1B, and CULT-3A through CULT-3D will be implemented to ensure that impacts related to inadvertent discovery of archaeological resources and human remains would be reduced to less than significant (see CMP EIR Impacts CULT-1 and CULT-3), as was concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would result with implementation of the Project.

c) **No new or increased impact.** The Project would result in demolition of existing residential buildings on Block 1 and Block 6, and the excavation of potentially undisturbed sediments during construction of the buildings and related facilities. As a result, the Project could result in adverse impacts to paleontological resources (see 2007 CMP EIR Impact CULT-4). Potential paleontological resources could exist in the Colma Formation that underlies the SF State campus. The Colma Formation underlies the Project site, according to the geotechnical investigation for the Project (Langan Treadwell Rollo 2016).

Implementation of 2007 CMP EIR Mitigation CULT-4A through CULT-4C will ensure that any excavation in undisturbed sediments of the Colma Formation is adequately monitored, and that any discovery of fossils is appropriately evaluated, documented, and curated. Incorporation of these measures would reduce potential impacts to less than significant, as was concluded in the 2007 CMP EIR. Therefore, there would be no new or increased impacts related to paleontological resources with the Project.
The campus does not contain unique geologic resources, according to 2007 CMP EIR, and the Project would not impact such resources. Therefore, there would be no new or increased impacts related to unique geologic resources.

e) No new or increased impact. State Assembly Bill 52, effective July 1, 2015, recognizes that California Native American prehistoric, historic, archaeological, cultural, and sacred places are essential elements in tribal cultural traditions, heritages, and identities. The law establishes a new category of resources in the California Environmental Quality Act called “tribal cultural resources” that considers the tribal cultural values in addition to the scientific and archaeological values when determining impacts and mitigation. Public Resources Code section 21074 defines a “tribal cultural resource” as either:

1. Sites, features, places, cultural landscapes, sacred places and objects with cultural value to a California Native American tribe that is either listed, or determined to be eligible for listing, on the national, state, or local register of historic resources, or

2. A resource determined by the lead agency chooses, in its discretion and supported by substantial evidence, to treat as a tribal cultural resource.

The California Public Resources Code section 21084.2 now establishes that “[a] project with an effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment.” The Public Resources Code requires a lead agency to consult with any California Native American tribe that requests consultation and is traditionally and culturally affiliated with the geographic area of a proposed Project.

There are no known resources on or adjacent to the site that would be considered a tribal cultural resource. No Native American tribe has contacted the SF State or the Trustees of the California State University and requested consultation. Therefore, the Project would not result in impacts to archaeological resources or cause a substantial adverse change in the significance of a tribal cultural resource, as defined in Public Resources Code 21074.
VI. GEOLOGY AND SOILS – Would the project:

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

 i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.

 ii) Strong seismic ground shaking?

 iii) Seismic-related ground failure, including liquefaction?

 iv) Landslides?

b) Result in substantial soil erosion or the loss of topsoil?

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?

e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

DISCUSSION

The 2007 CMP EIR considered constructing buildings and related facilities on or adjacent the Project site. The project-level evaluation of geology and soils impacts of the Project reflects the campus-wide geology and soils analysis provided in the 2007 CMP EIR. See Section 4.5 of the CMP Draft EIR for the analysis of geology and soils impacts. Additionally, a Preliminary Geotechnical Evaluation was prepared for Block 1 (Langan Treadwell Rollo 2016).
The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in geology and soils impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a.i) **No new or increased impact.** Based on the analysis presented in the 2007 CMP EIR (Impact GEO-1) and in the Preliminary Geotechnical Report for Block 1, there are no active or potentially active faults identified on or near the SF State campus. The potential for fault rupture on the campus and Project site is very low. There is no potential for adverse effects related to fault rupture on the campus or Project site, as was concluded in the 2007 CMP EIR. The Preliminary Geotechnical Investigation for Block 1 also concluded that the potential for fault rupture is low. Therefore, no new or increased impacts related to fault rupture would result with the Project.

a.ii–a.iv, c) **No new or increased impact.** As described in the CMP EIR, the major geologic units encountered on the campus include: artificial fill; medium dense to dense wind blown deposits, which are probably remnants of old sand dunes; and the Colma Formation consisting of very dense sands with minor amounts of silt and clay that were deposited in estuarine and coastal environments. The Colma Formation overlies the Plio-Pleistocene marine sediments of the Merced Formation, which consists of sands, silt, and clay deposited in a shallow marine environment. Bedrock, which is present below the Merced formation, is estimated to range from elevation –200 to –300 feet under the SF State campus, as indicated previously. The soils beneath the SF State campus are well-drained loams and sandy loams formed on soft sandstone.

According to the 2007 CMP EIR (Impact GEO-1), severe seismic ground shaking and related ground failure is a possibility on the campus and on the Project site. Proximity to the San Andreas, San Gregorio, and Hayward Faults could subject the Project site to strong ground shaking from moderate to large earthquakes. Therefore, the potential for strong ground shaking is high. Strong ground shaking during an earthquake can result in ground failure such as that associated with soil liquefaction, lateral spreading, differential compaction, or earthquake-induced landsliding.

According to the CMP EIR, the Project site is located in an area of campus with low to very low liquefaction, lateral spreading, and landsliding potential. The valley portion of the campus where Cox Stadium is located, is the only location on campus where there is greater potential for liquefaction and landsliding due to the presence of artificial fill placed in the valley. This area was originally part of the northern lobe of Lake Merced.
but was filled after the connection to Lake Merced was blocked with the realignment of the Lake Merced Boulevard in 1946 or shortly thereafter. The Project site is located south of the valley, in the upland portion of the campus.

To address these concerns, the SF State campus routinely performs geotechnical investigations to evaluate the potential for liquefaction, settlement, and other types of ground failure at each building site. These reports include recommendations applicable to foundation design, earthwork, and site preparation to minimize or avoid the potential for building damage and injury. The preparation of site-specific geotechnical investigations is in accordance with 2007 CMP EIR Mitigation GEO-1. Implementation of this measure has already been initiated with preparation of a Preliminary Geotechnical Investigation for Block 1. A similar investigation will be prepared for Block 6.

The Preliminary Geotechnical Investigation for Block 1 confirms that the Project site, including both Block 1 and Block 6, are not located in areas with high liquefaction or earthquake-induced landslide potential. However, Block 1 is located in an area with the potential for differential settlement in the upper sand layers during a major earthquake on a nearby fault, due to the presence of loose fill, which can cause differential compaction. This condition does not prevent building on the site and the Preliminary Geotechnical Investigation for Block 1 presents a range of options for addressing the condition, including removing and replacing the fill or improving the fill in place. As the design for both Block 1 and Block 6 proceeds, design-level geotechnical and geohazards analyses would be conducted to define the specific design recommendations for the Project related to treatment of soil conditions on site, foundation, building entrances, sidewalks, and utilities.

The recommendations of the geotechnical investigations for both Block 1 and Block 6 would be implemented during design and construction of the Project under CMP EIR Mitigation GEO-1. Moreover, design of the Project and all future projects would comply with the California Building Code, which includes specific provisions for structural seismic safety. The Project and all projects on CSU campuses would also be subject to review by the CSU Seismic Review Board. With the continued implementation of CMP EIR Mitigation GEO-1, impacts related to seismic hazards would be less than significant, as was concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur.

b) **No new or increased impact.** Based on the 2007 CMP EIR (Impact GEO-2), development under the CMP would not result in substantial erosion of soils during construction. Activities that would increase erosion include cut and fill, grading,
trenching, boring, and removing trees and other vegetation. Demolition of the existing structures on site would include grading and removing trees and other vegetation. Construction of the Project would result in short-term soil-disturbing activities that could lead to increased erosion due to cut and fill, grading, trenching, boring, and removing trees and other vegetation. However, because the Project is greater than 1 acre, it would be subject to the National Pollutant Discharge Elimination System (NPDES) permit requirements for construction site stormwater discharges, and would comply with those requirements. A Storm Water Pollution Prevention Plan (SWPPP) is required to be prepared and implemented under these requirements, which includes appropriate erosion-control and water-quality-control measures during site preparation, grading, construction, and post-construction. Implementation of the SWPPP for the Project would minimize short-term erosion impacts. Long-term impacts of the Project would not result in substantial erosion, as the soils would be covered by buildings, pavement, vegetation, and landscaping. Overall, the Project would result in less-than-significant impacts related to soil erosion, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would result with implementation of the Project.

d) **No new or increased impact.** Expansive soils are those that possess “shrink/swell” characteristics, and are usually fine-grained clay sediments that expand and contract due to moisture and desiccation. As indicated in the 2007 CMP EIR, the soils beneath the SF State campus are well-drained loams and sandy loams formed on soft sandstone. These types of soils are typically not expansive. As expansive soils have not been identified on the SF State campus in previous geotechnical investigations, no impacts related to expansive soils were identified in the 2007 CMP EIR. Similarly, the Preliminary Geotechnical Investigation for Block 1 revealed no evidence of expansive soils on that site (Langan Treadwell Rollo 2016). Therefore, no new or increased impacts related to expansive soils would result with implementation of the Project.

e) **No new or increased impact.** The Project would not include installation of septic tanks, as the buildings would connect to sewer services. Therefore, the capability of the soils to support the operation of such tanks does not need to be evaluated.
4.7 Greenhouse Gas Emissions

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII. GREENHOUSE GAS EMISSIONS – Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION

The CMP EIR, certified in 2007, did not analyze potential campus-wide impacts related to GHG emissions, as Appendix G of the CEQA Guidelines at that time did not address GHG emissions and there were no established thresholds.

a–b) Potentially significant new or increased impact. The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus. The Project would likely result in a net increase in GHG emissions. Therefore, the EIR will quantify the net increase in GHG emissions with the Project and determine whether those emissions could have a significant impact on the environment and whether the Project would conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing GHG emissions. The EIR will determine whether there may be new impacts related to GHG emissions that were not identified in the 2007 CMP EIR.
4.8 Hazards and Hazardous Materials

<table>
<thead>
<tr>
<th>VIII. HAZARDS AND HAZARDOUS MATERIALS – Would the project:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The project-level evaluation below reflects the campus-wide hazards and hazardous materials analysis provided in the 2007 CMP EIR. See Section 4.6 of the CMP Draft EIR and Section 3.9 of the CMP Final EIR for the analysis of hazards and hazardous materials.
impacts associated with the CMP. The evaluation below reflects updated 2016 conditions on the campus and Project site, based on the following:

- A new Environmental Data Resources Radius Map Report prepared for the Project site.
- Review of the list of Hazardous Waste and Substances sites from Department of Toxic Substances Control Envirostor database.
- Review of the list of leaking underground storage tank (LUST) sites by county and fiscal year from the State Water Resources Control Board GeoTracker database.
- Review of the list of solid waste disposal sites identified by the State Water Resources Control Board with waste constituents above hazardous waste levels outside the waste management unit.
- Review of the list of “active” Cease and Desist Orders and Cleanup and Abatement Orders from the State Water Resources Control Board.
- Review of the list of hazardous waste facilities subject to corrective action pursuant to Section 25187.5 of the Health and Safety Code, identified by the Department of Toxic Substances Control.

Dudek reviewed the sites identified in these databases to determine whether the Project site is included on the California Environmental Protection Agency’s hazardous waste and substances sites list (Cortese List). Per question VIII(d), above, sites identified in one of the regulatory databases compiled pursuant to California Government Code Section 65962.5 could potentially present a significant impact. California Government Code Section 65962.5 requires the California Environmental Protection Agency to compile and update the Cortese List. The results of this updated review, including files requested and received from the San Francisco Department of Public Health, are presented below.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in hazards and hazardous materials impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a–d) **No new or increased impact.** Based on the 2007 CMP EIR, the Project would not increase the routine use of hazardous materials, generation of hazardous wastes, or transport of such materials. This impact would be less than significant, as concluded in the 2007 CMP EIR. Therefore, the Project would not create any new or increased
hazards to the public, adjacent schools, or the environment (see CMP EIR Impact HAZ-2).

Based on the information reviewed from the above sources, there were several closed LUST cases on the SF State property. The LUST cases are all closed and the USTs were not located on or immediately adjacent to the Project area. While the LUST sites are included in the sites listed pursuant to Government Code Section 65962.5, they are not located within the Project area. Therefore, the Project area is not included in the sites listed pursuant to Government Code Section 65962.5.

It does not appear that the releases were located within the Project area; however, two of the LUST case tanks could not be specifically located with available information. Although it is unlikely that a diesel underground storage tank was located on the Project site since it has been developed with housing since the 1950s, this cannot be confirmed without additional information. Although it is possible that the Project site is included on the Cortese List compiled pursuant to California Government Code Section 65962.5, the LUST cases potentially located within the Project area were closed by the lead regulatory agency and are, therefore, unlikely to impact the environmental conditions of the Project area.

The site is also not identified on the “Expanded Maher Area” map dated October 2013, which is prepared and updated under Article 22A of the San Francisco Health Code, the Maher Ordinance (CCSF 2014). As a result of the above, the Project would not expose construction workers or campus occupants to contaminated soil or groundwater, and the impact would be less than significant, as was concluded in the 2007 CMP EIR. Therefore, the Project would not create any new or increased hazards related to soil or groundwater contamination (see CMP EIR Impact HAZ-3).

The Project would involve demolition of two-story residential buildings on Block 1 and Block 6, none of which are or have been used as a laboratory (see CMP EIR Impact HAZ-4). However, buildings may contain asbestos building materials, lead-based paint, and/or other regulated materials such as fluorescent lights and electrical ballasts. As

2 Closed files are those that have been determined to be remediated to the satisfaction of the lead public agency. Satisfactory remediation usually involves removal of the underground tanks and any contaminated soil.

3 The Maher Ordinance covers areas with current or historical industrial use or zoning, areas within 100 feet of current or historical underground tanks or filled former San Francisco Bay or creek areas, and areas within 150 feet of a current or former elevated highway. Sites and areas covered per the Maher Ordinance are shown as shaded areas on the map at this location: http://www.sfplanning.org/ftp/files/publications_reports/library_of_cartography/Maher%20Map.pdf.
indicated in the 2007 CMP EIR, the removal of asbestos-containing building materials is subject to the limitations of the BAAQMD Regulation 11, Rule 2: Hazardous Materials; Asbestos Demolition, Renovation and Manufacturing. Additionally, Section 2.5, Project Approvals, of this document acknowledges the requirements under this Rule.

As indicated in the 2007 CMP EIR, the California OSHA lead standard for construction activities is implemented under Title 8 of the California Code of Regulations. The standard applies to any construction activity that may release lead dust or fumes, including manual scraping, manual sanding, heat gun applications, power tool cleaning, rivet busting, abrasive blasting, welding, cutting, or torch burning of lead-based coatings. Additionally, under California law, fluorescent lamps cannot be disposed of as municipal waste. Fluorescent tubes and bulbs may be managed as universal wastes under Title 22, Chapter 23 of the California Code of Regulations and are typically recycled. The campus would be required to conform with all applicable regulations related to the removal of asbestos-containing building materials, lead-based paint, and fluorescent lamps. With implementation of these regulations, impacts would be less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts related to the removal and disposal of these materials would result with implementation of the Project.

e–f) No new or increased impact. The campus, which includes the Project site, is not located within 2 miles or within the vicinity of an airport. Therefore, the Project would not result in safety hazards for people residing or working in the Project area.

g) No new or increased impact. According to the 2007 CMP EIR, the Project could impact implementation of the campus’s Emergency Operations Plan (SF State 2014). The Emergency Operations Plan provides guidance for campus activities in case of an emergency. Under current campus policy, contractors must complete work with the least possible obstruction to traffic, and must keep fire hydrants accessible at all times. To ensure that the demolition of buildings on Block 1 and Block 6 and Project construction would not interfere physically with the campus’ Emergency Operations Plan, the Project would be required to implement CMP EIR Mitigation HAZ-5A. Additionally, to ensure that new Project buildings have an adequate Emergency Operations Plan, the Project would be required to implement CMP EIR Mitigation HAZ-5B. Implementation of these mitigation measures would reduce impacts related to interference with emergency response plans to less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would result with implementation of the Project.
h) **No new or increased impact.** The SF State campus, including the Project site, is not on or adjacent to wildlands. Therefore, no impacts would result related to exposure to wildland fire hazards.

4.9 Hydrology and Water Quality

<table>
<thead>
<tr>
<th>IX. HYDROLOGY AND WATER QUALITY – Would the project:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>f) Otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>j) Inundation by seiche, tsunami, or mudflow?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The project-level evaluation below reflects the campus-wide hydrology and water quality analysis provided in the 2007 CMP EIR. See Section 4.7 of the CMP Draft EIR and Section 3.10 of the CMP Final EIR for the analysis of hydrology and water quality impacts associated with the CMP. The evaluation below also reflects site-specific conditions on the Project site.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in hydrology or water quality impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) **No new or increased impact.** The Project would result in an increase in the discharge of wastewater from on-site restrooms and showers, but would not have an effect on wastewater quality. Therefore, Project-related wastewater flows would not have an adverse effect on the City’s Wastewater Treatment Facility or the waste discharge requirements under which the City’s Wastewater Treatment Facility currently operates, as concluded in the 2007 CMP EIR (Impact HYDRO-3). Therefore, no new or increased impacts would result with the Project.

b) **No new or increased impact.** According to 2007 CMP EIR Impact HYDRO-2, development under the CMP would not adversely affect groundwater. There are no operating or abandoned groundwater wells on campus. The campus does not directly draw groundwater from the Westside Groundwater Basin and does not plan to in the future. Therefore, the Project would not affect the groundwater basin through withdrawal of groundwater.

The San Francisco Public Utilities Commission is proposing the San Francisco Groundwater Supply Project to provide an average of up to 4 million gallons per day of groundwater to augment San Francisco’s municipal water supply. The Groundwater Supply Project, which involves construction of six groundwater production wells and related facilities in two phases, is expected to be completed in fall 2017. One of the proposed well sites is at the Lake Merced Pump Station, which is on Lake Merced Boulevard near Higuera Avenue, less than 0.25 mile from the Project site.

The Project would connect to existing water and combined sewer services adjacent the site. Compatibility with the City’s Stormwater Management Requirements and Design...
Guidelines (CCSF 2016) would result in implementation of stormwater measures such that the post-Project site would reduce the existing stormwater runoff flow rate and volume by 25% for a 2-year, 24-hour event, as compared to pre-Project conditions. To achieve this design standard, the Project would implement and install appropriate stormwater management systems that retain runoff on site, promote stormwater reuse, and limit site discharges. Using these design standards and implementing such measures would provide for continued infiltration of stormwater into the groundwater basin. Therefore, no new or increased impacts related to groundwater would result with implementation of the Project.

c-f) No new or increased impact. As the campus contains no surface water bodies, the CMP, including the Project, would not have the potential to directly alter or otherwise affect any surface water features in the Project area; therefore, the Project would not result in erosion, siltation, flooding, or exceedance of storm drainage capacity associated with such alterations (Impacts HYDRO-1 and HYDRO-3).

Construction. Construction of the Project would result in short-term soil-disturbing activities that could lead to increased erosion and sedimentation. However, the Project would comply with the NPDES requirements for construction site stormwater discharges because the Project site is greater than 1 acre. A SWPPP is required to be prepared and implemented under these requirements, which includes appropriate erosion-control and water-quality-control measures during site preparation, grading, construction, and post-construction. Implementation of the SWPPP for the Project would minimize erosion and related impacts on water quality to less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with implementation of the Project.

Operation. The San Francisco Public Utilities Commission wastewater collection system collects both sewage and stormwater runoff in a combined system. At the time that the 2007 CMP EIR was prepared, the City indicated that, although sewer lines adjacent to the campus may be able to accommodate the CMP’s increase in dry-weather flows, these sewer lines may not be able to accommodate potential increases in wet-weather flows, which could cause flooding of the combined system on campus or in nearby neighborhoods (URS 2007). To assess the potential for impacts on the combined system due to the Project, site-specific stormwater and sewer discharge were evaluated, as further described below.

The Project would be located in a City combined stormwater and sewer area. To minimize impacts of the Project on the combined sewer system, SF State would
implement a stormwater management approach compatible with the City’s Stormwater Management Requirements and Design Guidelines (CCSF 2016). The Project site has an impervious area greater than 50%. Accordingly, the Project would implement a stormwater management approach that reduces the existing stormwater runoff flow rate and volume by 25% for a 2-year, 24-hour design storm. To achieve this design standard, the Project would implement and install appropriate stormwater management systems that retain runoff on site, promote stormwater reuse, and limit site discharges entering the combined sewer collection system. This, in turn, would limit the incremental demand on the collection system and wastewater facilities resulting from stormwater discharges, and minimize the need for upsizing or constructing new facilities.

By using these design criteria, the Project would exceed surpass the requirements of the 2007 CMP, which called for no-net-increase in storm flow discharge from the campus to the combined sewer system. The stormwater management plan for the Project would be designed consistent with LEED credit SS 6.1 (as described by the U.S. Green Building Council), and would be compatible with the City’s Stormwater Management Requirements and Design Guidelines (CCSF 2016), as noted above.

In general, the City’s combined sewer lines are sized based on stormwater runoff because these flows greatly exceed sanitary waste flows. Based on Project stormwater discharges being reduced by 25% compared to existing conditions, and the modest minimal increase in Project sanitary sewer discharge documented in Section 4.17 below, the Project would not have a significant impact on the capacity of the City’s combined sewer system. The impact is, therefore, less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with the Project.

The Parkmerced Project EIR also concluded that, with all the cumulative projects considered in that document, including the SF State 2007 CMP, impacts related to wastewater conveyance and treatment would be less than significant (CCSF 2010).

Additionally, given the use of low-impact-design approaches for the stormwater management system, and the anticipated increased infiltration, operation of the Project would not substantially degrade water quality.

g–j **No new or increased impact.** The Project site is located in an area that is not within a 100-year flood zone or in an area that would be inundated in the event of a dam failure. The campus is also located outside the area that is projected to experience inundation during a tsunami event (see CMP EIR Impact HYDRO-3). No impacts are anticipated, as concluded in the 2007 CMP EIR.
4.10 Land Use and Planning

<table>
<thead>
<tr>
<th>X. LAND USE AND PLANNING – Would the project:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Physically divide an established community?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The Project-level evaluation below reflects the campus-wide land use and planning analysis provided in the 2007 CMP EIR. See Section 4.8 of the CMP Draft EIR and Section 3.11 of the CMP Final EIR for the analysis of land use impacts associated with the CMP. The evaluation below also reflects site-specific and changed conditions on and near the Project site.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in land use impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) **No new or increased impact.** Based on the 2007 CMP EIR Impact LU-I, implementation of the CMP would not physically divide an established community, as planned growth and development would occur on the existing campus, which is already developed. The Project, located on existing campus lands and on blocks that are already developed, would not physically divide an established community. While the Project would result in substantial physical changes to the Project Site, it would not physically divide an established community, as the blocks are already developed and no physical features or barriers would be installed or constructed that would divide the community. During the demolition and construction phases of the Project, there would be temporary physical disruptions due to such activities. However, this effect would be
temporary and a traffic control plan would be implemented as part of the Project to minimize temporary disruptions to vehicles, bicycles, and pedestrians.

Proposed changes at or near the student housing/mixed-use site (Block 6), include new access ramps, bulbouts, crosswalks, improved sidewalks, and other pedestrian amenities which would improve connections between the adjacent Parkmerced area, the student housing/mixed-use site (Block 6), and the SF State campus. The vacation/removal of Tapia Drive with the Project would also improve connections between the Creative Arts site (Block 1) and the rest of the campus to the north, by removing the road and providing access for pedestrians and bicyclists. As the Project would not physically divide an established community and the impact would be less than significant, as concluded in the 2007 CMP EIR. No new or increased impact would occur with the Project.

b–c) No new or increased impact. The Trustees of the California State University CSU system is the only agency with land use jurisdiction over campus projects and campus development, unless improvements in the City’s right-of-way are involved. The adopted 2007 CMP is the applicable campus land use plan that applies to state land under the jurisdiction of the Trustees of the California State University. Thus, campus development on state land that is consistent with the adopted CMP would not have land use impacts related to conflicts with applicable plans and policies (see CMP EIR Impact LU-2). The Project, including the Master Plan map revision, is consistent with the CMP building program, contributes to the CMP vision to create a prominent gateway and main street atmosphere for the campus on Holloway Avenue, and is consistent with other objectives and planning principles of the CMP, as identified in Section 2.2.1. Moreover, it combines several similar academic uses to achieve the academic objectives of the campus. Upon consideration and approval of the Project by the Trustees of the California State University, including the approval of revisions to the Master Plan map by the Trustees, the Project would fully conform with the adopted 2007 CMP.

While SF State is not subject to local land use regulations for activities on State lands, the CMP EIR provided a review of the general compatibility of the CMP with the relevant portions of the San Francisco General Plan and San Francisco Planning Code. The focus of this analysis was to identify any potentially significant land use impacts that could occur adjacent to the campus on land under the jurisdiction of the City. The CMP EIR Impact LU-2 determined that the CMP for SF State would generally be compatible with relevant local land use plans and regulations. An update of this information and impact evaluation, as relevant to the Project, is provided below.
San Francisco Land Use Designations, Zoning & Height/Bulk Limits

The CMP EIR identifies and describes the City land use, zoning, and height and bulk limits on and surrounding the campus, as identified in the City General Plan and Planning Code. City land use, zoning, and height and bulk limits are shown on CMP EIR Figures 4.8-1 through 4.8-3. The only substantial change in this information since the certification of the CMP EIR in 2007, is the amendment of the City’s Planning Code to include the Parkmerced Special-Use District to the south of the campus and immediately adjacent to the Project site. Figure 4 in this Initial Study provides a current City zoning map, which shows this special-use district. This special-use district allows for greater heights and densities than previously allowed, as further described below.

Uses on the campus include academic, library, student activities, administrative, residential, support services, parking, and outdoor physical education and recreation. The majority of the SF State campus is zoned Public in the City’s Planning Code, in recognition of the public state university use. Given that UPS was acquired more recently, the Creative Arts site (Block 1), the student housing/mixed-use site (Block 6), and the rest of UPS are zoned by the City as RM-1, which acknowledges the existing residential uses in this area. While not required for the Project to go forward, the City may eventually rezone the properties more recently acquired by SF State as Public for consistency with the rest of the SF State campus, during the next Planning Code update.

Additional information about compatibility with applicable plans and policies and associated land use compatibility of the Project with adjacent uses is provided below.

Student Housing/Mixed-Use Building (Block 6). The use of Block 6, south of Holloway Avenue, for student housing/mixed-uses is consistent with the use of UPS contemplated in the 2007 CMP. This use is also compatible with the housing and mixed-uses contemplated in the City approved Parkmerced project to the south.

After adoption of the 2007 CMP and certification of the CMP EIR, Parkmerced’s development plan received City approval, which included the approval of the Parkmerced Special-Use District. The Parkmerced plan and this district allows for significantly higher density and height limits than the conditions that existed when SF State’s CMP and EIR were approved. Given the anticipated changes at Parkmerced and SF State’s interest in providing student housing responsive to demand, the proposed student housing/mixed-use building height would be greater than the 50-foot height limit referenced in the 2007 CMP for residential buildings in UPS, but would not exceed 90 feet. This additional height would also allow for the possibility of a rooftop-mounted solar array to support SF State’s goals of zero net energy.
The maximum height of 90 feet, inclusive of parapets and mechanical equipment, is compatible with the Parkmerced Design Standards and Guidelines (SOM 2014) and the City's Parkmerced Special-Use District (CCSF 2012), which allows for mid-rise buildings of 85 to 145 feet, excluding parapets and mechanical equipment, as well as lower-rise buildings. Adjacent to the SF State campus’s southern edge, future Parkmerced mid-rise buildings would likely range from 85 feet to 130 feet, according to Parkmerced’s maximum height plan (SOM 2014).

Although the proposed redevelopment of Block 6 would result in a student housing/mixed-used building that would be taller than contemplated under the City's RM-1 District (40 feet) for this portion of campus, the height and density would be similar to that allowed in the Parkmerced Special-Use District immediately adjacent to Block 6 to the south. This increase in density is also compatible with housing initiatives that San Francisco is pursuing under its General Plan Housing Element. Additionally, the student housing/mixed-use building would not otherwise result in significant land use impacts, such as those resulting from incompatibility with existing adjacent uses, as it would not generate substantial noise, air emissions, odor, or hazardous or toxic emissions or materials. Therefore, incompatibilities with existing uses adjacent the student housing/mixed-use building site would not occur with the Project. The impact would be less than significant, as concluded in the 2007 CMP EIR. No new or increased impact would occur with the Project.

Creative Arts buildings (Block 1). The use of Block 1, north of Font Boulevard, for academic uses is consistent with the most current 2014 Master Plan map for the campus and other adjacent academic uses on the SF State campus. The new Creative Arts replacement building would be two to three stories over a basement, with a maximum height of 90 feet, which is within the height limit of up to 100 feet identified for Creative Arts buildings in the 2007 CMP. This limit for the Creative Arts buildings is compatible with the City’s 130-foot height limit for the portion of the campus immediately north of Block 1. It is also compatible with the building heights associated with the City adopted Parkmerced Special-Use District to the south. While the 90-foot limit for the Creative Arts buildings is higher than the City’s existing RM-1, 40-foot height limit for this portion of the campus, it is consistent with existing campus development, such as Thornton and Hensill Halls and compatible with planned development to the south in Parkmerced, as described above. Additionally, the Creative Arts buildings would not otherwise result in significant land use impacts, such as those resulting from incompatibility with existing adjacent uses, as they would not generate substantial noise, air emissions, odor, or hazardous or toxic emissions or materials. Therefore, incompatibilities with existing uses adjacent the Creative Arts building site would not
occur with the Project. The impact would be less than significant, as concluded in the 2007 CMP EIR. No new or increased impact would occur with the Project.

Tapia Drive Street Vacation. The Project includes the proposed vacation or removal of Tapia Drive as a public street. The purpose of the vacation is to incorporate the street right-of-way into the Creative Arts site and to integrate the site into the campus, specifically the academic core. SF State owns the property on both sides of Tapia Drive, and closing the street is consistent with the 2007 CMP, which envisioned a major east/west walkway connecting the central academic core with sites to the west, including the Mashouf Wellness Center. Some vehicular access would be required for loading at the existing Creative Arts and Humanities buildings, but the area currently occupied by the street right-of-way would be developed as part of the site for the proposed Creative Arts replacement building and concert hall, and would be used primarily by pedestrians.

Street vacation requests are subject to City Planning Department review for conformity with the City’s General Plan and Better Streets Plan. See Attachment A-2, Tapia Drive Street Vacation Policy Conformity Analysis, for preliminary information about the conformance of the street vacation with relevant plans and policies. The ultimate determination of conformance will be made by the City during its consideration of the street vacation application. Based on the preliminary information presented in Attachment A-2, the proposed vacation of Tapia Drive would conform with relevant policies of the City’s General Plan and Better Streets Plan. This element of the Project would not result in conflicts with applicable plans and associated land use or environmental impacts. The impact would be less than significant, as concluded in the 2007 CMP EIR. No new or increased impacts would occur with the Project.

c) **No new or increased impact.** There are no habitat conservation plans that apply to the campus or the Project site. Therefore, no new or increased impacts related to conflicts with adopted plans or policies would occur.
4.11 Mineral Resources

<table>
<thead>
<tr>
<th>XI. MINERAL RESOURCES – Would the project:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

DISCUSSION

The evaluation below reflects the mineral resources analysis provided in the 2007 CMP EIR. See Section 4.13 of the CMP Draft EIR for the analysis of mineral resources impacts associated with the CMP.

a–b) **No new or increased impact.** The Project would not result in the loss of availability of mineral resources, because CMP development, including the Project, would occur within a developed urban area. There are no available mineral resources in the Project area. Therefore, no new or increased impacts would result from the Project.

4.12 Noise

<table>
<thead>
<tr>
<th>XII. NOISE – Would the project result in:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>
Creative Arts & Holloway Mixed-Use Project

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>c)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>e)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>f)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on the Project site. The evaluation below reflects the campus-wide noise analysis provided in the 2007 CMP EIR. See Section 4.9 of the CMP Draft EIR for the analysis of noise impacts associated with the CMP. The evaluation below also reflects site-specific conditions on and adjacent to Project site.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in noise impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a, c) No new or increased impact. The 2007 CMP EIR concluded that the increase in vehicular traffic due to campus growth would not result in a noticeable increase in permanent ambient noise levels (Impact NOIS-2). Operation of the concert hall, Creative Arts replacement building, and student housing/mixed-use building would not be expected to substantially increase campus-related traffic, and, therefore, would not result in a substantial permanent increase in ambient noise along vicinity roadways.

Operation of the Creative Arts replacement building, concert hall, and student housing/mixed-use building would result in typical noise levels associated with routine
activities such as use of landscape maintenance equipment, mechanical equipment, vehicle and bicycle parking activities, and pedestrian activity. Most of these activities currently exist on and adjacent to the Project site associated with current site uses. The new concert hall may result in an increase in event activity, but the activities would be similar to those existing elsewhere on campus at other theater venues. Events involving indoor public address systems would be temporary and short-term, and would be held inside buildings. This type of indoor noise is anticipated to be attenuated within the buildings. No outdoor public address systems would be installed with the Project. Overall, permanent operational noise would not result in a substantial permanent increase in ambient noise levels in the Project vicinity. The impact is less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with implementation of the Project.

b) **No new or increased impact.** According to 2007 CMP EIR Impact NOIS-1, typical construction activities using conventional construction techniques and equipment would not generate excessive ground vibration or groundborne noise. Pile driving, blasting, and other special construction techniques, which typically cause ground vibration and groundborne noise, would not be used for demolition or construction of facilities identified under the CMP. Impacts related to ground vibration and groundborne noise during construction are anticipated to be less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur.

d) **No new or increased impact.** According to CMP EIR Impact NOIS-1, construction of campus facilities under the CMP could expose nearby sensitive receptors to substantial noise. At distances of 100 feet or more from the construction activity, noise from on-campus construction is predicted to be below the identified significance criterion of 80 A-weighted decibels maximum measured sound level during daytime hours (between 7 a.m. and 8 p.m.). However, if a construction site were less than 100 feet from a nearby receptor, the noise levels from certain construction activities could exceed the identified significance criterion.

There are sensitive receptors located within 100 feet of both Block 1 and Block 6, the distance at which construction noise could be potentially significant. These receptors include on-campus academic buildings north and east of Block 1 and north of Block 6, and on- and off-campus residential uses in University Park South and in the adjacent Parkmerced.

Implementation of CMP EIR Mitigation NOIS-1 would control construction noise and reduce the potential impacts to less than significant at most locations and under most
conditions. Mitigation NOIS-1 would be implemented in conjunction with Project construction and would control construction noise at sensitive receptor locations surrounding the Project site to the extent practicable and feasible, and would reduce the potential impact at most locations to less than significant. However, there could potentially be some Project construction activities where the noise levels would not be reduced to levels below the threshold, even with the recommended mitigation. Therefore, conservatively, the impact would be significant and unavoidable, as concluded in the 2007 CMP EIR, and no new or increased impacts would occur with the Project. As part of the Trustees of the California State University’s certification of the CMP EIR in November 2007, Findings of Fact were adopted that provide a statement of overriding considerations for this impact, as required under CEQA.

e-f) **No new or increased impact.** The SF State campus is not located within an airport land use plan or within 2 miles of a public airport or private airstrip. No impact would occur.

4.13 Population and Housing

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIII. POPULATION AND HOUSING – Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

DISCUSSION

The evaluation below reflects the population analysis provided in the 2007 CMP EIR and provides updated information about campus growth in relationship to the Project. See Section 4.10 of the CMP Draft EIR and Section 3.12 of the CMP Final EIR for the analysis of population and housing impacts associated with the CMP.
a) **No new or increased impact.** The CMP EIR concluded that population growth associated with buildout under the CMP would not be substantial within the context of population growth in San Francisco and the Bay Area as a whole (CMP EIR Impact POP-1). The Project would not directly or indirectly induce substantial population growth. Although the Project would include new academic space in the Creative Arts and concert hall buildings, SF State is at or near the adopted enrollment cap of 25,000 FTE for the campus and, therefore, cannot add new students or associated faculty with the Project (SF State 2015). The student housing/mixed-use building would serve existing enrollment levels. The Project also would not result in the hiring of substantial new employees. The concert hall would result in the hiring of four new staff to support the event activities in that building, which is not considered a substantial increase (see CMP EIR Impact POP-1). Overall, the Project would not result in substantial increases in SF State campus population over existing 2015-2016 levels reported in Section 2.1, Table 1 of this IS. The impact is less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with the Project.

b–c) **No new or increased impact.** The CMP EIR concluded that buildout under the CMP would not displace substantial numbers of people, necessitating the construction of replacement housing elsewhere in the region (CMP EIR Impact POP-3 and Impact POP-4). The existing residential block on the south side of Holloway Avenue between Varela and Cardenas Avenues (Block 6) contains 27 residential units that would be demolished and replaced with a multi-story building. The existing residential block at Tapia Triangle (Block 1) contains 27 residential units that would be demolished and replaced with the Creative Arts replacement building and the concert hall. As illustrated in Table 1, accounting for the loss of existing housing units on the two parcels, the net increase in housing would be 360 355 beds.

All 27 units in Block 6 are currently occupied by students and licensed as bed space during the academic year. Of the 27 apartments in Block 1, 19 are currently licensed to students as bed space during the academic year. Approximately eight seven units are currently licensed as apartments to SF State affiliates and non-affiliates. Because the number of displaced units occupied by non-University affiliates is small compared to the projected increase in housing in San Francisco and the Bay Area, this displacement would not necessitate construction of replacement housing elsewhere, and the impact would be less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with the Project.

Additionally, given that the Project would demolish existing housing, SF State would comply with the California Relocation Assistance Act (California Government Code
7260 et seq.), which applies to state entities that may displace residents and businesses. This act generally requires that public entities provide relocation assistance to people who are displaced as the result of the acquisition of property for a public use. Since the acquisition of University Park South by SF State, the number of legacy tenants has declined substantially. Any remaining legacy tenants would be offered relocation assistance, as required by law. SF State would provide displaced non-University affiliates with the option to relocate to units in other campus housing. Given the option to relocate to housing elsewhere on campus, the proposed demolition of existing housing with the Project would not result in the displacement of substantial numbers of people.

A comment received during the Scoping period for the Project indicates that this impact should be considered a potentially significant new or increased impact due to the lack of affordable housing options on the westside of San Francisco. The above analysis and the analysis provided in the CMP EIR are based on an evaluation of the CEQA standards of significance for population and housing, which reflect questions (b) and (c) above. The standards would be exceeded and a significant impact identified, if the Project would result in the displacement of housing or people that would necessitate the construction of new housing elsewhere. The physical effects on the environment of the construction of new housing elsewhere, is the impact covered by the standards. As indicated above, the displacement of existing tenants in seven units would not result in the need to construct new housing elsewhere in San Francisco or the region, and therefore the impact under CEQA would be less than significant.

There are City policies and regulations in place to address and provide for an adequate housing supply and affordable units, such as the City’s Housing Element (City 2014) and the Major’s Office of Housing and Community Development (City 2016). The student housing being provided with the Project would result in existing students relocating from other housing in San Francisco and elsewhere, which would result in new vacancies and available units elsewhere, some of which may be affordable. Overall, the Project would increase the local supply of housing and would provide for new housing that is affordable to students.
4.14 Public Services

<table>
<thead>
<tr>
<th>XIV. PUBLIC SERVICES</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>Police protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>Schools?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>Parks?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>Other public facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The evaluation below reflects the public services analysis provided in the 2007 CMP EIR and provides updated information where necessary. See Section 4.12 of the CMP Draft EIR for the analysis of public services impacts associated with the CMP. The evaluation also reflects site-specific conditions on and adjacent to the Project site, as relevant.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in public services impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) No new or increased impact. The 2007 CMP EIR did not identify any significant impacts related to public services associated with growth and development of the campus. According to CMP EIR Impact UTL-4, construction of new or physically altered fire protection facilities would not be required to serve buildout under the CMP. Although a new, expanded SF State Police Station may be required with buildout under the CMP, the impacts of construction of the new facility would be reduced to less than significant with implementation of mitigation measures identified in the 2007 CMP EIR. A new, expanded SF State Police Station would not be required to serve the Project, as the Project would not result in a substantial population increase, as documented in Section 4.13 above. As
the Project would not substantially increase the demand for fire and police services, it would not result in the need for new or expanded fire or police facilities. Therefore, environmental impacts associated with the construction of such facilities would not occur and the impact would be less than significant, as concluded in the CMP EIR.

SF State is a public university serving the mission of the California State University system. The campus includes the J. Paul Leonard Library, which is open to the public. The Project 2007 CMP would not result in substantial school, park, or other public facilities impacts (see CMP EIR Impact UTL-5). Additionally, new or expanded schools, libraries, or other public facilities would not be required to serve the Project, as the Project would not result in a substantial population increase, as documented in Section 4.13 above. As the Project would not substantially increase the demand for schools, libraries, or other public services, it would not result in the need for new or expanded facilities. Therefore, environmental impacts associated with the construction of such facilities would not occur and the impact would be less than significant, as concluded in the CMP EIR. There are no Project-specific conditions that would modify these conclusions. Therefore, Given the above, no new or increased impacts would result with implementation of the Project.

See Section 4.15 below for information about parks and recreational services.

4.15 Recreation

<table>
<thead>
<tr>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XV. RECREATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on and adjacent to the Project site. The evaluation below reflects the recreation analysis provided in the 2007
Creative Arts & Holloway Mixed-Use Project

CMP EIR. See Section 4.12 of the CMP Draft EIR for the analysis of recreational services impacts associated with the CMP. The evaluation below also reflects site-specific conditions on and adjacent to the Project site, as relevant.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in recreation impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a–b) **No new or increased impact.** Implementation of the CMP would not result in a significant use of off-campus parks or recreational facilities, given the presence of existing and planned recreational facilities on campus (see CMP EIR Impact UTL-5). The Project would not increase the demand for parks or recreational services, as the Project would not result in a substantial population increase, as documented in Section 4.13 above.

Students living in the new housing, as well as local visitors to neighborhood retail, would be able to use the urban open spaces planned for Block 6, including an open-air interior courtyard with tables and seating, and an exterior plaza with benches. The Tapia Drive street vacation would also create open space for pedestrian and bicycle use, as it would result in a major east/west walkway connecting the central academic core with sites to the west. All SF State students would be able to use the new Mashouf Wellness Center once completed and other recreational facilities on campus.

As the Project would not substantially increase the demand for parks and recreational services, it would not result in substantial physical deterioration of existing facilities, or the need for new or expanded facilities. Therefore, environmental impacts associated with the construction of such facilities would not occur and the impact would be less than significant, as concluded in the CMP EIR. Thus, no new or increased impacts on off-campus parks and recreational facilities would result with the Project.

The Project would not change current campus practices related to the public use of outdoor fields and courts. SF State fields and courts that would continue to be available for public use, when not being used for campus classes and organized activities include: the West Campus Green (until developed in the future); the Mashouf Wellness Center field, once construction is complete; the tennis courts; and Cox Stadium and track.
4.16 Transportation and Traffic

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XVI. TRANSPORTATION/TRAFFIC – Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?</td>
<td>✗</td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?</td>
<td>✗</td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
<td>✗</td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td>✗</td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>e) Result in inadequate emergency access?</td>
<td>✗</td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?</td>
<td>✗</td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on and adjacent to the Project site. The evaluation below reflects the campus-wide transportation analysis provided in the 2007 CMP EIR. See Section 4.11 of the CMP Draft EIR and Section 3.13 of the CMP Final EIR for the analysis of traffic, circulation, and parking impacts associated with the CMP. A transportation analysis is being prepared for the Project, and the results of this analysis will be included in the forthcoming EIR.
a–e) **Potentially new or increased impact.** The 2007 CMP and the subsequent adopted TDM Program (Nelson/Nygaard 2009) indicates that it is the campus’s objective to continue to grow and develop, as proposed under the CMP, while minimizing the transportation impacts of the increase in enrolled students and employees. More specifically, the TDM plan outlines a program that would minimize the daily AM and PM peak-period vehicle trips to the campus. The 2007 CMP EIR indicated that the combined effect of the baseline TDM, parking, transit, and housing programs of the CMP would likely be to maintain campus-related auto traffic levels at their then-current (2006) rates through 2020. The 2007 CMP EIR considered this no-net-increase in vehicle trips scenario in a traffic analysis that also provided a more conservative traffic scenario that estimated trip generation from proposed campus growth more traditionally. The more conservative analysis indicated that campus growth could potentially result in significant traffic-related impacts on vicinity roadways. To address these potential impacts, the campus is implementing CMP EIR Mitigation TRA-1, which required the campus to conduct a new baseline cordon survey, completed in 2008. Subsequent cordon surveys are required every 3 years and no later than the addition of each 1,000 students in head count enrollment. If vehicle trips increase over the base year, various measures, including increasing the frequency of cordon surveys and increasing TDM programs, are called for. The most recent cordon survey, conducted in 2016, revealed that daily and peak-hour campus-related vehicle trips have decreased since the 2008 base year (Nelson/Nygaard 2016).

The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus: the Creative Arts replacement building and the concert hall on Block 1, also referred to as the Tapia Triangle, and the student housing/mixed-use building on Block 6, located on the south side of Holloway Avenue. The EIR will estimate trip generation associated with Project vehicle and transit trips, and evaluate transportation hazards, emergency access, and conflicts with adopted transportation policies to determine whether the Project could result in new or increased impacts over and above those identified in the 2007 CMP EIR.
4.17 Utilities and Service Systems

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XVII. UTILITIES AND SERVICE SYSTEMS – Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Result in a determination by the wastewater treatment provider, which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>g) Comply with federal, state, and local statutes and regulations related to solid waste?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on and adjacent to the Project site. The evaluation below reflects the campus-wide utilities analysis provided in the 2007 CMP EIR. See Section 4.12 of the CMP Draft EIR for the analysis of utilities and impacts associated with the CMP. The evaluation below also reflects site-specific conditions where relevant.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in utilities impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green,
Creative Arts & Holloway Mixed-Use Project

which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) **No new or increased impact.** Refer to Section 4.9, Hydrology and Water Quality.

b-e) **No new or increased impact.** The Project would not result in any new significant utility impacts (see CMP EIR Impact UTL-1 and CMP EIR Impact UTL-2). The uses proposed on the Project site would incrementally increase the campus’s demand for water and generation of wastewater. The use of bathrooms and other fixtures would require water and would generate wastewater. The Project would result in a net increase in potable water demand and wastewater generation over current residential uses on the Project site. The Project would result in an increase in potable water use of approximately 32,100 gallons per day (gpd) on typical days, and up to approximately 44,100 gpd on performance days when the concert hall would be in use. The Project would generate approximately 30,500 gpd of wastewater on typical days and up to approximately 41,900 gpd on performance days.

The CMP and Project’s water use would not result in the need for off-campus water supply distribution system improvements or new water entitlements (CMP EIR Impact UTL-1). However, the CMP EIR indicated that it was unclear whether off-site improvements (e.g., line or pump upgrades) would be required to provide for adequate fire flows. While such upgrades are not expected to result in significant environmental effects due to the urban context, the SFPUC can charge SF State for these upgrades under Government Code Section 54999, which authorizes public utilities to charge the campus a limited capital facilities fee under certain circumstances. This fee (i.e., a non-discriminatory charge to defray the actual cost of that portion of a public utility facility actually serving the campus) covers SF State’s fair share of the construction cost, including the cost of mitigation measures to address environmental impacts, if any. The Project would not require the construction of new water supply facilities or new water supply entitlements off campus that could cause significant environmental effects. The Project impact would be less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased water supply impacts would occur.

The Project would not have a significant impact on the capacity of the City’s combined sewer system, and therefore would not require off-campus improvements to the combined sewer system to increase capacity (see Section 4.9, Hydrology and Water Quality, for additional information about Project impacts on the City’s combined sewer system). While major off-site improvements to the wastewater distribution system are not anticipated to serve the Project, it is possible that the Project could contribute to
the need for planned upgrades or improvements to San Francisco’s distribution piping or other facilities (e.g., pump up-grades). While such upgrades are not expected to result in significant environmental effects due to the urban context, the SFPUC can charge the SF State campus for these upgrades under Government Code Section 54999, as described above. The Project impacts would be less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur.

f–g) **No new or increased impact.** The 2007 CMP EIR evaluated construction of the Project and demolition of existing buildings that are at or beyond their useful life. CMP EIR Impact UTL-5 concluded that the demolition of existing structures would not result in solid waste impacts. According to Impact UTL-5, solid waste from the campus would be directed to a landfill that has remaining capacity beyond the planning horizon for the CMP, and the impact was identified as less than significant. Therefore, as the Project would comply with applicable regulations related to solid waste and would be served by a landfill with sufficient remaining capacity, the Project would result in less-than-significant impacts related to solid waste, as concluded in the 2007 CMP EIR. Further, the residual concrete from the demolition would be recycled to minimize solid waste directed to the landfill. Therefore, no new or increased impacts would result with implementation of the Project.

4.18 Mandatory Findings of Significance

<table>
<thead>
<tr>
<th>XVIII. MANDATORY FINDINGS OF SIGNIFICANCE</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION

a) **Potentially significant new or increased impact.** The Project would not substantially reduce habitat of fish or wildlife species or other special-status species, as the SF State campus constitutes a built environment. There are no sensitive habitats or wetlands located on campus, and no special-status species are known to occupy the campus. However, special-status birds could potentially nest in trees on campus. Because some or all of the landscape trees on the Project site would be removed, the Project would implement CMP EIR Mitigation BIO-2A, which requires preconstruction nesting bird surveys and other measures if demolition or construction occurs during the typical avian nesting season (see CMP EIR Impact BIO-2). Implementation of this mitigation measure would reduce the potential impact on nesting habitats of special-status birds to less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur.

Although it is not anticipated that new archaeological resources or human remains would be encountered, CMP EIR Mitigation CULT-1A, CULT-1B, and CULT-3A through CULT-3D would be implemented to ensure that impacts related to inadvertent discovery of archaeological resources and human remains would be reduced to less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts related to archaeological resources would occur. Additionally, the Project would not cause a substantial adverse change in the significance of a tribal cultural resource, as defined in Public Resources Code 21074.

The 2007 CMP EIR determined that the impacts of CMP buildout related to historic resources could be significant and unavoidable if CMP EIR Mitigation CULT-2C,
requiring documentation of historical resources, would not fully mitigate the effects of demolition of those resources to less than significant. In such cases, CMP EIR Mitigation CULT-2C would reduce the impact to the extent feasible; however, the impact would remain significant and unavoidable. Since the certification of the CMP EIR in 2007, more is now known about the eligibility of the Parkmerced area as a Historic District, which included the former Parkmerced properties located on the SF State campus. The EIR will evaluate potential historic resource impacts of the Project and reasonably foreseeable cumulative development on the former Parkmerced properties on and adjacent to the campus to determine whether there may be new or increased historic resource impacts over and above those identified in the 2007 CMP EIR.

b) Potentially significant new or increased impact. The 2007 CMP EIR evaluated the cumulative effects associated with growth and development under the CMP. See Chapter 4, Environmental Setting, Impacts, and Mitigation Measures, of the 2007 CMP EIR for the evaluation of cumulative impacts. The 2007 CMP EIR evaluated the cumulative environmental impacts of campus programs and initiatives, development of new facilities, and population growth that would occur through 2020 academic year under the 2007 CMP, together with the impacts from other reasonably foreseeable growth and development. As the Project is consistent with the CMP building program, it was considered in the project and cumulative analyses previously included in the CMP EIR.

In general, the cumulative effects associated with the Project have already been adequately analyzed and assessed as part of the 2007 CMP EIR in most impact categories. No new significant or substantially more severe increased cumulative impacts are anticipated with the Project in most impact categories. However, cumulative impacts associated with reasonably foreseeable cumulative development will be updated and reassessed, as relevant and necessary to determine whether new significant impacts or substantially more severe cumulative impacts could occur with the Project, for the topics that will be carried into the forthcoming EIR, including aesthetics, air quality, GHG emissions, historical resources, and transportation/traffic to determine whether new or increased cumulative impacts would result with the Project.

c) Potentially significant new or increased impact. The Project would not result in new or increased hazards to humans related to exposure to contaminated soils or groundwater, emergency response, or proximity to airport activities. The forthcoming EIR will determine whether new or increased impacts to humans would result with the Project as a result of construction emissions and/or transportation hazards.
5 REFERENCES AND PREPARERS

5.1 References Cited

California Government Code, Sections 65962.5. Cortese List.

Nelson/Nygaard. 2016. San Francisco State University 2016 Transportation Survey Results.

5.2 List of Preparers

5.2.1 Lead Agency

Board of Trustees of the California State University

California State University Chancellor’s Office

Steven Lohr, Ed.D.
Chief of Land Use Planning and Environmental Review, Capital Planning Construction and Design

5.2.2 San Francisco State University

Leslie E. Wong
President

Administration and Finance

Ronald Cortez
Vice President for Administration and Finance

Ann M. Sherman
Interim Vice President

University Corporation

Jason Porth
Executive Director

University Advancement

Noriko Shinzato
Associate Director, Government and Community Relations

Physical Planning and Development

Thomas E. Lollini
Senior Associate Vice President, Physical Planning and Development

Simon Y. Lam
Associate Vice President, Capital Projects Management Planning, Design and Construction
Creative Arts & Holloway Mixed-Use Project

Jill Anthes
Interim Executive Director, Community Planning and Design, Physical Planning and Development

Wendy Bloom – Project Lead
Director of Campus Planning, Physical Planning and Design

Nicholas Holmes
Assistant Planner, Planning and Design

Environmental Consultant
Brad Samuelson
Provost & Pritchard Consulting Group

5.2.3 Dudek – CEQA Consultant Team

Dudek – CEQA Consultant
Ann Sansevero, AICP
Principal and Project Manager

Anais Schenk
Environmental and Transportation Planner

Matthew Morales
Technical Resource Specialist

Nicole Peacock
Technical Resource Specialist

Rachel Strobridge
GIS Technician

Anne McDonnell
Technical Editor

Devin Brookhart
Publications Specialist Lead

David Mueller
Publications Specialist
Fehr & Peers – Traffic Subconsultant

Matt Goyne, PE
Associate, Fehr & Peers

Ingrid Ballus Armet
Transportation Engineer/Planner, Fehr & Peers

Nelson/Nygaard – Transportation Survey Subconsultant

Jessica Alba
Principal and Director of Staff Development

Joshua Karlin-Resnick
Associate

Page & Turnbull – Historic Resources Subconsultant

Christina Dikas
Associate/Senior Architectural Historian, Page & Turnbull
FIGURE 1
Regional Location

Creative Arts & Holloway-Mixed Use Project
FIGURE 3

Project Setting

Creative Arts & Holloway-Mixed Use Project

SOURCE: Bing Maps (Accessed 2016)
ATTACHMENT A-1

2007 Campus Master Plan EIR Mitigation Measures that Apply to the Project
2007 CMP EIR Mitigation Measures That Apply to the Project

Aesthetics

AES-3: Develop appropriate architectural and urban design guidelines that apply specifically to the proposed redevelopment of a portion of the existing University South Park (UPS) buildings. These guidelines will require that any proposed new structures in UPS respect the existing visual characteristics of the adjacent Villas Parkmerced neighborhood. The guidelines should consider building color and design, exterior treatments and design details, and building heights/massing such that the proposed new development is visually compatible with the adjacent Villas Parkmerced neighborhood.

AES-4A: New campus lighting will be consistent with the most recent LEED-NC guidelines for light pollution reduction. These guidelines require that directional and other lighting methods be used to minimize light trespass from buildings and outdoor areas. Available methods, include but are not limited to: directional and design methods to reduce spillage, automatically controlled turn off of interior spaces during non-business hours, lighting exterior areas only for safety and comfort, and using lower intensity lights.

AES-4B: Reflective metal, mirrored glass, or any other reflective building materials shall not be used as primary building materials for facades.

Air Quality

AIR-1: The Campus shall apply the following feasible control measures as required by the Bay Area Air Quality Management District (BAAQMD).

Basic Control Measures – For all construction sites:

- Water all active construction areas at least twice daily, or as needed.
- Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least two feet of freeboard.
- Pave, apply water three times daily, or apply (nontoxic) soil stabilizers on all unpaved access roads, parking areas and staging areas at construction sites.
- Sweep daily (with water sweepers) all paved access roads, parking areas and staging areas at construction sites.
- Sweep streets daily (with water sweepers) if visible soil material is carried onto adjacent public streets.

Enhanced Control Measures – For sites greater than 4 acres in area:

- All “Basic” control measures listed above.
- Hydroseed or apply (non-toxic) soil stabilizers to inactive construction areas (previously graded areas inactive for ten days or more.)
- Enclose, cover, water twice daily or apply (nontoxic) soil binders to exposed stockpiles (dirt, sand, etc.)
- Limit traffic speeds on unpaved roads to 15 mph.
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways.
2007 CMP EIR Mitigation Measures That Apply to the Project

- Replant vegetation in disturbed areas as quickly as possible.
- Suspend excavation and grading activity when winds (instantaneous gusts) exceed 25 mph.
- Limit the area subject to excavation, grading and other construction activity at any one time.

AIR-2A:
The SF State campus will work with the ABAG to ensure that campus growth associated with the Campus Master Plan is accounted for in the regional population forecasts.

AIR-2B:
The SF State campus will work with BAAQMD to ensure that campus growth-related emissions are accounted for in the regional emissions inventory and mitigated in future air quality planning efforts.

Biological Resources

BIO-2A:
If Project construction on campus is scheduled during the typical avian nesting season (February 15 to July 31), each work site (including access routes) and the areas within 150 feet of the work site shall be surveyed by a qualified biologist for the presence of migratory and/or special-status nesting birds. Surveys shall be conducted at each work site within two weeks prior to the commencement of ground disturbing activities. Work sites include tree-removal areas and/or any construction sites on campus. If nesting birds were found to be present, a 150-foot buffer zone shall be established around the perimeter of the nest substrate (tree, shrub, herb, etc.) and clearly marked with “environmentally sensitive area” fencing. Construction or any related activities shall not be conducted within those areas until all observed nesting activities are completed. A qualified biologist shall determine nesting status. Pre-construction surveys would not be required if Project construction is scheduled outside the typical avian nesting season (August 1–February 15).

Cultural Resources

CULT-1A:
During the planning and environmental review of specific development projects under the proposed Campus Master Plan, the campus shall follow the following protocol:

- If the project site is within 200 feet of archaeological site P-38-000025/CA-SFR-25, the campus shall conduct subsurface testing in order to determine whether buried archaeological materials are present and if so the extent of the deposit relative to the project’s area of disturbance. In the event that an archaeological resource is encountered during subsurface testing, the campus shall implement Mitigation CULT-1B. No surveys or subsurface testing is necessary at project sites in the rest of the campus.
- The campus shall include a standard inadvertent discovery clause in every construction contract, which requires that in the event that an archaeological resource is discovered during construction (whether or not an archaeologist is present), all soil disturbing work within 100 feet of the find shall cease, and the campus shall implement Mitigation CULT-1B below.
2007 CMP EIR Mitigation Measures That Apply to the Project

CULT-1B: For an archaeological site that is encountered during the subsurface testing or during construction, the campus shall:

i. Retain a qualified archaeologist to determine whether the resource qualifies as a historical resource or a unique archaeological resource.

ii. If the resource is determined to be a historical resource or a unique archaeological resource, the qualified archaeologist, in consultation with the campus, shall prepare a research design and archaeological data recovery plan for the recovery that will capture those categories of data for which the site is significant, and implement the data recovery plan prior to or during development of the site. The archaeologist shall also perform appropriate technical analyses, prepare a full written report and file it with the appropriate information center, and provide for the permanent curation of recovered materials.

CULT-2A: The campus shall identify all buildings and structures within the project’s area of potential effect that will be 50 years of age or older at the time of project construction. If potentially historic structures are present, Mitigation CULT-2B shall be implemented.

CULT-2B: Potential historic structures present within the project’s area of potential effect will be evaluated as follows:

i. Before altering or otherwise affecting a building or structure 50 years old or older, the campus shall retain a qualified architectural historian to record it based on professional standards, and assess its significance under CEQA Guidelines Section 15064.5. The evaluation process shall include the development of appropriate historical background research as context for the assessment of the significance of the structure in the history of the California State University system, the campus, and/or the region. For historic buildings, structures or features that do not meet the CEQA criteria for a historical resource, no further mitigation is required.

ii. For a building or structure that qualifies as a historic resource, the architectural historian and the campus shall consider measures that would enable the project to avoid direct or indirect impacts to the building or structure. These measures could include preserving a building on the margin of the project site, using it “as is,” or other measures that would not alter the building. If the project cannot avoid modifications to a significant building or structure, the campus shall implement Mitigation CULT-2C.

CULT-2C: For a structure or building that has been determined by a qualified architectural historian to qualify as a historical resource, and where avoidance is not feasible, documentation and treatment shall be carried out as described below:

i. If the building or structure can be preserved on site, but remodeling, renovation or other alterations are required, this work shall be conducted in compliance with the “Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings” (Weeks and Grimmer 1995).

ii. If a significant historic building or structure is proposed for major alteration or renovation, or to be moved and/or demolished, the campus shall ensure that a qualified architectural historian
2007 CMP EIR Mitigation Measures That Apply to the Project

<table>
<thead>
<tr>
<th>CULT-3A:</th>
<th>The campus shall implement Mitigation CULT-1 to minimize the potential for disturbance or destruction of human remains in an archaeological context and to preserve them in place, if feasible.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULT-3B:</td>
<td>The campus shall provide a representative of the local Native American community an opportunity to monitor any excavation (including archaeological excavation) within the boundaries of a known Native American archaeological site.</td>
</tr>
<tr>
<td>CULT-3C:</td>
<td>In the event of a discovery on campus of human bone, suspected human bone, or a burial, all excavation in the vicinity will halt immediately and the area of the find will be protected until a qualified archaeologist determines whether the bone is human. If the qualified archaeologist determines the bone is human, or if a qualified archaeologist is not present, the campus will notify the County of San Francisco Medical Examiner of the find before additional disturbance occurs. Consistent with California Health and Safety Code § 7050.5(b), which prohibits disturbance of human remains uncovered by excavation until the Coroner has made a finding relative to PRC 5097 procedures, the campus will ensure that the remains and vicinity of the find are protected against further disturbance. If it is determined that the find is of Native American origin, the campus will comply with the provisions of PRC § 5097.98 regarding identification and involvement of the Native American Most Likely Descendant (MLD).</td>
</tr>
<tr>
<td>CULT-3D:</td>
<td>If human remains cannot be left in place, the campus shall ensure that the qualified archaeologist and the MLD are provided an opportunity to confer on archaeological treatment of human remains, and that appropriate studies, as identified through this consultation, are carried out prior to reinternment. The campus shall provide results of all such studies to the local Native American community, and shall provide an opportunity of local Native American involvement in any</td>
</tr>
</tbody>
</table>
2007 CMP EIR Mitigation Measures That Apply to the Project

<table>
<thead>
<tr>
<th>CULT-4A:</th>
<th>Prior to construction, a qualified paleontologist shall be consulted regarding the likelihood of encountering significant fossils on a given construction site. If the paleontologist determines fossils may be present, a paleontologic monitor shall be present at each excavation that penetrates potentially fossiliferous undisturbed native soil of the Colma Formation that has been identified by the paleontologist as moderately to highly sensitive.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULT-4B:</td>
<td>If a monitor is not required, contractors shall be notified that they are required to watch for potential paleontological resources and must notify the campus if paleontological resources are found.</td>
</tr>
<tr>
<td>CULT-4C:</td>
<td>If paleontological resources are discovered, all soil disturbing work shall cease within 100 feet of the location. The resources shall be evaluated by a qualified paleontologist who will determine the resource’s potential scientific significance. If the find is determined to be significant, or potentially significant, a qualified paleontologist shall design and carry out data recovery consistent with the Standards of the Society of Vertebrate Paleontologists. Adequate recordation and recovery would include, at a minimum, the following:</td>
</tr>
<tr>
<td>GEO-1:</td>
<td>Where existing geotechnical information is not adequate, detailed geotechnical investigations shall be performed for areas that will support buildings or foundations. Such investigations for building or foundation projects located in the valley portion of the SF State campus will comply with the California Geological Survey’s Guidelines for Evaluating and Mitigating Seismic Hazards in California (Special Publication 117), which specifically address the mitigation of liquefaction and landslide hazards in designated Seismic Hazard Zones (CGS, 1997). All recommendations of the geotechnical investigations will be incorporated into Project designs.</td>
</tr>
</tbody>
</table>

Geological Resources

GEO-1: Where existing geotechnical information is not adequate, detailed geotechnical investigations shall be performed for areas that will support buildings or foundations. Such investigations for building or foundation projects located in the valley portion of the SF State campus will comply with the California Geological Survey’s Guidelines for Evaluating and Mitigating Seismic Hazards in California (Special Publication 117), which specifically address the mitigation of liquefaction and landslide hazards in designated Seismic Hazard Zones (CGS, 1997). All recommendations of the geotechnical investigations will be incorporated into Project designs.

Hazards and Hazardous Materials

HAZ-5A: The campus shall continue to include the following requirements in its standards established by Capital Planning and implement them under the Campus Master Plan:

- Construction work shall be conducted so as to ensure the least possible obstruction to traffic.
- Contractors shall notify the SF State’s Representative at least two weeks before any road...
2007 CMP EIR Mitigation Measures That Apply to the Project

Closure.
- When paths, lanes, or roadways are blocked, detour signs must be installed to clearly designate an alternate route.
- Fire hydrants shall be kept accessible to fire-fighting equipment at all times.
- To ensure adequate access for emergency vehicles when construction projects will result in temporary lane or roadway closures, campus police and dispatchers must be notified of the closures and alternative travel routes.

HAZ-5B: New building and/or department-specific Emergency Operations Plans shall be developed for any new development project.

Noise

NOIS-1: The campus shall include the following noise control measures in all construction contracts for construction projects that are within 100 feet of a sensitive receptor:
- Construction equipment used on campus is properly maintained and has been outfitted with feasible noise-reduction devices to minimize construction-generated noise.
- Stationary noise sources such as generators or pumps are located at least 100 feet away from noise-sensitive land uses as feasible.
- Laydown and construction vehicle staging areas are located at least 100 feet away from noise-sensitive land uses.
- Whenever possible, academic, administrative, and residential areas that will be subject to construction noise will be informed in writing at least a week before the start of each construction project.
- Loud construction activity (i.e., construction activity such as jackhammering, concrete sawing, asphalt removal, and large-scale grading operations) within 100 feet of a residential or academic building shall not be scheduled during finals week.
- Loud construction activity as described above within 100 feet of an academic use shall, to the extent feasible, be scheduled during weekends, holidays, Thanksgiving break, Christmas break, Spring break, or Summer break.
- Loud construction activity within 500 feet of a residential building shall be restricted to the hours between 7:30 AM and 7:30 PM, Monday through Saturday.

Transportation

TRA-1: The campus shall implement the following monitoring and mitigation program:
- As a first step, the campus shall conduct a new baseline cordon survey no less than 18 months following the certification of this EIR. Alternatively, the campus may use the 2006 cordon survey as a baseline.
- Next, at intervals of no more than every three years, and no later than the addition of each 1,000 students in enrollment, the campus will hire an outside transportation planning or data analysis firm to conduct a statistically significant cordon survey of campus commuters during the PM peak hours. The cordon survey will cover all major entrances to the campus and will
2007 CMP EIR Mitigation Measures That Apply to the Project

examine the travel behavior of SF State affiliates. The survey will be conducted during typical
days while classes are in session, excluding final examination, national holiday or orientation
weeks.

- If cordon surveys show that the PM peak period auto trips to and from campus are greater
 than 5 percent above the baseline, the campus shall conduct the cordon surveys annually until
 such trips fall below 5 percent above the baseline for 2 years in a row. If and when this
 occurs, cordon surveys will continue in accordance with the second bullet above.

- If the cordon surveys show an increase in PM peak period auto trips sufficient to result in
 project impacts at the two affected intersections, the campus will increase the level of TDM
 programs until the project impacts associated with traffic increases are mitigated to a less-
 than-significant level.

- If the campus fails to reduce its traffic impacts to a less-than-significant level for more than two
 years in a row, it will contribute its “fair share” (as defined in this EIR) of the cost of identified
 intersection improvements to the City and County of San Francisco, as appropriate, provided
 that the legislature appropriates funds as requested by CSU in the State budget process.
 (See CMP MMRP for intersection improvements.)

TRA-2A: The San Francisco Municipal Transportation Agency (MTA) and the San Francisco County
Transportation Authority (SFCTA) can and should implement improvements to transit services
along 19th Avenue via the implementation of MTA’s Transit Effectiveness Project and SFCTA’s 19th
Avenue Project, which are in the planning stages. Improvements ultimately included in these
programs could include, but would not be limited to, travel time improvements along the M-line and
28/28L lines (e.g., bus rapid transit, improved stop spacing, transit prioritization treatments,
expanded Proof-of-Payment, in-lane bus stops), re-establishing a “short-run” of the M-line between
the Embarcadero and the SF State stations, etc.

TRA-2B: In the event that transit capacity enhancements listed in the Campus Master Plan are not implemented
in a timely manner by Muni and/or SFCTA, the campus will extend the Campus Shuttle service to
West Portal Station on an interim basis based on the following program:

- The University will collect data from Muni to establish the baseline average peak period, peak
direction passenger loading between the campus and West Portal Station.

- The University will monitor SF State peak period transit use by conducting cordon counts as
 specified in Mitigation TRA-1.

- If Muni reports that M line average peak period, peak direction passenger loading between the
campus and West Portal Station exceeds 85 percent of combined seating and standing load
capacity for two years in a row, and if the cordon surveys show that peak period transit trips on
the M-line between the campus and West Portal Station are greater than 5 percent above the
baseline, the University will extend campus shuttle service to West Portal Station during the
peak period(s).

- This additional campus shuttle service will be operated with adequate capacity (i.e., it will not
 exceed a 85 percent combined seated/standing passenger capacity target).
2007 CMP EIR Mitigation Measures That Apply to the Project

- This additional campus shuttle service will be operated until MTA’s and SFCTA’s planned transit capacity enhancements related to 19th Avenue are implemented, as described in Mitigation TRA-2A above.

TRA-2C: The campus shall monitor peak hour utilization of Campus Shuttle buses on an annual basis and if average peak period, peak direction passenger loading exceeds 85 percent of combined seated and standing load capacity for shuttle service between the campus and the Daly City BART station, the campus shall increase shuttle frequency or otherwise increase the capacity of the shuttle services during the peak period(s) until this standard is met.

Utilities and Public Services

UTL-2: As each future building project is proposed, SF State will verify that it can achieve a net zero increase in combined wet weather flow to the City’s combined sewer system. If a net increase in such flows would occur campus wide, SF State will coordinate with the SFPUC to determine whether such an increase will require downstream system capacity improvements.
ATTACHMENT A-2

Tapia Drive Street Vacation Policy Conformity Analysis

Attachment A-2 is a new attachment to this Revised Tiered Initial Study added to address comments received during the Scoping period. The entire table below is new. For clarity to the reader, it is not underlined, but is new text.

<table>
<thead>
<tr>
<th>Policy #</th>
<th>Policy Language</th>
<th>Project Conformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Ensure the safety and comfort of pedestrians throughout the city.</td>
<td>The proposed vacation of Tapia Drive would improve safety and comfort of pedestrians transiting across the Block 1 portion of the Project site, as removal of the street would minimize intermodal conflicts. See EIR Chapter 4.5 for additional information.</td>
</tr>
<tr>
<td>2.4</td>
<td>Organize the transportation system to reinforce community identity, improve linkages among interrelated activities and provide focus for community activities.</td>
<td>The proposed vacation of Tapia Drive would improve pedestrian linkages among interrelated campus buildings and activities. The street right-of-way would be incorporated into the Project site to integrate the site into the academic core and overall campus, consistent with the 2007 CMP, which envisioned a major east/west walkway connecting the central academic core with sites to the west. The area currently occupied by the street right-of-way would be developed as part of the Project, and would be used primarily by pedestrians.</td>
</tr>
<tr>
<td>10.4</td>
<td>Consider the transportation system performance measurements in all decisions for projects that affect the transportation system.</td>
<td>The proposed vacation of Tapia Drive does not affect typical performance measures of the transportation system as a whole such as VMT, multi-modal accessibility and connectivity, transit performance, etc. The vacation will increase access and safety for bicyclists and pedestrians on campus and will not cause drivers to take alternative routes such that VMT increases or congestion occurs. Tapia Drive does not serve any transit routes and therefore would not cause transit delay or substantially increase ridership.</td>
</tr>
<tr>
<td>19.2</td>
<td>Promote increased traffic safety, with special attention to hazards that could cause personal injury.</td>
<td>The proposed vacation of Tapia Drive would not reduce traffic safety. The redesign of Tapia Drive would increase bicycle and pedestrian safety and reduce hazards to those users by removing multi-modal conflicts. The Block 1 portion of the Project site would still be accessible by vehicle via nearby parking or passenger loading areas on Font Boulevard or Holloway Avenue, as well as new parking proposed in the Block 6 portion of the Project site.</td>
</tr>
<tr>
<td>Policy #</td>
<td>Policy Language</td>
<td>Project Conformity</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>20.2</td>
<td>Reduce, relocate or prohibit automobile facility features on transit preferential streets, such as driveways and loading docks, to avoid traffic conflicts and automobile congestion.</td>
<td>Tapia Drive is not a transit preferential street and therefore its vacation would not cause conflicts with transit uses.</td>
</tr>
<tr>
<td>23.1</td>
<td>Provide sufficient pedestrian movement space with a minimum of pedestrian congestion in accordance with a pedestrian street classification system.</td>
<td>The proposed vacation of Tapia Drive would provide for sufficient pedestrian movement space in the vicinity of the Block 1 portion of the Project site and would be consistent with the San Francisco Better Streets Plan.</td>
</tr>
<tr>
<td>24.2</td>
<td>Maintain and expand the planting of street trees and the infrastructure to support them.</td>
<td>Construction of the Project would likely include the removal of all existing on-site trees, but the Project would replace some trees and provide other planting on the site. If the Project would result in tree removal in the City’s right-of-way, SF State would comply with the permitting requirements of the City’s tree protection legislation.</td>
</tr>
<tr>
<td>24.5</td>
<td>Where consistent with transportation needs, transform streets and alleys into neighborhood-serving open spaces or “living streets” by adding pocket parks in sidewalks or medians, especially in neighborhoods deficient in open space.</td>
<td>The proposed vacation of Tapia Drive would transform a portion of the street into open space for use by pedestrians. See also Policy 2.4 above.</td>
</tr>
<tr>
<td>26.1</td>
<td>Retain streets and alleys not required for traffic, or portions thereof, for through pedestrian circulation and open space use.</td>
<td>Tapia Drive is not required to provide for adequate vehicle access or to accommodate traffic (see EIR Chapter 4.5). The proposed vacation of Tapia Drive would transform a portion of the street into open space for use by pedestrians and would improve pedestrian access and circulation on campus. See also Policy 2.4 above.</td>
</tr>
<tr>
<td>26.2</td>
<td>Partially or wholly close certain streets not required as traffic carriers for pedestrian use or open space.</td>
<td>Tapia Drive is not required to provide for adequate vehicle access or to accommodate traffic (see EIR Chapter 4.5). The proposed vacation of Tapia Drive would transform a portion of the street into open space for use by pedestrians and would improve pedestrian access and circulation on campus. See also Policy 2.4 above.</td>
</tr>
<tr>
<td>27.3</td>
<td>Remove conflicts to bicyclists on all city streets.</td>
<td>The proposed vacation of Tapia Drive would improve safety for bicyclists transiting across the Block 1 portion of the Project site, as removal of the street would minimize intermodal conflicts. See EIR Chapter 4.5 for additional information.</td>
</tr>
</tbody>
</table>

General Plan – Urban Design Element

1.7 Recognize the natural boundaries of the proposed vacation of Tapia Drive would promote
<table>
<thead>
<tr>
<th>Policy #</th>
<th>Policy Language</th>
<th>Project Conformity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>districts, and promote connections between districts.</td>
<td>connections between the Block 1 portion of the Project site and the remainder of the campus to the north. It would also connect Block 1 to the academic core of the campus.</td>
</tr>
<tr>
<td>2.8</td>
<td>Maintain a strong presumption against the giving up of street areas for private ownership or use, or for construction of public buildings.</td>
<td>Tapia Drive would be used for a pedestrian and bicycle connection. SF State owns the property on both sides of Tapia Drive, and closing the street is consistent with the 2007 CMP, which envisioned a major east/west walkway connecting the central academic core with sites to the west, including the Mashouf Wellness Center (SF State 2007). Some vehicular access would be required for loading at the existing Creative Arts and Humanities buildings.</td>
</tr>
<tr>
<td>2.9</td>
<td>Review proposals for the giving up of street areas in terms of all the public values that streets afford.</td>
<td>During site observations, vehicle volumes on Tapia Drive were observed to be low because it does not provide through access to any destinations. The closure of Tapia Drive would cause parking and pick-up/drop-off activity to shift to other locations on campus, but would not cause congestion on adjacent streets. The proposed changes to Tapia Drive would improve conditions for pedestrians and bicyclists by reducing intermodal conflicts due to the presence of cars and by creating a major east/west walkway connecting the central academic core with sites to the west. The closure of Tapia Drive to through vehicular traffic would create a more pedestrian-scale environment. Sidewalks and paths installed as part of the Project would be consistent with the Better Streets Plan. Additionally, the proposed street vacation would not: (1) inhibit access for fire protection or other emergency access; (2) interfere with access to private property; (3) eliminate open space; (4) eliminate street space adjacent to a public park; (5) remove significant natural features; (6) result in buildings of excessive height or bulk; and (7) adversely affect the scale and character of surrounding development. See Chapter 4.1 of the EIR for additional information.</td>
</tr>
<tr>
<td>2.10</td>
<td>Permit release of street areas, where such release is warranted, only in the least extensive and least permanent manner appropriate to each case.</td>
<td>Tapia Drive is a short segment of the roadway network at approximately 715 feet in length. It does not provide access to any destinations and has low vehicle volumes. Therefore, the closure of Tapia Drive would not affect</td>
</tr>
</tbody>
</table>
Better Streets Plan

<table>
<thead>
<tr>
<th>Policy #</th>
<th>Policy Language</th>
<th>Project Conformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Use excess portions of right-of-way, such as overly wide lanes, unused street space, or spaces created by streets coming together at odd angles to create landscaped and/or usable areas.</td>
<td>Tapia Drive is not required to provide for adequate vehicle access or to accommodate traffic (see EIR Chapter 4.5). The proposed vacation of Tapia Drive would transform a portion of the street into open space for use by pedestrians and would improve pedestrian access and circulation on campus. See also Policy 2.4 above.</td>
</tr>
</tbody>
</table>
APPENDIX B
Comment Letters Received During Scoping
LIST OF COMMENTERS

Agencies

California Department of Transportation (Caltrans) .. 1
California Native American Heritage Commission .. 3
City and County of San Francisco Planning Department 8
San Francisco Municipal Transportation Agency (SFMTA) 73
San Francisco Public Utilities Commission (SFPUC) 74

Individuals

Dr. Dipendra K. Sinha .. 78
Sang Ho .. 81
Aaron Goodman .. 83
July 28, 2016

Ms. Wendy Bloom
Campus Planning
California State University, San Francisco
1600 Holloway Avenue
San Francisco, CA 94132

Creative Arts & Holloway Mixed-Use Project—Notice of Preparation

Dear Ms. Bloom:

Thank you for including the California Department of Transportation (Caltrans) in the environmental review process for the Creative Arts & Holloway Mixed-Use project. The new Caltrans mission, vision, and goals signal a modernization of our approach to California’s transportation system, in which we seek to reduce statewide vehicle miles traveled (VMT) by 15 percent by 2020 and increase non-auto modes of active transportation. Caltrans aims to increase non-auto mode shares by 2020 through tripling bicycle, and doubling pedestrian and transit trips. These targets also support the Metropolitan Transportation Commission’s (MTC) Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), which promotes the increase of non-auto mode shares by ten percentage points and a decrease in automobile VMT per capita by ten percent. The following comments are based on the Notice of Preparation.

Project Understanding
The proposed project would construct the Creative Arts replacement building, an associated concert hall, and a mixed-use development including student housing, neighborhood-serving retail, and student support services. The project would result in a net increase of housing to accommodate 360 new students, 25,000 gross square feet of new retail and student support space, 135,000 gross square feet of educational space. There is no net increase in parking proposed in this project. The proposed project is tiered from the previously certified Campus Master Plan (CMP) in 2007. The nearest State highway is 19th Avenue (US 1), approximately 200 feet from the proposed Holloway Mixed-Use Building.

Lead Agency
As the Lead Agency, the California State University, San Francisco (SFSU) is responsible for all project mitigation, including any needed improvements to State highways. The project’s fair share contribution, financing, scheduling, implementation responsibilities, and Lead Agency monitoring should be fully discussed for all proposed mitigation measures.

“Provide a safe, sustainable, integrated and efficient transportation system to enhance California’s economy and livability!”
Ms. Wendy Bloom, California State University, San Francisco
July 28, 2016
Page 2

Vehicle Trip Reduction
Caltrans comments SFSU for emphasizing pedestrian and alternative transportation in the CMP, including Transportation Demand Management strategies. Such measures will be critical in order to facilitate efficient transportation access to and from the site and to reduce VMT and greenhouse gas emissions associated with the project.

Transportation Management Plan
A Transportation Management Plan (TMP) or construction TIS may be required of SFSU for approval by Caltrans prior to construction where traffic restrictions and detours affect State highways. TMPs must be prepared in accordance with California Manual on Uniform Traffic Control Devices. For further TMP assistance, please contact the Office of Traffic Management Plans/Operations Strategies at 510-286-4579 and see the following website:

Encroachment Permit
Please be advised that any traffic control that encroaches onto the State right-of-way (ROW) requires an encroachment permit that is issued by Caltrans. Traffic-related mitigation measures should be incorporated into the construction plans prior to the encroachment permit process. To apply, a completed encroachment permit application, environmental documentation, and five (5) sets of plans clearly indicating State ROW must be submitted to the following address:

David Salladay, District Office Chief
Office of Permits, MS 5E
California Department of Transportation, District 4
P.O. Box 23660
Oakland, CA 94623-0660

See the following website for more information:

http://www.dot.ca.gov/hq/traffops/developserv/permits

Should you have any questions regarding this letter, please contact Jesse Schofield at 510-286-5562 or jesse.schofield@dot.ca.gov.

Sincerely,

[Signature]

PATRICIA MAURICE
District Branch Chief
Local Development - Intergovernmental Review

c: State Clearinghouse

"Provide a safe, sustainable, integrated and efficient transportation system to enhance California's economy and livability"
July 29, 2016

Wendy Bloom
California State University, San Francisco
1600 Holloway Avenue
San Francisco, CA 94132

RE: SCH#2016072013, Creative Arts & Holloway Mixed-Use Project, San Francisco County

Dear Ms. Bloom:

The Native American Heritage Commission has received the Notice of Preparation (NOP) for the project referenced above. The California Environmental Quality Act (CEQA) (Pub. Resources Code § 21000 et seq.), specifically Public Resources Code section 21084.1, states that a project that may cause a substantial adverse change in the significance of an historical resource is a project that may have a significant effect on the environment. (Pub. Resources Code § 21084.1; Cal. Code Regs., tit.14, § 15064.5 (b) (CEQA Guidelines Section 15064.5 (b))). If there is substantial evidence, in light of the whole record before a lead agency, that a project may have a significant effect on the environment, an environmental impact report (EIR) shall be prepared. (Pub. Resources Code § 21080 (d); Cal. Code Regs., tit. 14, § 15064 subd.(a)(1) (CEQA Guidelines § 15064 (a)(1))). In order to determine whether a project will cause a substantial adverse change in the significance of a historical resource, a lead agency will need to determine whether there are historical resources within the area of project effect (APE).

CEQA was amended significantly in 2014. Assembly Bill 52 (Gatto, Chapter 532, Statutes of 2014) (AB 52) amended CEQA to create a separate category of cultural resources, "tribal cultural resources" (Pub. Resources Code § 21074) and provides that a project with an effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment. (Pub. Resources Code § 21084.2). Public agencies shall, when feasible, avoid damaging effects to any tribal cultural resource. (Pub. Resources Code § 21084.3 (a)). AB 52 applies to any project for which a notice of preparation or a notice of negative declaration or mitigated negative declaration is filed on or after July 1, 2015. If your project involves the adoption of or amendment to a general plan or a specific plan, or the designation or proposed designation of open space, on or after March 1, 2005, it may also be subject to Senate Bill 18 (Burton, Chapter 905, Statutes of 2004) (SB 18). Both SB 18 and AB 52 have tribal consultation requirements. If your project is also subject to the federal National Environmental Policy Act (42 U.S.C. § 4321 et seq.) (NEPA), the tribal consultation requirements of Section 106 of the National Historic Preservation Act of 1966 (154 U.S.C. 300101, 36 C.F.R. § 800 et seq.) may also apply.

The NAHC recommends consultation with California Native American tribes that are traditionally and culturally affiliated with the geographic area of your proposed project as early as possible in order to avoid inadvertent discoveries of Native American human remains and best protect tribal cultural resources. Below is a brief summary of portions of AB 52 and SB 18 as well as the NAHC's recommendations for conducting cultural resources assessments. Consult your legal counsel about compliance with AB 52 and SB 18 as well as compliance with any other applicable laws.

AB 52

AB 52 has added to CEQA the additional requirements listed below, along with many other requirements:

1. Fourteen Day Period to Provide Notice of Completion of an Application/Decision to Undertake a Project: Within fourteen (14) days of determining that an application for a project is complete or of a decision by a public
agency to undertake a project, a lead agency shall provide formal notification to a designated contact of, or tribal representative of, traditionally and culturally affiliated California Native American tribes that have requested notice, to be accomplished by at least one written notice that includes:

a. A brief description of the project.

b. The lead agency contact information.

c. Notification that the California Native American tribe has 30 days to request consultation. (Pub. Resources Code § 21080.3.1 (d)).

d. A "California Native American tribe" is defined as a Native American tribe located in California that is on the contact list maintained by the NAHC for the purposes of Chapter 905 of Statutes of 2004 (SB 18). (Pub. Resources Code § 21073).

2. Begin Consultation Within 30 Days of Receiving a Tribe's Request for Consultation and Before Releasing a Negative Declaration, Mitigated Negative Declaration, or Environmental Impact Report: A lead agency shall begin the consultation process within 30 days of receiving a request for consultation from a California Native American tribe that is traditionally and culturally affiliated with the geographic area of the proposed project. (Pub. Resources Code § 21080.3.1, subds. (d) and (e)) and prior to the release of a negative declaration, mitigated negative declaration or environmental impact report. (Pub. Resources Code § 21080.3.1(b)).

a. For purposes of AB 52, "consultation shall have the same meaning as provided in Gov. Code § 65352.4 (SB 18). (Pub. Resources Code § 21080.3.1 (b)).

3. Mandatory Topics of Consultation If Requested by a Tribe: The following topics of consultation, if a tribe requests to discuss them, are mandatory topics of consultation:

a. Alternatives to the project.

b. Recommended mitigation measures.

c. Significant effects. (Pub. Resources Code § 21080.3.2 (a)).

4. Discretionary Topics of Consultation: The following topics are discretionary topics of consultation:

a. Type of environmental review necessary.

b. Significance of the tribal cultural resources.

c. Significance of the project's impacts on tribal cultural resources.

d. If necessary, project alternatives or appropriate measures for preservation or mitigation that the tribe may recommend to the lead agency. (Pub. Resources Code § 21080.3.2 (a)).

5. Confidentiality of Information Submitted by a Tribe During the Environmental Review Process: With some exceptions, any information, including but not limited to, the location, description, and use of tribal cultural resources submitted by a California Native American tribe during the environmental review process shall not be included in the environmental document or otherwise disclosed by the lead agency or any other public agency to the public, consistent with Government Code sections 6254 (r) and 6254.10. Any information submitted by a California Native American tribe during the consultation or environmental review process shall be published in a confidential appendix to the environmental document unless the tribe that provided the information consents, in writing, to the disclosure of some or all of the information to the public. (Pub. Resources Code § 21082.3 (c)(1)).

6. Discussion of Impacts to Tribal Cultural Resources in the Environmental Document: If a project may have a significant impact on a tribal cultural resource, the lead agency's environmental document shall discuss both of the following:

a. Whether the proposed project has a significant impact on an identified tribal cultural resource.

b. Whether feasible alternatives or mitigation measures, including those measures that may be agreed to pursuant to Public Resources Code section 21082.3, subdivision (a), avoid or substantially lessen the impact on the identified tribal cultural resource. (Pub. Resources Code § 21082.3 (b)).

7. Conclusion of Consultation: Consultation with a tribe shall be considered concluded when either of the following occurs:

a. The parties agree to measures to mitigate or avoid a significant effect, if a significant effect exists, on a tribal cultural resource; or

b. A party, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached. (Pub. Resources Code § 21080.3.2 (b)).
8. **Recommending Mitigation Measures Agreed Upon in Consultation in the Environmental Document:** Any mitigation measures agreed upon in the consultation conducted pursuant to Public Resources Code section 21080.3.2 shall be recommended for inclusion in the environmental document and in an adopted mitigation monitoring and reporting program, if determined to avoid or lessen the impact pursuant to Public Resources Code section 21082.3, subdivision (b), paragraph 2, and shall be fully enforceable. (Pub. Resources Code § 21082.3 (a)).

9. **Required Consideration of Feasible Mitigation:** If mitigation measures recommended by the staff of the lead agency as a result of the consultation process are not included in the environmental document or if there are no agreed upon mitigation measures at the conclusion of consultation, or if consultation does not occur, and if substantial evidence demonstrates that a project will cause a significant effect to a tribal cultural resource, the lead agency shall consider feasible mitigation pursuant to Public Resources Code section 21084.3 (b). (Pub. Resources Code § 21082.3 (e)).

10. **Examples of Mitigation Measures That, If Feasible, May Be Considered to Avoid or Minimize Significant Adverse Impacts to Tribal Cultural Resources:**
 a. Avoidance and preservation of the resources in place, including, but not limited to:
 i. Planning and construction to avoid the resources and protect the cultural and natural context.
 ii. Planning greenspace, parks, or other open space, to incorporate the resources with culturally appropriate protection and management criteria.
 b. Treating the resource with culturally appropriate dignity, taking into account the tribal cultural values and meaning of the resource, including, but not limited to, the following:
 i. Protecting the cultural character and integrity of the resource.
 ii. Protecting the traditional use of the resource.
 iii. Protecting the confidentiality of the resource.
 c. Permanent conservation easements or other interests in real property, with culturally appropriate management criteria for the purposes of preserving or utilizing the resources or places.
 d. Protecting the resource. (Pub. Resource Code § 21084.3 (b)).
 e. Please note that a federally recognized California Native American tribe or a nonfederally recognized California Native American tribe that is on the contact list maintained by the NAHC to protect a California prehistoric, archaeological, cultural, spiritual, or ceremonial place may acquire and hold conservation easements if the conservation easement is voluntarily conveyed. (Civ. Code § 815.3 (c)).
 f. Please note that it is the policy of the state that Native American remains and associated grave artifacts shall be repatriated. (Pub. Resources Code § 5097.991).

11. **Prerequisites for Certifying an Environmental Impact Report or Adopting a Mitigated Negative Declaration or Negative Declaration with a Significant Impact on an Identified Tribal Cultural Resource:** An environmental impact report may not be certified, nor may a mitigated negative declaration or a negative declaration be adopted unless one of the following occurs:
 a. The consultation process between the tribes and the lead agency has occurred as provided in Public Resources Code sections 21080.3.1 and 21080.3.2 and concluded pursuant to Public Resources Code section 21080.3.2.
 b. The tribe that requested consultation failed to provide comments to the lead agency or otherwise failed to engage in the consultation process.
 c. The lead agency provided notice of the project to the tribe in compliance with Public Resources Code section 21080.3.1 (d) and the tribe failed to request consultation within 30 days. (Pub. Resources Code § 21082.3 (d)).

The NAHC's PowerPoint presentation titled, "Tribal Consultation Under AB 52: Requirements and Best Practices" may be found online at: http://nahc.ca.gov/wp-content/uploads/2015/10/AB52TribalConsultation_CalEPAPDF.pdf

SB 18

SB 18 applies to local governments and requires local governments to contact, provide notice to, refer plans to, and consult with tribes prior to the adoption or amendment of a general plan or a specific plan, or the designation of open space. (Gov. Code § 65352.3). Local governments should consult the Governor's Office of Planning and Research's "Tribal Consultation Guidelines," which can be found online at: https://www.opr.ca.gov/docs/09_14_05_Updated_Guidelines_922.pdf
Some of SB 18’s provisions include:

1. **Tribal Consultation:** If a local government considers a proposal to adopt or amend a general plan or a specific plan, or to designate open space it is required to contact the appropriate tribes identified by the NAHC by requesting a “Tribal Consultation List.” If a tribe, once contacted, requests consultation the local government must consult with the tribe on the plan proposal. A tribe has 90 days from the date of receipt of notification to request consultation unless a shorter timeframe has been agreed to by the tribe. (Gov. Code § 65352.3 (a)(2)).

2. **No Statutory Time Limit on SB 18 Tribal Consultation.** There is no statutory time limit on SB 18 tribal consultation.

3. **Confidentiality:** Consistent with the guidelines developed and adopted by the Office of Planning and Research pursuant to Gov. Code section 65040.2, the city or county shall protect the confidentiality of the information concerning the specific identity, location, character, and use of places, features and objects described in Public Resources Code sections 5097.9 and 5097.993 that are within the city’s or county’s jurisdiction. (Gov. Code § 65352.3 (b)).

4. **Conclusion of SB 18 Tribal Consultation:** Consultation should be concluded at the point in which:
 a. The parties to the consultation come to a mutual agreement concerning the appropriate measures for preservation or mitigation; or
 b. Either the local government or the tribe, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached concerning the appropriate measures of preservation or mitigation. (Tribal Consultation Guidelines, Governor’s Office of Planning and Research (2005) at p. 18).

Agencies should be aware that neither AB 52 nor SB 18 precludes agencies from initiating tribal consultation with tribes that are traditionally and culturally affiliated with their jurisdictions before the timeframes provided in AB 52 and SB 18. For that reason, we urge you to continue to request Native American Tribal Contact Lists and “Sacred Lands File” searches from the NAHC. The request forms can be found online at: http://nahc.ca.gov/resources/forms/

NAHC Recommendations for Cultural Resources Assessments

To adequately assess the existence and significance of tribal cultural resources and plan for avoidance, preservation in place, or barring both, mitigation of project-related impacts to tribal cultural resources, the NAHC recommends the following actions:

1. **Contact the appropriate regional California Historical Research Information System (CHRIS) Center** (http://ohp.parks.ca.gov/?page_id=1068) for an archaeological records search. The records search will determine:
 a. If part or all of the APE has been previously surveyed for cultural resources.
 b. If any known cultural resources have been already been recorded on or adjacent to the APE.
 c. If the probability is low, moderate, or high that cultural resources are located in the APE.
 d. If a survey is required to determine whether previously unrecorded cultural resources are present.

2. If an archaeological inventory survey is required, the final stage is the preparation of a professional report detailing the findings and recommendations of the records search and field survey.
 a. The final report containing site forms, site significance, and mitigation measures should be submitted immediately to the planning department. All information regarding site locations, Native American human remains, and associated funerary objects should be in a separate confidential addendum and not be made available for public disclosure.
 b. The final written report should be submitted within 3 months after work has been completed to the appropriate regional CHRIS center.

3. **Contact the NAHC for:**
 a. A Sacred Lands File search. Remember that tribes do not always record their sacred sites in the Sacred Lands File, nor are they required to do so. A Sacred Lands File search is not a substitute for consultation with tribes that are traditionally and culturally affiliated with the geographic area of the project’s APE.
b. A Native American Tribal Consultation List of appropriate tribes for consultation concerning the project site and to assist in planning for avoidance, preservation in place, or, failing both, mitigation measures.

4. Remember that the lack of surface evidence of archaeological resources (including tribal cultural resources) does not preclude their subsurface existence.
 a. Lead agencies should include in their mitigation and monitoring reporting program plan provisions for the identification and evaluation of inadvertently discovered archaeological resources per Cal. Code Regs., tit. 14, section 15064.5(f) (CEQA Guidelines section 15064.5(f)). In areas of identified archaeological sensitivity, a certified archaeologist and a culturally affiliated Native American with knowledge of cultural resources should monitor all ground-disturbing activities.
 b. Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the disposition of recovered cultural items that are not burial associated in consultation with culturally affiliated Native Americans.
 c. Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the treatment and disposition of inadvertently discovered Native American human remains. Health and Safety Code section 7050.5, Public Resources Code section 5097.98, and Cal. Code Regs., tit. 14, section 15064.5, subdivisions (d) and (e) (CEQA Guidelines section 15064.5, subds. (d) and (e)) address the processes to be followed in the event of an inadvertent discovery of any Native American human remains and associated grave goods in a location other than a dedicated cemetery.

If you have any questions, please contact me at my email address: sharaya.souza@nahc.ca.gov.

Sincerely,

Sharaya Souza
Staff Services Analyst
cc: State Clearinghouse
Ms. Wendy Bloom
Campus Planner
Capital Planning, Design & Construction
San Francisco State University
1600 Holloway Avenue
San Francisco, CA 94132

RE: SFSU CREATIVE ARTS AND HOLLOWAY MIXED-USE PROJECT

Dear Ms. Bloom:

The San Francisco Planning Department, acting in the capacity of responsible agency as defined by the California Environmental Quality Act (CEQA) Guidelines Section 15082(b), has prepared the following comments on environmental issues to consider in preparation of an environmental impact report for the Creative Arts & Holloway Mixed-Use Project on San Francisco State University (SFSU)'s campus. Comments focus primarily on Project Description information relevant to the analysis of the project’s potential environmental impacts; the project’s contribution to cumulative impacts from reasonably foreseeable projects; and mitigation measures to lessen environmental effects.

As lead agency, the California State University Trustees carry out environmental review for projects on the 144-acre SFSU campus in accordance with the CEQA. The Planning Department’s role in connection to the proposed project is that of responsible agency with discretionary approval authority over the proposed project’s street vacation of Tapia Drive and associated streetscape improvements in determining conformity with the city’s General Plan.

The proposed project entails demolition of existing housing at “Block 1” (168 beds) and “Block 6” (8 units) in the southern portion of the campus and construction of student housing (550 beds) with 25,000 square feet of ground-floor commercial retail and support space at Block 6. Up to 70 parking spaces would be provided by consolidating and eliminating on-street campus parking elsewhere. The project also entails construction of a 75,000-square-foot Creative Arts building and 60,000-square-foot, 800-seat concert hall on Block 1 at Font Boulevard and Holloway Avenue. The Initial Study identifies these uses as components of SFSU’s adopted Campus Master Plan. The CMP’s impacts were studied in the CMP EIR, certified in 2007; the proposed project would tier off the CMP EIR, and incorporate by reference relevant information and analysis. Comments related to the proposed Project Description are presented first, followed by topic-specific comments, organized in the order presented in the Initial Study checklist.
PROJECT DESCRIPTION

- On Figure 1 and others, ensure key orienting features (scale, north arrow, street names, campus buildings, etc.) are mapped legibly. Adjust boundary lines (Figure 1) and labeling (Figure 3) to avoid covering street names to ensure surrounding streets and project locations are accurately identified on EIR maps.

- Consider additional site plans in the EIR at the “block” level for existing and proposed conditions that show building footprints in relation to surrounding streets, open areas and other features so the reader may assess the relative scale and location of the proposed housing and arts/concert hall buildings.

- Include also a campus map showing linkages to surrounding city streets and transit stops that illustrate the spatial relationships, paths and distances proposed uses have relative to others on the campus and to the adjacent Park Merced neighborhood (see Initial Study 2.2.2, Project-specific Objectives, #4).

- Tabulate project data (expand IS Table 1 or similar) to show project relationship to the Master Plan’s program: uses; size/area (in square feet), projected population (student; residential; employment as part of project/Master Plan); and other relevant Master Plan components anticipated through the 2020 horizon. etc.

LAND USE, PLANS AND POLICIES

- Provide description of SFSU’s Campus Master Plan and identify policies from the CMP that that guide campus development. Identify city, regional and statewide policies that may be applicable to the proposed project, including: the San Francisco General Plan, Better Streets Plan, the City’s Transit First Policy, Vision Zero, etc.

- The Planning Department implements CEQA Guidance in its approach to evaluating a project’s relationship to plans and policies that is based on identifying possible planning or policy conflicts that may result in direct or indirect significant environment impacts.

- Provide a definition of state trustee agency, and clarify the lead agency’s responsibilities and functions in relation to the proposed project and campus master planning. Discuss the campus setting in light of jurisdictional boundaries that regulate planning, implementation, approval and monitoring of the project. Note the land uses and properties along campus edge and describe the physical setting and relevant planning regulations in the San Francisco Planning Code (zoning), General Plan, height and bulk districts, etc. for informational purposes.
• Clarify the pertinent zoning or regulatory land use framework that applies to the property SFSU acquired in 2005. Provide a map of SFSU’s campus in the context of surrounding height, bulk and use districts under City and County jurisdiction to illustrate how changes in the built environment on the campus relate to its edges.

• Where possible, substantiate statements of “project consistency” with information included in this EIR in support of its conclusions. The Initial Study indicates the height of the proposed apartment building is 90 feet and inconsistent with the CMP EIR (actual height not noted). The Initial Study also notes that the project is aligned with the goals of the (adjacent Park Merced? Campus?) Master Plan without referencing relevant criteria considered that supports such a determination. Planning inconsistencies should be identified to determine whether project conflicts may cause direct and indirect physical effects on the environment. Readers may have limited access to CMP reference documents – where possible, please strive to sufficiently document conclusions in this analysis by limiting reference to materials that may not be readily accessible.

AESTHETICS

• In accordance with CEQA Section 21099 – Modernization of Transportation Analysis for Transit Oriented Projects – aesthetics and parking shall not be considered in determining if a project has the potential to result in significant environmental effects, provided the project meets all of the following three criteria:

 a) the project is in a transit priority area; and
 b) the project is on an infill site; and
 c) the project is residential, mixed-use residential, or an employment center.

• If the lead agency determines that all three of the criteria apply to this project, it appears that an analysis of the proposed project’s aesthetic and light and glare impacts in the EIR may not be required. CEQA Section 21099 provides that a Lead Agency continues to maintain the authority to consider aesthetic impacts pursuant to local design review ordinances or other discretionary powers. The Planning Department recognizes that the public and decision makers continue to be interested in information pertaining to the aesthetic effects of a proposed project and may desire that such information be provided as part of the environmental review process. The Department addresses this by including visual simulations in an EIR’s Project Description that depict the project conditions solely for informational purposes. This may be one way to approach the Initial Study’s Aesthetics findings in light of the provisions of CEQA Section 21099, as determined applicable to this project.
BIOLOGICAL RESOURCES (BIRD-SAFE BUILDINGS)

- The campus is located within 300 feet of open spaces greater than 2 acres, meaning the surrounding vicinity, particularly west of Lake Merced Boulevard may function as an important urban bird refuge. The City and County has adopted standards and best design practices related to window treatments, lighting and site design that aim to reduce location- and building-feature hazards to avian species. The sponsor is encouraged to consult and incorporate the applicable *Standards for Bird-safe Buildings* into project designs as feasible. See: http://sf-planning.org/standards-bird-safe-buildings.

GREENHOUSE GAS EMISSIONS

- The City and County of San Francisco’s *Strategies to Address Greenhouse Gas Emissions* presents a comprehensive assessment of policies, programs, and ordinances that represents San Francisco’s Qualified Greenhouse Gas (GHG) Reduction Strategy. The Planning Department considers projects that are consistent with the City’s *Qualified GHG Reduction Strategy* to have less-than-significant GHG emissions impacts.

- The Initial Study does not describe the regulatory context, stated goals and relevant thresholds that will be used to evaluate the project’s construction and operational greenhouse gas emissions. The sponsor may consider whether evaluating the project’s GHG emissions impacts in light of its potential to conflict (or be found compatible) with strategies or policies that CSU may have adopted to conform to the emissions targets established by the state’s Global Warming Solutions Act (see http://www.calstate.edu/cpdc/sustainability/policies-reports/). Such an approach would be similar to the Planning Department’s method for evaluating the significance of a project’s GHG emissions impacts, and the lead agency may likewise consider such an approach sufficient for this project.

TRANSPORTATION AND CIRCULATION

- The Initial Study’s checklist responses do not clearly note whether the EIR would evaluate transportation impacts in a manner consistent with the provisions of CEQA Section 21099 or whether some other metric, such as level of service (LOS) is intended to be reported.

- If transportation impacts to intersection levels of service were evaluated for the 2007 Master Plan, has analysis been conducted to determine whether conditions today reflect those assumed for 2016 in the CMP EIR?
• The CMP EIR cites a year 2020 planning horizon for considering cumulative impacts that accounts for the build out of the CMP and projected population growth. The CTA and Planning Department currently bases its future transportation projections to a future year 2040 horizon. How does the EIR’s analysis intend to address this later, future condition?

• In terms of evaluating impacts to transit, the latest screenline data is attached (through year 2040) and all four screenlines should be evaluated for this project.

Street Vacation

• The project would require vacation of Tapia Drive, a public street that borders the east and north sides of Block 1. Any modification of the public right-of-way that deviates from the City’s Public Works Standard Plans and Specifications may require a Major Encroachment Permit (MEP) from the Bureau of Street Use and Mapping. Information on the Major Encroachment permitting process is available at: http://www.sfdpw.org/permits-0

• Street vacation requests are subject to Planning Department review for conformity with the City’s General Plan and Better Streets Plan. Proposals are weighed in terms of the public advantages afforded in exchange for the permanent loss of public use and public values from a street vacation.

Safety

• The Initial Study does not appear to consider the project’s potential effects on pedestrian circulation. Please include a review of possible pedestrian impacts in light of possible conflicts with driveways, impacted walkways, and possible unsafe conditions that should be evaluated as part of the transportation review of this project.

• The EIR should also describe the Vision Zero policy framework and note that 19th Ave is a Vision Zero Corridor, which is characterized as a high injury network for pedestrian and vehicles. The project should prioritize improving safety for all users along this corridor.

• Access ramps are missing at the following intersections:

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>19th Avenue / Holloway Avenue</td>
<td>SE</td>
</tr>
<tr>
<td>Crespi Drive / Serrano Drive / Varela Avenue</td>
<td>NE</td>
</tr>
<tr>
<td>19th Avenue and Crespi Drive</td>
<td>NW</td>
</tr>
<tr>
<td>19th Avenue and Holloway Ave</td>
<td>SW</td>
</tr>
</tbody>
</table>
Bicycle, Loading and Suggested Improvements

- Several bicycle routes surround the SFSU campus. These routes should be considered relative to the proposed project sites and any impacts to access or bicycle circulation associated with the project’s vehicular access points should be addressed and corrected.

- Information related to the amount, location, and type of bicycle parking should be included in the EIR.

- Details pertaining to how the buildings will accommodate loading activities should be provided. Will loading occur on street? Would there need to be restrictions placed on project site street frontages to facilitate deliveries and move-ins?

- Per the San Francisco Better Streets Plan, 19th Avenue is classified as a Residential Throughway. The Better Streets Plan recommends minimum sidewalk widths of 15 feet on such streets.

- Per the San Francisco Better Streets Plan, Holloway Avenue is classified as a Neighborhood Residential Street. The Better Streets Plan recommends a minimum sidewalk width of 12 feet on such streets.

- The EIR should include details pertaining to the University’s Transportation Demand Measures and public realm improvements it would implement as part of this project.

HISTORIC ARCHITECTURAL RESOURCES

- The EIR should describe the properties evaluated for historic significance on the SFSU campus for the Master Plan in 2007. The Historic Resource Evaluation (HRE) should be summarized and provide sufficient information of the campus’ setting that clarifies for the reader the buildings and/or other physical features that were evaluated in the 2007, and whether any other buildings or campus features may require updated analysis in this EIR.

- Clearly describe the parameters used in 2007 in the evaluation of historic resource impacts – did this HRE also consider Park Merced? Is the evaluation of historic significance or impacts to off-site resources contemplated in the 2007 Master Plan EIR?

- Discuss the criteria used to determine whether a building may be considered a potential historic resource for purposes of environmental review. Are there any differences in the methods used by the CSU to evaluate impacts to on-campus resources that may differ from the criteria or methods used to evaluate potential impacts to the former Park Merced properties that warrant additional clarification in the EIR?
The Initial Study finds a significant impact associated with buildout of the Master Plan but does not clarify whether this impact is associated with demolition of existing housing or other buildings. The analysis should clearly explain the specific impacts associated with build out of the Master Plan clarifying for example, whether impacts are to individually-eligible resources or to a district. The EIR should clearly evaluate the sites to determine eligibility of (and impacts to) a potential district as well as individual resources.

The information being updated for former Park Merced properties should clarify how this would be used to supplement the evaluations prepared for the CMP incorporated by EIR reference.

Given the potential that documentation of affected buildings would not fully mitigate historic resource impacts, the sponsor is encouraged to work collaboratively to provide a robust documentation of the sites’ history. This documentation and should be informed by the research conducted for the Park Merced project. The lead agency’s architectural consultant should coordinate and consult with the Planning Department’s historic preservation specialists to confirm the scope of work related to the Historic American Buildings Survey.

MANDATORY FINDINGS OF SIGNIFICANCE

The EIR should clearly note how the assessment of past, present and reasonably foreseeable projects are being considered. The Initial Study makes numerous statements related to the adequacy of the 2007 CMP EIR and its utility to address cumulative impacts of this project.

The EIR should acknowledge the planning horizon established in the 2007 CMP EIR and note that the review is evaluating conditions in 2016. Further, as noted, the City’s transportation planners currently consider population growth projections through a horizon year of 2040.

The sponsor would be advised to coordinate with Planning Department staff to review projects it may consider reasonably foreseeable in light of this project’s implementation schedules to ensure that the potential for the project to contribute considerably to cumulative effects has been studied and, if necessary, mitigation is identified.

The EIR should review the Mitigation Monitoring and Reporting Program (MMRP) prepared for the Park Merced project to identify whether measures required of that project should be coordinated with those that may be necessary for implementation of the proposed project, such as construction-related noise mitigation or similar.
Please feel free to contact me if you would like to discuss any of the comments in the letter.

Sincerely,

Michael Jacinto
San Francisco Planning Department
Environmental Planning Division

Attachments:
Bird Refuge Sites
Transportation Screenline Memorandum
Park Merced Mitigation Monitoring and Reporting Program
Standards for Bird-Safe Buildings

THE FACTS

Over 100 million bird deaths annually

Reflective, transparent materials cause hazardous collisions

Birds attempt to reach shelter, food and migratory paths reflected in glass

THE CODE

Per San Francisco Planning Code Section 139, “Standards for Bird-Safe Buildings,” there are two types of bird hazards:

Location-Related Hazards: Buildings within 300 feet of an Urban Bird Refuge.

Building Feature-Related Hazards: Uninterrupted glazed segments 24 square feet or larger.

THE TRIGGERS

New Buildings
Additions
Alterations - replacing 50% or more of glazing

Resources

Standards for Bird-Safe Buildings document
sfplanning.org/index.aspx?page=2506

Golden Gate Audubon
goldengateaudubon.org

American Bird Conservancy
abcbirdtape.org

U.S Fish and Wildlife Service
fws.gov

LEED Pilot Credit #55 Bird Façade
usgbc.org
Bird-Safe Building Treatments

Location-related hazards require facade treatment. Buildings with feature-related hazards are also required to treat hazards.

- Applied to 90% of glazing from grade up to 60 feet (Bird Collision Zone)
- Applied to 100% of Building Feature-Related Hazard
- 2x4 Rule Required: Patterns smaller than 4” tall by 2” wide

Glazing Options

- Glass that reflects the ultraviolet light (which birds can see) such as ‘Ornilux’
- Glass which has photovoltaic cells embedded such as ‘IQ Glass’, or ‘Voltalux’
- Dichroic glass
- Fritted glass such as Viracon Silk-screen
- Etched Glass
- Translucent glass such as ‘Profilit’
- Film

Building & Fenestration Strategies

- Layering and recessing glazed surfaces
- Louvers
- Overhangs and awnings
- Screening
- Netting
- Angled or faceted glazing - minimize reflectivity
- Opaque surfaces
- Structurally break-up large expanses of glass

Comparison of Different Treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Upkeep</th>
<th>Longevity</th>
<th>Application</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETTING</td>
<td>*****</td>
<td>****</td>
<td>**</td>
<td>$</td>
</tr>
<tr>
<td>FILM</td>
<td>*****</td>
<td>***</td>
<td>****</td>
<td>$</td>
</tr>
<tr>
<td>FRITTED/ETCHED</td>
<td>*****</td>
<td>*****</td>
<td>***</td>
<td>$$$</td>
</tr>
<tr>
<td>UV/PV</td>
<td>*****</td>
<td>***</td>
<td>***</td>
<td>$$$$</td>
</tr>
<tr>
<td>SCREENS</td>
<td>****</td>
<td>****</td>
<td>**</td>
<td>$$</td>
</tr>
<tr>
<td>LOUVERS</td>
<td>*****</td>
<td>****</td>
<td>**</td>
<td>$$$</td>
</tr>
</tbody>
</table>

5 STARS/($) = MINIMAL DURABLE EASY PRICEY

Exceptions: Zoning Administrator Waivers

- Bird collision zone treatment exempt for: residential-zoned buildings less than 45 feet tall with limited glass facade (less than 50% glazing); building feature-related treatment still required.
- More treatment required (95%) for: residential-zoned buildings less than 45 feet tall with substantial glass facade (more than 50% glazing).
- May waive or modify requirements per recommendation of qualified biologist.

Additional Precautions: Lighting & Wind Generators

- Avoid beacon effect and blind spots
- Minimal external lighting
- No uplighting
- Shielded lighting
- No event searchlights
- Wind Generators must appear solid
MITIGATION MEASURES FOR THE PARKMERCED PROJECT

Cultural Resources and Archeological Paleontological Resources Mitigation Measures

<table>
<thead>
<tr>
<th>Mitigation Measure M-CR-1: Documentation and Interpretation</th>
<th>Project sponsor to retain qualified professional consultant</th>
<th>Prior to construction submittal of HABS/HAER/HALS guidelines documentation for approval by Planning Department.</th>
<th>Consultant to submit report to Planning Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation</td>
<td></td>
<td>Prior to construction, transmit documentation to the SF Library, and NWIC.</td>
<td></td>
</tr>
<tr>
<td>The Project Sponsor shall retain a professional who meets the Secretary of the Interior’s Professional Qualifications Standards for Architectural History to prepare written and photographic documentation of the Parkmerced complex within the Project Site. The documentation for the property shall be prepared based on the National Park Service’s (NPS) Historic American Building Survey (HABS) / Historic American Engineering Record (HAER) Historical Report Guidelines, and will include a selection of measured drawings based upon NPS Historic American Landscape Survey (HALS) Guidelines. This type of documentation is based on a combination of both HABS/HAER standards (Levels I, II and III) and NPS’s policy for photographic documentation as outlined in the National Register of Historic Places and National Historic Landmarks Survey Photo Policy Expansion. The measured drawings for this documentation shall follow HALS Level I standards. To determine the number of the measured drawings, the professional shall consult with the San Francisco Planning Department’s Preservation Coordinator. The written historical data for this documentation shall follow HABS / HAER Level I standards. The written data shall be accompanied by a sketch plan of the property. Efforts should also be made to locate original construction drawings or plans of the property during the period of significance. If located, these drawings should be photographed, reproduced, and included in the dataset. If construction drawings or plans cannot be located, as-built drawings shall be produced. Either HABS/HAER standard large format or digital photography shall be used. If digital photography is used, the ink and paper combinations for printing photographs must be in compliance with NR-NHL Photo Policy Expansion and have a permanency rating of approximately 115 years. Digital photographs will be taken as uncompressed, TIF file format. The size of each image will be 1600x1200 pixels at 330 ppi (pixels per inch) or larger, color format, and printed in black and white. The file name for each electronic image shall correspond with the index of photographs and photograph label. Photograph views for the dataset shall include (a) contextual views; (b) views of each side of each building and interior views, where possible; (c) oblique views of buildings; and (d) detail views of character-defining features, including features on the interiors of some buildings. All views shall be referenced on a photographic key. This</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
photographic key shall be on a map of the property and shall show the photograph number with an arrow to indicate the direction of the view. Historic photographs shall also be collected, reproduced, and included in the dataset.

The Project Sponsor shall transmit such documentation to the History Room of the San Francisco Public Library, and to the Northwest Information Center of the California Historical Information Resource System.

All documentation will be revised and approved by the San Francisco Planning Department’s Preservation Coordinator prior to granting any demolition permit.

Interpretation

The Project Sponsor shall provide a permanent display of interpretive materials concerning the history and architectural features of the original Parkmerced complex within public spaces of the Project Site. Interpretation of the site’s history shall be conducted and written by an architectural historian or historian, who meets the Secretary of the Interior’s Professional Qualification Standards, and shall be conducted in coordination with an exhibit designer. The interpretative materials should be placed in a prominent public setting and be permanent. The media, and other characteristics of such interpretive display shall be approved by the San Francisco Planning Department’s Preservation Coordinator prior to any demolition or removal activities.

Archives

The Project Sponsor shall donate original Leonard Schultz and Thomas Church architectural drawings of Parkmerced to the University of California, Berkeley Environmental Design Archives. Confirmation from UC Berkeley shall be received and the San Francisco Planning Department’s Preservation Coordinator shall be notified.

<table>
<thead>
<tr>
<th>M-CR-3a: Archaeological Testing, Monitoring, Data Recovery and Reporting for first Project Phase</th>
</tr>
</thead>
</table>

Based on a reasonable presumption that archaeological resources may be present within the project site, the following measures shall be undertaken to avoid any potentially significant adverse effect from the proposed project on buried or submerged historical resources. The project sponsor shall retain the services of an archaeological consultant from the Planning Department (“Department”) pool of qualified archaeological consultants as provided by the Department archaeologist. The archaeological consultant shall undertake an archaeological testing program as specified herein. In addition, the consultant shall be available to conduct an archaeological monitoring and/or data recovery program if required pursuant to this measure. The archaeological consultant to consult with the ERO as indicated. Considered complete after review and approval of the Final Archaeological Resources Report by the ERO.
consultant’s work shall be conducted in accordance with this measure and the requirements of the ARDTP (Archeo-Tec, Archeological Research Design and Treatment Plan, Parkmerced Project, March 2010) at the direction of the Environmental Review Officer (ERO). In instances of inconsistency between the requirements of the project ARDTP and the requirements of this mitigation measure, the requirements of this archaeological mitigation measure shall prevail. All plans and reports prepared by the consultant as specified herein shall be submitted first and directly to the ERO for review and comment, and shall be considered draft reports subject to revision until final approval by the ERO. Archaeological monitoring and/or data recovery programs required by this measure could suspend construction of the project for up to a maximum of four weeks. At the direction of the ERO, the suspension of construction can be extended beyond four weeks only if such a suspension is the only feasible means to reduce to a less-than-significant level potential effects on a significant archaeological resource as defined in CEQA Guidelines Section 15064.5 (a)(c).

Archaeological Testing Program

The archaeological consultant shall prepare and submit to the ERO for review and approval an archaeological testing plan (ATP). The archaeological testing program shall be conducted in accordance with the approved ATP. The ATP shall identify the property types of the expected archaeological resource(s) that potentially could be adversely affected by the proposed project, the testing method to be used, and the locations recommended for testing. The purpose of the archaeological testing program will be to determine to the extent possible the presence or absence of archaeological resources and to identify and to evaluate whether any archaeological resource encountered on the site constitutes an historical resource under CEQA.

At the completion of the archaeological testing program, the archaeological consultant shall submit a written report of the findings to the ERO. If based on the archaeological testing program the archaeological consultant finds that significant archaeological resources may be present, the ERO in consultation with the archaeological consultant shall determine if additional measures are warranted. Additional measures that may be undertaken include additional archaeological testing, archaeological monitoring, and/or an archaeological data recovery program. If the ERO determines that a significant archaeological resource is present and that the resource could be adversely affected by the proposed project, at the discretion of the project sponsor either:

A) The proposed project shall be re-designed so as to avoid any adverse effect on the significant archaeological resource; or

B) A data recovery program shall be implemented, unless the ERO determines that the archaeological resource is of greater interpretive than research significance.

<table>
<thead>
<tr>
<th>Project sponsor to retain appropriately qualified consultant</th>
<th>Prior to and during construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>If applicable, upon discovery of human remains and/or associated or unassociated funerary objects, the consultant shall notify the Coroner of the City and County of San Francisco, and in the event of the Coroner’s determination that the human remains, notification of the California State Native American Heritage Commission who shall appoint a Most Likely Descendant (MLD) who shall make reasonable efforts to develop an agreement for the treatment of human remains and/or associated or unassociated funerary objects.</td>
<td></td>
</tr>
</tbody>
</table>

Consultant to prepare draft and final Archeological Resources Report reports. The ERO to review and approve the Final Archeological Resources Report.
and that interpretive use of the resource is feasible.

Archaeological Monitoring Program (AMP)

If the ERO in consultation with the archaeological consultant determines that an archaeological monitoring program shall be implemented the archaeological monitoring program shall minimally include the following provisions:

- The archaeological consultant, project sponsor, and ERO shall meet and consult on the scope of the AMP reasonably prior to any project-related soils-disturbing activities commencing. The ERO in consultation with the archaeological consultant shall determine what project activities shall be archaeologically monitored. In most cases, any soils-disturbing activities, such as demolition, foundation removal, excavation, grading, utilities installation, foundation work, driving of piles (foundation, shoring, etc.), site remediation, etc., shall require archaeological monitoring because of the risk these activities pose to potential archaeological resources and to their depositional context;

- The archaeological consultant shall advise all project contractors to be on the alert for evidence of the presence of the expected resource(s), of how to identify the evidence of the expected resource(s), and of the appropriate protocol in the event of apparent discovery of an archaeological resource;

- The archaeological monitor(s) shall be present on the project site according to a schedule agreed upon by the archaeological consultant and the ERO until the ERO has, in consultation with the project archaeological consultant, determined that project construction activities could have no effects on significant archaeological deposits;

- The archaeological monitor shall record and be authorized to collect soil samples and artifactual/eco-factual material as warranted for analysis;

- If an intact archaeological deposit is encountered, all soils-disturbing activities in the vicinity of the deposit shall cease. The archaeological monitor shall be empowered to temporarily redirect demolition/excavation/pile driving/construction activities and equipment until the deposit is evaluated. If in the case of pile-driving activity (foundation, shoring, etc.), the archaeological monitor has cause to believe that the pile-driving activity may affect an archaeological resource, the pile-driving activity shall be terminated until an appropriate evaluation of the resource has been made in consultation with the ERO. The archaeological consultant shall immediately notify the ERO of the encountered archaeological deposit. The archaeological consultant shall make a reasonable effort to assess the identity, integrity, and significance of the
encountered archaeological deposit, and present the findings of this assessment to the ERO.

Whether or not significant archaeological resources are encountered, the archaeological consultant shall submit a written report of the findings of the monitoring program to the ERO.

Archaeological Data Recovery Program

The archaeological data recovery program shall be conducted in accord with an archaeological data recovery plan (ADRP). The archaeological consultant, project sponsor, and ERO shall meet and consult on the scope of the ADRP prior to preparation of a draft ADRP. The archaeological consultant shall submit a draft ADRP to the ERO. The ADRP shall identify how the proposed data recovery program will preserve the significant information the archaeological resource is expected to contain. That is, the ADRP will identify what scientific/historical research questions are applicable to the expected resource, what data classes the resource is expected to possess, and how the expected data classes would address the applicable research questions. Data recovery, in general, should be limited to the portions of the historical property that could be adversely affected by the proposed project. Destructive data recovery methods shall not be applied to portions of the archaeological resources if non-destructive methods are practical.

The scope of the ADRP shall include the following elements:

- **Field Methods and Procedures.** Descriptions of proposed field strategies, procedures, and operations.
- **Cataloguing and Laboratory Analysis.** Description of selected cataloguing system and artifact analysis procedures.
- **Discard and De-accession Policy.** Description of and rationale for field and post-field discard and de-accession policies.
- **Interpretive Program.** Consideration of an on-site/off-site public interpretive program during the course of the archaeological data recovery program.
- **Security Measures.** Recommended security measures to protect the archaeological resource from vandalism, looting, and non-intentionally damaging activities.
- **Final Report.** Description of proposed report format and distribution of results.
- **Curation.** Description of the procedures and recommendations for the

| Project sponsor to retain appropriately qualified consultant | Prior to and during construction | |
curation of any recovered data having potential research value, identification of appropriate curation facilities, and a summary of the accession policies of the curation facilities.

Human Remains and Associated or Unassociated Funerary Objects

The treatment of human remains and of associated or unassociated funerary objects discovered during any soils-disturbing activity shall comply with applicable State and Federal laws. This shall include immediate notification of the Coroner of the City and County of San Francisco and in the event of the Coroner’s determination that the human remains are Native American remains, notification of the California State Native American Heritage Commission (NAHC) who shall appoint a Most Likely Descendant (MLD) (Pub. Res. Code Sec. 5097.98). The archaeological consultant, project sponsor, and MLD shall make all reasonable efforts to develop an agreement for the treatment of, with appropriate dignity, human remains and associated or unassociated funerary objects (CEQA Guidelines Sec. 15064.5(d)). The agreement should take into consideration the appropriate excavation, removal, recordation, analysis, custodianship, curation, and final disposition of the human remains and associated or unassociated funerary objects.

Final Archaeological Resources Report

The archaeological consultant shall submit a Draft Final Archaeological Resources Report (FARR) to the ERO that evaluates the historical significance of any discovered archaeological resource and describes the archaeological and historical research methods employed in the archaeological testing/monitoring/data recovery program(s) undertaken. Information that may put at risk any archaeological resource shall be provided in a separate removable insert within the final report.

Once approved by the ERO, copies of the FARR shall be distributed as follows: California Archaeological Site Survey Northwest Information Center (NWIC) shall receive one (1) copy and the ERO shall receive a copy of the transmittal of the FARR to the NWIC. The Major Environmental Analysis division of the Planning Department shall receive two copies (bound and unbound) and one unlocked, searchable PDF copy on a CD or DVD of the FARR along with copies of any formal site recordation forms (CA DPR 523 series) and/or documentation for nomination to the National Register of Historic Places/California Register of Historical Resources. In instances of high public interest in or the high interpretive value of the resource, the ERO may require a different final report content, format, and distribution than that presented above.

Mitigation Measure M-CR-3b: Archaeological Treatment Plan for Subsequent Project Phases

Based on a reasonable presumption that archaeological resources may be present within

| Project sponsor to retain appropriate consultant | The project archaeologist to consult with ERO prior to preparation of TP. The | Project archaeologist to provide draft and final reports. ERO to review |
the Project Site, the following measures shall be undertaken to avoid any potentially
significant adverse effect from subsequent project phases the Proposed Project on
buried archaeological resources. The Project Sponsor shall retain the services of a
qualified archaeological consultant having expertise in California prehistoric and urban
historical archaeology. The archaeological consultant shall prepare an archaeological
treatment plan (TP). The archaeological consultant’s work shall be conducted in
accordance with this measure at the direction of the Environmental Review Officer
(ERO). All plans and reports prepared by the consultant as specified herein shall be
submitted first and directly to the ERO for review and comment, and shall be
considered draft reports subject to revision until final approval by the ERO.

Archeological Treatment Plan. The archaeological consultant shall meet and consult
with the ERO on the scope of the TP prior to preparation of the TP. The TP shall be
submitted to the ERO for review and approval prior to the Project ground-breaking
activities for subsequent project phases. Archaeological field investigations for
subsequent project phases shall be conducted in accordance with the approved TP. The
TP shall identify project-specific vertical / horizontal areas of archaeological sensitivity
and appropriate archaeological identification and evaluation strategies, and
archaeological mitigatory protocols applicable to specific project activities /
improvements (for example, excavation building foundation installation, grading, etc.)
with the potential to affect archaeological properties. Mitigation strategies requiring
archaeological testing plans (ATP) and archaeological monitoring plans (AMP) shall
conform to the requirements for preparation and implementation including preparation
of archaeological investigation and data recovery results reporting of an ATP and AMP
in Mitigation Measure M-CR-3a.

M-CR-5: Palaeontological Resources Monitoring and Mitigation Program
The Project Sponsor shall retain the services of a qualified palaeontological consultant
having expertise in California paleontology to design and implement a Palaeontological
Resources Monitoring and Mitigation Program (PRMMP). The PRMMP shall include
a description of when and where construction monitoring would be required;
energency discovery procedures; sampling and data recovery procedures; procedure
for the preparation, identification, analysis, and curation of fossil specimens and data
recovered; preconstruction coordination procedures; and procedures for reporting the
results of the monitoring program.

The PRMMP shall be consistent with the Society for Vertebrate Paleontology (SVP)
Standard Guidelines for the mitigation of construction–related adverse impacts to
palaeontological resources and the requirements of the designated repository for any
fossils collected. During construction, earth-moving activities shall be monitored by a
qualified palaeontological consultant having expertise in California paleontology in the

<table>
<thead>
<tr>
<th>Project sponsor to retain appropriately qualified consultant to prepare PRMMP, carry out monitoring, and reporting</th>
<th>TP for each phase to be completed prior to ground-breaking for that phase. ATP and AMPs, where necessary, shall be prepared pursuant to schedule in M-CR-3a.</th>
<th>ERO to approve final PRMMP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to and during construction.</td>
<td>The project palaeontological consultant to consult with the ERO as indicated; completed when ERO accepts final report</td>
<td>Consultant shall provide brief monthly reports to ERO during monitoring or as identified in the PRMMP, and notify the ERO immediately if work should stop for data recovery during monitoring.</td>
</tr>
</tbody>
</table>
areas where these activities have the potential to disturb previously undisturbed native sediment or sedimentary rocks. Monitoring need not be conducted in areas where the ground has been previously disturbed, in areas of artificial fill, in areas underlain by nonsedimentary rocks, or in areas where exposed sediment would be buried, but otherwise undisturbed.

The consultant’s work shall be conducted in accordance with this measure and at the direction of the City’s Environmental Review officer (ERO). Plans and reports prepared by the consultant shall be submitted first and directly to the ERO for review and comment, and shall be considered draft reports subject to revision until final approval by the ERO. Paleontological monitoring and/or data recovery programs required by this measure could suspend construction of the Proposed Project for up to a maximum of four weeks. At the direction of the ERO, the suspension of construction can be extended beyond four weeks only if such a suspension is the only feasible means to reduce potential effects on a significant paleontological resource as previously defined to a less-than-significant level.

<table>
<thead>
<tr>
<th>Transportation and Circulation</th>
</tr>
</thead>
</table>

M-TR-1: Parkmerced Construction Traffic Management Program.

The Project Sponsor shall develop and implement a Construction Traffic Management Program to minimize impacts of the Project and its contribution to cumulative impacts related to construction activities and construction traffic. The program shall provide necessary information to various contractors and agencies as to how to maximize the opportunities for complementing construction management measures and to minimize the possibility of conflicting impacts on the roadway system, while safely accommodating the traveling public in the area. The program shall supplement and expand, rather than modify or supersede any manual, regulations, or provisions set forth by SFMTA, DPW or other City departments and agencies.

Preparation of the Construction Management Program shall be the responsibility of the Project Sponsor, and shall be reviewed and approved by SFMTA and DPW prior to initiation of construction. The program shall:

- Identify construction traffic management practices in San Francisco, as well as other jurisdictions that could provide useful guidance for a project of this size and characteristic.
- Describe procedures required by different departments and/or agencies in the City for implementation of a construction management plan, such as reviewing agencies, approval process, and estimated timelines.
- Identify construction traffic management strategies and other elements for the...
Project, and present a cohesive program of operational and demand management strategies designed to maintain acceptable traffic operations during periods of construction activities in the Project area. These could include construction strategies, demand management strategies, alternate route strategies, and public information strategies.

- Coordinate with other projects in construction in the immediate vicinity, so that they can take an integrated approach to construction-related traffic impacts.
- Present guidelines for selection of construction traffic management strategies.

<table>
<thead>
<tr>
<th>M-TR-2A:</th>
<th>Do not construct the proposed northbound left-turn lane from 19th Avenue onto Crespi Drive. The northbound left-turn lane from 19th Avenue to Crespi Drive would require southbound traffic on 19th Avenue to stop to allow northbound left-turning traffic.</th>
<th>Project sponsor and sponsor’s construction contractor(s)</th>
<th>No left hand turn lane would be constructed.</th>
<th>Sponsor to provide revised plans to Planning Department as part of Development Agreement; Planning Department to review and acknowledge change in proposed street configurations.</th>
</tr>
</thead>
</table>

| M-TR-2C: | Construct a dedicated northbound right-turn lane from Lake Merced Boulevard to eastbound Winston Drive. This improvement would provide a dedicated lane for the relatively large number of vehicles expected to execute the northbound right-turn movement. Implementation of the roadway improvement would require roadway widening to the east, which necessitates relocation of the sidewalk, a utility box, a signal mast, and several other elements. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor. The feasibility of this measure is uncertain due to the adjacent unsignalized intersection, approximately 75 feet south of Winston Drive, which would conflict with the northbound right-turn lane. [SFMTA to determine if this is feasible, and if SFMTA determines that it is not, this mitigation measure shall not be implemented.] | Project sponsor and sponsor’s construction contractor(s) in consultation with SFMTA | The following effective PM peak hour auto trip generation rates for each major land use proposed (accounting for the mix of uses and the level of transit service proposed) and the total number of PM peak hour trips generated by the Proposed Project that would trigger the need for this mitigation measure are shown below: | SFMTA |

| Effective PM Peak Hour Trip Generation Rates (vehicle trips per unit of | | | | |

Residential: 0.35 trips / dwelling unit

Retail: 3.24 trips / 1,000 square feet

Commercial: 3.76 trips / 1,000 square feet

Recreational: 0.84 trips / 1,000 square feet

Schools: 1.60 trips / 1,000 square feet

A feasibility study must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 930 trips based on the trip generation rates as described above. If the mitigation measure is deemed feasible, the mitigation measure must be constructed prior to the
M-TR-2D: Provide a third northbound through lane and a second southbound left-turn lane at the Lake Merced Boulevard/Font Boulevard intersection. This mitigation measure would require restriping the northbound right-turn lane at the Lake Merced Boulevard/State Drive intersection as a through lane and removing the on-street parking on the north side of the intersection to recreate the dedicated right-turn lane (assuming that it is required for acceptable operations at this intersection).

Additionally, providing a second southbound left-turn lane at this intersection would require removal of on-street parking on the south side of Font Boulevard to create a second receiving lane, as well as the removal of some spaces on the west side of Lake Merced Boulevard and shifting the through travel lanes to the west to make room for the second southbound left-turn lane.

Implementation would require significant roadway restriping and signal optimization and coordination at multiple intersections, as well as the removal of approximately 25 parking spaces. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor.

[SFMTA to determine if this is feasible, and if SFMTA determines that it is not, this mitigation measure shall not be implemented.]

<table>
<thead>
<tr>
<th>Action</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a third northbound through lane and a second southbound left-turn lane at the Lake Merced Boulevard/Font Boulevard intersection. This mitigation measure would require restriping the northbound right-turn lane at the Lake Merced Boulevard/State Drive intersection as a through lane and removing the on-street parking on the north side of the intersection to recreate the dedicated right-turn lane (assuming that it is required for acceptable operations at this intersection). Additionally, providing a second southbound left-turn lane at this intersection would require removal of on-street parking on the south side of Font Boulevard to create a second receiving lane, as well as the removal of some spaces on the west side of Lake Merced Boulevard and shifting the through travel lanes to the west to make room for the second southbound left-turn lane. Implementation would require significant roadway restriping and signal optimization and coordination at multiple intersections, as well as the removal of approximately 25 parking spaces. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor. [SFMTA to determine if this is feasible, and if SFMTA determines that it is not, this mitigation measure shall not be implemented.]</td>
<td>SFMTA</td>
</tr>
</tbody>
</table>

M-TR-2E: Reconfigure the westbound right-turn and southbound left-turn as the primary movements of the intersection of Lake Merced Boulevard/Brotherhood Way. This would...

<table>
<thead>
<tr>
<th>Action</th>
<th>Responsible Party</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconfigure the westbound right-turn and southbound left-turn as the primary movements of the intersection of Lake Merced Boulevard/Brotherhood Way. This would require significant roadway restriping and signal optimization and coordination at multiple intersections, as well as the removal of approximately 25 parking spaces. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor.</td>
<td>SFMTA</td>
</tr>
</tbody>
</table>

A feasibility study must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 930, based on the trip generation rates described in M-TR-2C.

If the mitigation measure is deemed feasible, the mitigation measure must be constructed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 930, based on the trip generation rates described in M-TR-2C.
convert the northbound approach of Lake Merced Boulevard into the “minor” approach to the intersection. Although the configuration may be able to fit within the existing right-of-way at the intersection, further study is needed to determine the feasibility of this measure. A conceptual intersection configuration is presented in the Project’s Transportation Study. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor.

| M-TR-9: Eliminate the weaving segment between the loop on-ramp from Brotherhood Way and the loop off-ramp to Brotherhood Way by reconfiguring the interchange. Specifically, evaluate the feasibility of closing the loop on-ramp from eastbound Brotherhood Way to northbound SR 1 and instead constructing an eastbound left-turn lane from Brotherhood Way on the east side of the structure. The direct on-ramp from westbound Brotherhood Way to northbound SR 1 should be configured with one access point to serve traffic from westbound Brotherhood Way and those making a left-turn from eastbound Brotherhood Way. The eastbound left turn-lane can and shall be constructed to approximately 150 feet in length. Ultimately, this measure may require a design exception from Caltrans. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor. | construction contractor(s) in consultation with SFMTA | issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 1,128, based on the trip generation rates described in M-TR-2C. If the mitigation measure is deemed feasible, the mitigation measure must be constructed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 1,128, based on the trip generation rates described in M-TR-2C. | SFMTA |
mitigation measure must be constructed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 755, based on the trip generation rates described in M-TR-2C.

M-TR-12: Contribute fair share toward developing and implementing revised transit service plan that increases capacity on the M Ocean View. Fund a fair-share contribution towards evaluating and implementing a revised operating plan to increase frequencies on the M Ocean View from 10 minute headways (as proposed by the project) to 7.5 minute headways north of Parkmerced. This would increase capacity such that the northeast screenline would operate within SFMTA’s capacity utilization threshold in each peak hour. Under this plan, similar to the proposed service plan, every other train would continue east through the Ingleside neighborhood.

The Proposed Project’s fair-share contribution toward implementing a comprehensive revised operating plan should be proportional to the magnitude of the Proposed Project’s impact in relation to additional capacity identified in a revised operating plan.

| Project sponsor and SFMTA | A feasibility study must be completed prior to the completion and operation of the proposed Muni realignment and associated service plan updates. The study shall determine whether additional capacity can be provided on the M Ocean View, and if so, what the Proposed Project’s fair share contribution to the service plan updates shall be. If the mitigation measure is deemed feasible, a fair share contribution must be made prior to the realignment of the M Ocean View through the Parkmerced site. | SFMTA |

M-TR-21A: Purchase an additional light rail vehicle for the M Ocean View. Purchase and insert another light-rail vehicle into the system in order to maintain headways. This will allow Muni to maintain proposed headways on the M Ocean View with a slightly longer route. The procurement of new light rail vehicles shall be completed by

| Project sponsor and SFMTA | Either M-TR-21A or M-TR-21B (but not both) shall be implemented upon rerouting the M Ocean View through the Parkmerced site. | SFMTA |
SFMTA, and shall be completed prior to operating the rerouted system. However, new transit vehicles required to serve the Proposed Project shall not be the financial responsibility of SFMTA.

<table>
<thead>
<tr>
<th>M-TR-21B</th>
<th>Install Transit Signal Priority (TSP) treatments to improve transit travel times on the M Ocean View such that M-TR-21A (an additional vehicle) is not required. A study shall be conducted to determine whether TSP treatments could improve transit travel times along the M Ocean View corridor. If feasible, implement Transit Signal Priority (TSP) measures along the M Ocean View corridor between the Project Site and the West Portal Station. To reduce the Proposed Project’s impact to the M Ocean View line, the TSP measures would need to improve the travel time by approximately 50 seconds in the AM peak period and 30 seconds in the PM peak period. Achieving these reductions would reduce the Project’s impact to travel time to less than half the headway of the current M Ocean View. SFMTA and Caltrans shall design the measure prior to operating the rerouted system; however, funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor. [SFMTA and Caltrans to determine if this is feasible, and if SFMTA or Caltrans determines that it is not, this mitigation measure shall not be implemented.]</th>
<th>Project sponsor and sponsor’s construction contractor(s) in consultation with SFMTA and Caltrans</th>
<th>Either M-TR-21A or M-TR-21B (but not both) shall be implemented upon rerouting the M Ocean View through the Parkmerced site. If both measures are deemed feasible and effective at reducing impacts to less than significant levels, M-TR-21B shall be implemented and M-TR-21A shall not be required.</th>
<th>SFMTA and Caltrans</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-TR-22A</td>
<td>Construct intersection mitigations to reduce congestion caused by vehicular delay. To address Project impacts to the 18 46th Avenue, the Project Sponsor in cooperation with SFMTA shall implement the improvements described in mitigation measures M-TR-2C (construct a dedicated northbound right-turn lane at the Lake Merced Boulevard/Winston Drive intersection), M-TR-2D (reconfigure the northbound approach to consist of a third through lane and provide a second southbound left-turn lane at the Lake Merced Boulevard/Font Boulevard intersection), and M-TR-2E (Reconfigure the westbound right-turn and southbound left-turn as the primary movements of the Lake Merced Boulevard/Brotherhood Way intersection). This involves lane modifications at several intersections along Lake Merced Boulevard to increase vehicular capacity, thus reducing approach delay at those intersections. [SFMTA to determine if this is feasible, and if SFMTA determines that it is not, this mitigation measure shall not be implemented.]</td>
<td>Project sponsor and sponsor’s construction contractor(s) in consultation with SFMTA</td>
<td>See below with regard to M-TR-22C</td>
<td>SFMTA</td>
</tr>
</tbody>
</table>
M-TR-22B: Maintain the proposed headways of the 18 46th Avenue. The Project Sponsor in cooperation with SFMTA shall conduct a study to evaluate the effectiveness and feasibility of the following improvements which could reduce Project impacts on transit operations along the Lake Merced Boulevard corridor, generally between Brotherhood Way and Winston Drive. The study shall create a monitoring program to determine the implementation extent and schedule (as identified below) to maintain the proposed headways of transit lines impacted by the Project.

- A transit-only queue-jump lane should be considered on Lake Merced Boulevard at Font Boulevard. This treatment could be constructed within the existing curb-to-curb right of way for the northbound direction.
- Southbound queue-jumps are viable at State Drive and Font Boulevard with removal of on-street parking. However, these treatments may conflict with mitigation measure M-TR-2C collectively summarized in M-TR-22A), which have been designed to reduce the Project’s traffic impacts.

These improvements would collectively benefit not only the 18 46th Avenue prior to the TEP improvements, but also SamTrans Route 122, and the proposed “shopper shuttle.”

Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor. The Project Sponsor shall fully fund the costs of implementing the transit priority improvements (either the improvements identified above, or alternative improvements of equal or greater effectiveness and comparable cost) as determined by the study and the monitoring program. Other options to be evaluated in the study could include comprehensive replacement of stop-controlled intersections with interconnected traffic signals equipped with transit priority elements.

[SFMTA to determine if this is feasible, and if SFMTA determines that it is not, this mitigation measure shall not be implemented.]

| **M-TR-22C:** Purchase additional transit vehicles as necessary to mitigate the Project impacts to headways on the 18 46th Avenue. Should mitigation measures M-TR-22A or M-TR-22B not be feasible or effective, the Project Sponsor shall work with SFMTA to purchase additional transit vehicles and contribute to operating costs and facility improvements as necessary to mitigate the Project impacts to headways for the transit line. The Project Sponsor shall be responsible for the procurement and financing of the new transit vehicles. | Project sponsor and sponsor’s construction contractor(s) in consultation with SFMTA | A feasibility study of M-TR-22A and M-TR-22B must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 465, based on the trip generation rates described | SFMTA |
To the extent they are deemed either physically feasible or effective at reducing the severity of Impact TR-22, mitigation measures M-TR-22A and M-TR-22B must be constructed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 465, based on the trip generation rates described in M-TR-2C.

The schedule for implementing M-TR-22C shall be determined by the feasibility study for M-TR-22A and M-TR-22B.

| M-TR-25B: Maintain the proposed headways of the 29 Sunset. The Project Sponsor in cooperation with SFMTA shall conduct a study to evaluate the effectiveness and feasibility of installing transit priority elements along Lake Merced Boulevard, between Winston Drive and Sunset Boulevard. This may include, but is not limited to, queue-jump lanes and transit-only lanes. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor. The Project Sponsor shall fully fund the costs of implementing the transit priority improvements (either the improvements identified above, or alternative improvements of equal or greater effectiveness and comparable cost) as determined by the study and the monitoring program. | SFMTA, with funding from Project Sponsor | See discussion of M-TR-25C | SFMTA |
M-TR-25C: Purchase additional transit vehicles as necessary to mitigate the Project impacts to headways on the 29 Sunset. Should mitigation measures M-TR-25A or M-TR-25B not be feasible or effective, the Project Sponsor shall work with SFMTA to purchase additional transit vehicles and contribute to operating costs and facility improvements as necessary to mitigate the Project impacts to headways for the transit line. The procurement of new transit vehicles shall be completed by SFMTA. However, new transit vehicles required to serve the Proposed Project shall not be the financial responsibility of SFMTA.

<table>
<thead>
<tr>
<th>SFMTA, with funding from Project Sponsor</th>
<th>SFMTA, with funding from Project Sponsor</th>
<th>SFMTA</th>
</tr>
</thead>
</table>
| . A feasibility study of M-TR-25A and M-TR-25B must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 1,551, based on the trip generation rates described in M-TR-2C. To the extent they are deemed either physically feasible or effective at reducing the severity of Impact TR-25, mitigation measures M-TR-25A and M-TR-25B must be constructed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 1,551, based on the trip generation rates described in M-TR-2C.

The schedule and/or need for implementing M-TR-25C shall be determined by the feasibility study for |
M-TR-26: Maintain proposed headways on SamTrans Route 122. To address Project impacts to SamTrans Route 122, implement mitigation measures M-TR-22A (lane modifications at several intersections along Lake Merced Boulevard) and M-TR-22B (implementation of transit priority and queue-jump treatments on Lake Merced Boulevard).

Since SamTrans Route 122 shares a route with the 18 46th Avenue, improvements designed to reduce travel time impacts to the 18 46th Avenue would also benefit SamTrans Route 122.

As described in the discussion of mitigation measures M-TR-22A and M-TR-22B, feasibility of these measures is uncertain.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project sponsor and sponsor’s construction contractor(s) in consultation with SFMTA</td>
<td>A feasibility study must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 1,880, based on the trip generation rates described in M-TR-2BC.</td>
</tr>
<tr>
<td>SFMTA</td>
<td>SFMTA</td>
</tr>
</tbody>
</table>

M-TR-36A: Retime signal at 19th Avenue/Holloway Avenue to allocate more green time to the east-west movements. 19th Avenue is a coordinated corridor with closely spaced intersections. Traffic progression relies on the interconnectivity between each signal. Retiming this particular intersection would require evaluation of the corridor. SFMTA would be responsible for evaluating and implementing a new signal timing plan.

[SFMTA and Caltrans to determine if this is feasible, and if SFMTA or Caltrans determines that it is not, this mitigation measure shall not be implemented.]

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SFMTA to carry out feasibility study. If feasible, SFMTA to monitor traffic conditions at this intersection to determine when modifications are needed.</td>
<td>A feasibility study must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 1,725, based on the trip generation rates described in M-TR-2C.</td>
</tr>
<tr>
<td>SFMTA</td>
<td>SFMTA</td>
</tr>
</tbody>
</table>
M-TR-36B
Construct a dedicated westbound right-turn lane and convert the shared westbound through/right-turn lane to a dedicated westbound through lane at the Brotherhood Way/Chumasero Drive intersection.

Construction of this mitigation measure would require roadway widening into the Project Site. However, if the existing pedestrian overcrossing across Brotherhood Way at this intersection remains, widening the roadway to implement this measure may not be feasible due to conflicts with structural support columns for the overcrossing. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor.

[SFMTA to determine if this is feasible, and if SFMTA determines that it is not, this mitigation measure shall not be implemented.]

| SFMTA to carry out feasibility study. | Upon construction of proposed improvements to the Brotherhood Way/Chumasero Drive intersection, as specified in the Development Agreement. | Sponsor to provide revised plans to Planning Department as part of Development Agreement; Planning Department to review and acknowledge change in proposed intersection configurations. |

M-TR-36C
Install a traffic signal at Lake Merced Boulevard/John Muir Drive. The Project Sponsor should contribute a fair-share toward funding this mitigation measure. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor.

[SFMTA to determine if this is feasible, and if SFMTA determines that it is not, this mitigation measure shall not be implemented.]

<p>| SFMTA to carry out feasibility study. If determined feasible, project sponsor to provide fair-share funding and SFMTA to | A feasibility study must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 1,725, based on the trip generation rates described in M-TR-2C. | SFMTA |
| M-TR-36D: | Convert the dedicated southbound through lane into a dedicated left-turn lane at John Daly Boulevard/Lake Merced Boulevard. This would result in the southbound approach consisting of a shared through-right-turn lane and triple left-turn lanes. To achieve adequate lane utilization, John Daly Boulevard would have to be configured to have three eastbound through travel lanes east of the intersection. This would require the removal of some pedestrian elements and converting the existing right-turn lane into the Westlake Shopping Center into a shared through/right-turn lane. Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor. | City of Daly City | A feasibility study must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 2,946, based on the trip generation rates described in M-TR-2C. If the mitigation measure is deemed feasible, the mitigation measure must be constructed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 2,326, based on the trip generation rates described in M-TR-2C. | City of Daly City |</p>
<table>
<thead>
<tr>
<th>Measure</th>
<th>SFMTA to conduct feasibility study. Project sponsor and sponsor’s construction contractor(s) to design and construct in consultation with SFMTA</th>
<th>A feasibility study must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 2,946, based on the trip generation rates described in M-TR-2C.</th>
<th>SFMTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-TR-36E: Install an auxiliary lane from Brotherhood Way through the Lake Merced Boulevard/Gonzalez Drive intersection to provide three northbound through lanes.</td>
<td>Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor. [SFMTA to determine if this is feasible, and if SFMTA determines that it is not, this mitigation measure shall not be implemented.]</td>
<td>If the mitigation measure is deemed feasible, the mitigation measure must be constructed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 2,946, based on the trip generation rates described in M-TR-2C.</td>
<td>SFMTA</td>
</tr>
</tbody>
</table>

M-TR-36F: Install an auxiliary lane from Brotherhood Way through the Lake Merced Boulevard/Gonzalez Drive intersection to provide three northbound through lanes.
Funding, implementation, and construction of this measure shall be the responsibility of the Project Sponsor.

SFMTA to determine if this is feasible, and if SFMTA determines that it is not, this mitigation measure shall not be implemented.

Project sponsor and sponsor’s construction contractor(s) to design and construct in consultation with SFMTA.

Issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 2,946, based on the trip generation rates described in M-TR-2C.

If the mitigation measure is deemed feasible, the mitigation measure must be constructed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 2,946, based on the trip generation rates described in M-TR-2C.

SFMTA to conduct feasibility and capacity study.

Project sponsor to make fair-share contribution.

If feasible, SFMTA to purchase and operate vehicles.

A feasibility study must be completed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 2,667, based on the trip generation rates described in M-TR-2C.

If the mitigation measure

SFMTA
is deemed feasible, the mitigation measure must be constructed prior to the issuance of the certificate of occupancy for any building that, after completion, would make the total number of net new PM peak hour trips at Parkmerced exceed 2,667 based on the trip generation rates described in M-TR-2C.

<table>
<thead>
<tr>
<th>Noise</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-NO-1a: Reduce Noise Levels During Construction</td>
<td>Project Sponsor and construction contractor(s)</td>
<td>During Construction of each phase</td>
<td>Planning Department</td>
</tr>
<tr>
<td>The following practices shall be incorporated into the construction contract agreement documents to be implemented by the construction contractor:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Provide enclosures and muffs for stationary equipment, shroud or shield impact tools, and install barriers around particularly noisy activities at the construction sites so that the line of sight between the construction activities and nearby sensitive receptor locations is blocked to the maximum feasible extent;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use construction equipment with lower noise emission ratings whenever possible, particularly for air compressors;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Provide sound-control devices on equipment no less effective than those provided by the manufacturer;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Locate stationary equipment, material stockpiles, and vehicle staging areas as far as practicable from sensitive receptor locations;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Prohibit unnecessary idling of internal combustion engines;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Require applicable construction-related vehicles and equipment to use designated truck routes to access the project sites;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Implement noise attenuation measures to the extent feasible, which may include, but are not limited to, noise barriers or noise blankets. The</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The placement of such attenuation measures shall be reviewed and approved by the Director of Public Works prior to issuance of development permits for construction activities.

Designate a Noise Disturbance Coordinator who shall be responsible for responding to complaints about noise during construction. The telephone number of the Noise Disturbance Coordinator shall be conspicuously posted at the construction site and shall be provided to the City. Copies of the construction schedule shall also be posted at nearby noise-sensitive areas.

M-NO-1b: Pile Driving Noise-Reducing Techniques and Muffling Devices

The Project Sponsor shall require its construction contractor to use noise-reducing pile driving techniques if nearby buildings are subject to pile driving noise and vibration. These techniques shall include pre-drilling pile holes (if feasible, based on soils; see Mitigation Measure M-NO-2, pp. V.F.20-V.F.21) to the maximum feasible depth, installing intake and exhaust mufflers on pile driving equipment, vibrating piles into place when feasible, and installing shrouds around the pile driving hammer where feasible. Construction contractors shall be required to use construction equipment with state-of-the-art noise shielding and muffling devices. In addition, at least 48 hours prior to pile driving activities, the Project Sponsor shall notify building owners and occupants within 500 feet of the project site of the dates, hours, and expected duration of such activities.

| Project Sponsor | During Construction of each phase if pile driving is required. At least 48 hours prior to pile driving activities, the Project Sponsor shall notify building owners and occupants within 500 feet of the project site of the dates, hours, and expected duration of such activities. |
| Planning Department |

M-NO-2: Pre-Construction Assessment to Minimize Vibration Levels Associated with Impact Activities

The Project Sponsor shall hire a qualified geotechnical engineer to conduct a pre-construction assessment of existing subsurface conditions and the structural integrity of nearby buildings subject to pile driving noise and vibration prior to receiving a building permit. If recommended by the geotechnical engineer, for structures or facilities within 50 feet of pile driving activities, the Project Sponsor shall require ground-borne vibration monitoring of nearby structures. Such methods and technologies shall be based on the specific conditions at the construction site such as, but not limited to, the following:

- Pre-construction surveying of potentially affected structures;
- Underpinning of foundations of potentially affected structures, as necessary;

The construction plan shall include a monitoring program to detect ground settlement or lateral movement of structures in the vicinity of impact activities. Monitoring results shall be submitted to the Department of Building Inspection. In the event of unacceptable ground movement, as determined by the Department of Building Inspection, the following actions shall be taken:

| Project Sponsor and qualified geotechnical engineers | Prior to commencement of construction of each phase. |
| Geotechnical engineer to provide reports to Department of Building Inspection for review and approval |
| Inspection, all impact work shall cease and corrective measures shall be implemented. The impact program and ground stabilization measures shall be reevaluated and approved by the Department of Building Inspection. |
|---|---|---|---|
The proposed realignment of the Muni M Ocean View light rail and its operations shall be designed with input from a qualified acoustical consultant so that light rail operation noise levels are attenuated at and in the vicinity of the final alignment so that the San Francisco Land Use Compatibility Guidelines for Community Noise standards are not exceeded. The Light Rail Noise and Vibration Reduction Plan shall be prepared by a qualified acoustical consultant and submitted to the City for review and approval prior to construction of the proposed realignment. The plan shall identify noise attenuation measures that would ensure compliance with the City’s community noise guidelines, including, but not limited to, requiring light rail operators to reduce vehicle speeds when approaching and departing and operating within the Project Site. The following noise and vibration attenuation measures shall be included as part of the plan:

- **Rail Bed Design:** The light rail trackwork shall be designed to prevent the production of excessive vibration levels at the nearest sensitive structures. The design should include the installation of high-resilience direct fixation fasteners for embedded track, ballast mat for ballast and tie track, or other measures as determined by a qualified light rail vibration consultant.

- **Rail Grinding and Replacement:** As rails wear, both noise levels from light rail by-passes and vibration levels can increase. By grinding down or replacing worn rail, noise and vibration levels will remain at the initial operating levels. Rail grinding or replacement is normally performed every 3 to 5 years.

- **Wheel Truing and Replacement:** Wheel truing is a method of grinding down flat spots (commonly called “wheel flats”) on the light rail’s wheels. Flat spots occur primarily because of hard braking. When flat spots occur they can cause increases in both the noise and vibration levels produced by the light rail vehicles.

- **Vehicle Maintenance:** Vehicle maintenance includes performing scheduled and general maintenance on items such as air conditioning units, bearings, wheel skirts, and other mechanical units on the light rail vehicles. Keeping the mechanical system on the light rail vehicles in top condition will also help to control noise and vibration levels.

- **Operator Training:** Operators will be trained to maintain light rail travel speeds at those speeds given in the operation plan and to avoid “hard braking” whenever possible. As stated, hard braking can cause
wheel flats and may also damage track. Furthermore, by training operators to identify potential wheel flats and other mechanical problems with the trains, proper maintenance can be performed in a timely manner. During final engineering design, vibration propagation testing shall be conducted at the final light rail alignment near Gonzalez Drive and Diaz Avenue to confirm the predicted impact and finalize the mitigation measures. Where vibration impacts are confirmed, they shall be reduced to meet the FTA criteria.

M-NO-6: Residential Use Plan Review by Qualified Acoustical Consultant

To ensure that interior noise levels induced by the light rail station, and by automobile, bus, and light rail traffic at noise sensitive uses do not result in excessive awakenings, or exceed an interior noise level standard of 45 dBA (L_{dn}), a qualified acoustical consultant shall review plans for all new residential uses, the new Pre K-5 school, and new day care facility, and provide recommendations to provide acoustical insulation or other equivalent measures to ensure that interior noise levels would not exceed acceptable limits and a cumulative noise level of 45 dBA (L_{dn}). These studies shall be presented to the Department of Building Inspection at the time that permits for individual buildings are submitted for review.

<table>
<thead>
<tr>
<th>Project Sponsor to retain qualified acoustical consultant</th>
<th>Prior to issuance of each individual building permit</th>
<th>Consultant to submit reports to Department of Building Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building designers to follow the recommendations of the acoustical consultant</td>
<td>DBI to review plans to ensure recommendations are included in plans</td>
<td></td>
</tr>
</tbody>
</table>

M-NO-7: Stationary Operational Noise Sources.

All utility and industrial stationary noise sources (e.g., district energy system, wind turbines, etc.) shall be located away from noise sensitive receptors, be enclosed within structures with adequate setback and screening, be installed adjacent to noise reducing shields, or constructed with some other adequate noise attenuating features, to achieve compliance with the noise level limits of the San Francisco Noise Ordinance and to achieve acceptable levels at the property lines of nearby residences or other sensitive uses, as determined by the San Francisco Land Use Compatibility Guidelines for Community Noise standards. Once the stationary noise sources have been installed, the Project Sponsor shall retain a qualified acoustics specialist to monitor noise levels to ensure compliance with local noise standards. Initial noise monitoring shall occur within three months after the installation of the stationary noise source, and a report of the results shall be made available to on-site tenants. Subsequent noise monitoring shall be conducted by the Project Sponsor, within three months of on-site tenants reporting persistent intrusive noise. If project stationary noise sources exceed the applicable noise standards, a qualified acoustical consultant shall by retained by the Sponsor to install additional noise attenuation measures or acoustic insulation in order to meet the applicable noise standards.

<table>
<thead>
<tr>
<th>Project Sponsor to retain qualified acoustical consultant</th>
<th>Within three months of installation of stationary noise sources.</th>
<th>Planning Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsequent noise monitoring within three months of on-site tenants reporting persistent intrusive noise.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M-NO-8: Residential Building Plan Review by Qualified Acoustical Consultant

To ensure that noise produced during garbage collection is reduced to the maximum practicable extent, a qualified acoustical consultant shall review plans for all new residential buildings and associated garbage collection facilities, and provide recommendations to provide enclosures, acoustical shielding, or other equivalent measures. These studies shall be presented to the Department of Building Inspection at the time that permits for individual buildings are submitted for review.

Project Sponsor to retain qualified acoustical consultant	**Prior to issuance of a building permit for each individual building.**	**Department of Building Inspection**

Air Quality

M-AQ-3: Construction Exhaust Emissions

The applicant shall implement feasible combustion emission reduction strategies, during construction activities, including the following measures:

- The project applicant shall keep all off-road equipment well-tuned and regularly serviced to minimize exhaust emissions, and shall establish a regular and frequent check-up and service/maintenance program for equipment.
- Off-road diesel equipment operators shall be required to shut down their engines rather than idle for more than five minutes, unless such idling is necessary for proper operation of the equipment.
- Clear signage shall be provided for construction workers at all access points.

The applicant shall require construction contracts to specify implementation of the following combustion emission reduction strategies, during construction activities:

- The project should use equipment with engines compliant with USEPA Tier 3 engine standards or better for all off-road equipment, or utilize Retrofit Emission Control Devices which consist of diesel oxidation catalysts, diesel particulate filters or similar retrofit equipment control technology verified by the California Air Resources Board (CARB) (http://www.arb.ca.gov/diesel/verdev/verdev.htm), where feasible.
- The project shall use equipment with engines compliant with USEPA Tier 4 engine standards or better for 50 percent of the fleet by 2015, increasing to 100 percent by 2020.

The project shall use 2007 or newer model year haul trucks, where feasible.

Project Sponsor and Sponsor’s construction contractor(s).	**Submit planned emission reduction strategies and copies of applicable construction specification related to off-road equipment for each construction phase prior to issuance of the site permit for that phase.**	**Planning Department and Department of Building Inspection**

M-AQ-15: Mechanical Ventilation Systems for New Residential Uses

New residential uses within 200 feet from the edge of the Project Site boundary along Junipero Serra Boulevard, including ramps on Brotherhood Way, 19th Avenue, or Brotherhood Way shall

Project Sponsor and Sponsor’s construction	**Prior to issuance of a building permit for each individual building.**	**Planning Department and**

incorporate mechanical ventilation systems. If the project anticipates operable windows or other sources of infiltration of ambient air, the residences shall be provided with a central HVAC (heating, ventilation and air conditioning) system that includes high efficiency filters for particulates (MERV-13 or higher). The system should operate to maintain positive pressure within the building interior to prevent entrainment of outdoor air indoors. Alternatively, if the development limits infiltration though non-operable windows and other techniques, the residences shall be provided with a ventilation and filtration system that meets the following specifications: (1) ASHRAE MERV-13 supply air filters; (2) >= 1 air exchanges per hour of fresh outside filtered air; (3) >= 4 air exchanges / hour recirculation; and (4) <= 0.25 air exchanges per hour in unfiltered infiltration.

Wind and Shadow

M-WS-1a: Wind Impact Analysis for Proposed Buildings Over 100 feet in Height.
A wind impact analysis shall be required for any proposed building over 100 feet in height. Wind tunnel testing shall be required for each building unless, upon review by a qualified wind consultant, it is determined that the exposure, massing, and/or orientation of the building are such that adverse wind impacts would not occur. The analysis shall assess wind conditions for the building in conjunction with the anticipated pattern of development on surrounding blocks. All feasible means (such as relocating or reorienting certain buildings, sculpting buildings to include podiums and roof terraces, or installing landscaping) to eliminate hazardous winds, if predicted, shall be implemented. A significant wind impact would be a substantial increase in the number of hours that the 26 mph wind hazard criterion is exceeded or a substantial increase in the area subjected to winds greater than 26 mph.

<table>
<thead>
<tr>
<th>Project Sponsor to retain qualified professional consultant</th>
<th>Prior to building permit issuance for any proposed building over 100 feet in height</th>
<th>Planning Department</th>
</tr>
</thead>
</table>

M-WS-1b: Wind Tunnel Testing for Proposed Buildings Over 50 feet in Height.
Wind tunnel testing shall be required for any proposed building over 50 feet in height that is within 200 feet of any of the existing 13-story buildings on the Project Site. The analysis shall assess wind conditions for the building in conjunction with the anticipated pattern of development one surrounding blocks. All feasible means (such as relocating or reorienting certain buildings, sculpting buildings to include podiums and roof terraces, or installing landscaping) to eliminate hazardous winds, if predicted, shall be implemented. A significant wind impact would be a substantial increase in the number of hours that the 26 mph wind hazard criterion is exceeded or a substantial increase in the area subjected to winds greater than 26 mph.

<table>
<thead>
<tr>
<th>Project Sponsor to retain qualified professional consultant</th>
<th>Prior to building permit issuance for any proposed building over 50 feet in height that is within 200 feet of any of the existing 13-story buildings on the Project Site</th>
<th>Planning Department and Department of Building Inspection</th>
</tr>
</thead>
</table>

Biological Resources

M-BI-1a: Pre-construction Survey for Gumplant. A pre-construction survey shall be conducted to locate and fence the boundaries of any gumplant populations with a

<table>
<thead>
<tr>
<th>Project Sponsor to retain qualified</th>
<th>Prior to construction for each phase, a</th>
<th>Planning Department</th>
</tr>
</thead>
</table>
25-foot buffer zone. To determine if any previously unknown special-status plant or animal species would be affected, a preconstruction survey shall be conducted within the construction area in the spring (May and June) by a qualified biologist authorized by CDFG to conduct such activities.

M-BI-1b: Avoidance of Gumplant During Construction. The configuration of the construction area shall be modified to avoid any special-status species encountered during the pre-construction survey. No construction activities shall occur within the buffer area. The Project Sponsor shall ensure that the construction area is fenced to the minimum size necessary to avoid impacts from the outfall to the willow basin.

M-BI-1c: Restoration and Expansion of Gumplant Population. If it is not possible to avoid the gumplant population during construction, the Project Sponsor shall implement a restoration and mitigation plan in consultation with the San Francisco Planning Department (City) and CDFG. Impacts to the San Francisco gumplant will be mitigated by restoring the affected area and expanding the size of the population by increasing the area and number of individual gumplant plants. The size and density of the affected gumplant population shall be measured prior to construction. This mitigation plan shall describe methods for planting, monitoring, and maintaining the affected area. Performance standards to determine success of the mitigation shall be attained that show that the cover and density of the population affected has been replaced. An annual report shall be submitted to the City and CDFG that documents maintenance and monitoring methods and results. Such monitoring and maintenance shall continue for at least 5 years beyond the implementation of the mitigation plan.

M-BI-2a: Preconstruction Survey for Common Yellowthroat Nesting Activities and Buffer Area. If outfall repair or construction activities occur along the Lake Merced shoreline during the breeding season of the common yellowthroat (March-August), a qualified ornithologist authorized by CDFG to conduct such activities shall conduct a preconstruction survey of the work area to determine if any birds are nesting in or in the vicinity of the outfall. The preconstruction survey shall be conducted within 15 days prior to the start of work from March through May (since there is higher
potential for birds to initiate nesting during this period), and within 30 days prior to the start of work from June through August. If active nests are found in the work area, a buffer of 50 feet shall be established between the work area and the nest(s). No work will be allowed within the buffer until the young have successfully fledged. The size of the nest buffer can be reduced as a result of consultation with the CDFG. Such a reduction shall be dependent on a relatively low frequency and intensity of disturbance and the tolerance of the nesting birds to human disturbance.

| M-BI-2b: Monitoring for Western Pond Turtles During Construction. | Project Sponsor to retain qualified professional consultant | During construction for each phase | CDFG and Planning Department |
| Stormwater outfall construction activities at the Lake Merced outfall site(s) shall be monitored by a biologist to ensure that no western pond turtles are present and subjected to harm. If turtles are present, the biologist shall capture and relocate them or ensure that they are moved to an area outside of the construction zone and away from harm. Identification, capture and relocation of turtles shall be done by a qualified biologist authorized by CDFG to conduct such activities. | | | |

| M-BI-2c: SWPPP Design Details for Site Drainage and Water Quality Control in Outfall Construction Area. | Project Sponsor to retain qualified professional consultant | Prior to and during construction for each phase | SFPUC |
| The SWPPP is required and shall include design details and construction specifications for all site drainage control and other water quality control strategies. It shall also detail the implementation schedule, methods and locations of erosion and water quality control features. The California Stormwater Quality Association Construction Handbook provides guidance for selecting and implementing Best Management Practices (BMPs) that would eliminate or reduce the discharge of pollutants from construction sites to waters of the state. Three levels of BMPs are considered for each potential pollutant: source control, management control, and treatment control. BMPS which could be implemented as part of the SWPPP include: hydroseeding, straw mulch, temporary stream bank stabilization, silt fences, sediment traps, temporary stream crossings, stockpile management, and spill prevention and control. | | | |
biologically valuable condition. This shall entail planting of vegetation, if it is not expected to return on its own, and removal of non-native species. A mitigation plan that describes site preparation, planting, performance standards, maintenance (including weed control), and monitoring methods shall be developed for impacts to marsh and riparian vegetation. The performance standards shall include a mitigation ratio of 1:1, standards for cover, plant composition of the restored area, and erosion, at the end of 5 years. Remedial activities shall be outlined in the plan to address any of the restoration areas that are not attaining performance standards at the end of 5 years. The mitigation area shall be monitored and maintained for at least 5 years. Monitoring and maintenance activities shall be summarized in an annual report to be prepared for each of the 5 years the area is monitored. This mitigation plan shall be reviewed and approved by the City prior to the approval of the final map for the project.

<table>
<thead>
<tr>
<th>M-BI-4: Breeding Bird Pre-construction Surveys and Buffer Areas</th>
<th>Professional consultant</th>
<th>Approval of the final map for Project. The mitigation area shall be monitored and maintained for at least 5 years. Monitoring and maintenance activities shall be summarized in an annual report to be prepared for each of the 5 years the area is monitored.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation removal activities for the Proposed Project and stormwater treatment option areas and building demolitions shall be conducted during the non-breeding season (i.e., September through February) to avoid impact to nesting birds or preconstruction surveys shall be conducted for work scheduled during the breeding season (March through August). Preconstruction surveys shall be conducted by a qualified ornithologist, authorized by CDFG to conduct such activities, to determine if any birds are nesting in or in the vicinity of vegetation or buildings to be removed. The preconstruction survey shall be conducted within 15 days prior to the start of work from March through May (since there is higher potential for birds to initiate nesting during this period), and within 30 days prior to the start of work from June through August. If active songbird nests are found in the work area, a buffer of 50 feet between the nest and work area shall be established. If active raptor nests are found in the work area, a buffer of 200 feet shall be established between the nest and work area. No work will be allowed with the buffer(s) until the young have successfully fledged. In some instances, the size of the nest buffer can be reduced and its size shall therefore be determined by the biologist in consultation with the CDFG, and shall be based to a large extent on the nesting species, its sensitivity to disturbance, and the type and frequency of disturbance.</td>
<td>Project Sponsor to retain qualified professional consultant</td>
<td>Vegetation removal activities shall be conducted during the non-breeding season (i.e., September through February), OR preconstruction surveys shall be conducted for work scheduled during the breeding season (March through August). The preconstruction survey shall be conducted within 15 days prior to the start of work from March through May, and within 30 days prior to the start of work from June through August. If active raptor nests are found in the work area, no work will be allowed with the buffer(s) until the young have successfully fledged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M-BI-7a: Pre-maintenance Surveys for Active Bird Nests and Buffer Areas. If maintenance of the stormwater treatment system occurs during the nesting season (March-August), a qualified ornithologist, authorized by CDFG to conduct such activities, shall conduct a survey of the work area to determine if any birds are nesting in the work area or in the vicinity. The survey shall be conducted within 15 days prior to the start of maintenance work from March through May (since there is higher potential for birds to initiate nesting during this period), and within 30 days prior to the start of work from June through August. If active songbird nests are found in the work area, a buffer of 50 feet between the nest and the work area shall be established. If active raptor nests are found in the work area, a buffer of 200 feet shall be established between the nest and the work area. No work will be allowed within the buffer until the young have successfully fledged. In some instances, the size of the buffer can be reduced and its size shall therefore be determined by the biologist in consultation with the CDFG, and shall be based to a large extent on the nesting species, its sensitivity to disturbance, and the type and frequency of disturbance.

M-BI-7b: Monitoring During Maintenance Activities. The on-site stormwater features shall be monitored by a qualified biologist, authorized by CDFG to conduct such activities, during maintenance activities to ensure that no western pond turtles or other special-status amphibians or reptiles are present and subject to harm. If turtles or other special-status reptiles and amphibians are present, the biologist shall capture and relocate them, or ensure that they are moved to an area outside of the construction zone and away from harm.

M-BI-8a: Pre-permitting Surveys for Birds and Bats. To obtain baseline information on existing bird use of the proposed wind turbine alignment along Lake Merced Boulevard, the Project Sponsor shall retain a qualified wildlife biologist, authorized by CDFG to conduct such activities, to conduct bi-weekly bird use counts (BUCs) of the area for two years using methods described in Anderson and CEC/CDFG. Three point count stations spaced approximately 500 feet apart in the existing median between Lake Merced Boulevard and Vidal Drive would likely be sufficient to detect all birds using and/or flying through the area, although the final study design shall be subject to review and approval by the CDFG. Methods other than BUCs may be used if improved methods for documenting bird use at proposed wind turbine sites are developed in the interim period between the certification of this EIR and the initiation of the wind turbine program.

Obtaining baseline information on existing bat use of the wind turbine alignment is complicated by the fact that bats are much more difficult to detect than birds and
available monitoring methods (i.e., acoustic monitoring of echolocation calls) may not be feasible in a dense urban environment. As such, the Project Sponsor shall retain a qualified bat expert to conduct a one-day habitat assessment of the proposed wind turbine alignment. Based on the results of the assessment, the bat expert shall provide recommendations on the appropriate level of monitoring required to establish baseline patterns of seasonal bat activity along the proposed wind turbine alignment. If the bat expert believes that focused bat surveys are not necessary or that the proposed wind turbines do not pose a significant risk to local bat populations, he/she shall explain his/her opinions following standard scientific report format.

Similarly, the Project Sponsor shall retain a biologist experienced with nocturnal bird survey methods (e.g., radar, acoustic monitoring, visual surveys using night vision equipment) to conduct an assessment of the proposed wind turbine alignment and assess the feasibility of conducting nocturnal surveys for migrating birds. Given substantial uncertainty and variation over the optimal protocols for detecting nocturnal migrating birds and the viability of such protocols to predict collision risk, it is important to identify species of primary concern and develop site-specific questions that any nocturnal studies should address prior to implementing a nocturnal monitoring program. The biologist retained to conduct the nocturnal bird survey feasibility assessment shall provide such information in their report.

Data gathered during the pre-permitting surveys shall be used to develop baseline estimates of bird and bat fatality rates (expressed as fatalities/megawatt/year) from the proposed wind turbines. Given the lack of scientific studies on wind turbine-wildlife interactions in urban areas and vertical-axis wind turbine (VAWT) impacts on wildlife, it will be difficult if not impossible to apply known fatality rates from other studies to the project site (although such information may become available by the time the wind turbine program is implemented). As such, baseline fatality estimates shall be developed with input from scientists experienced with statistical analysis of wind turbine-wildlife interactions.

M-BI-8b: Operations Monitoring Program. The Project Sponsor shall implement a scientifically defensible operations monitoring program to estimate bird and bat fatality rates from the new wind turbines. Operations monitoring typically consists of counts of bird and bat carcasses in the vicinity of turbines and ongoing bird use data collection (i.e., continued BUCs) using the most current methods prescribed by the California Energy Commission and CDFG. Given the lack of published information on impacts to birds and bats from urban wind turbines and the site’s proximity to a major wildlife habitat feature (i.e., Lake Merced), and the Pacific flyway a minimum of two years of post-construction monitoring shall be conducted. The operations monitoring program shall be developed with input from the CDFG, USFWS, and scientists experienced in

| Project Sponsor to retain qualified professional consultant | A post-construction monitoring program shall be established for a minimum of two years after installation of wind turbines. | CDFG and USFWS and Planning Department (Reporting Only) |

Prior to permit issuance for wind turbines, a biologist experienced with nocturnal bird survey methods (e.g., radar, acoustic monitoring, visual surveys using night vision equipment) shall conduct an assessment of the proposed wind turbine alignment.
the analysis of wind turbine-wildlife interactions.

M-BI-8c: Implementation of Management Strategies (Wind Turbines). If results of operations monitoring indicate that bird and/or bat fatality rates exceed those predicted during the pre-permitting phase, the City shall require implementation of some or all of the following management strategies or compensation measures:

1. Seasonal shutdown (e.g., spring or fall migratory period, depending on results of surveys) of a particular turbine or turbines that may be found to be contributing a disproportionate amount to bird and/or bat fatalities.
2. Contribution of funds towards the management, restoration, enhancement, and/or protection of the local habitats used by species affected by wind turbines (e.g., lands managed by San Francisco Recreation and Park Natural Areas Program or the National Park Service Golden Gate National Recreation Area).

Contribution of funds towards research programs aimed at wind turbine-wildlife interactions, nocturnal bird study methods, and/or collision risk.

M-BI-8d: Design Elements to Minimize Bird and/or Bat Strikes. The following measures shall be incorporated into wind turbine design to minimize the likelihood of bird strikes:

1. FAA-mandated obstruction lighting at the turbine tops shall consist of red or white strobe-type lights rather than steady-burning lights, as several studies have demonstrated reduced mortality of night-migrating birds at facilities using strobe-type lights.
2. No guy wires shall be used to support the wind turbines, as they are a known hazard to birds.
3. To prevent bird collisions with overhead power lines, turbines shall be powered via underground electrical connections.
4. Bare soil or manicured grass around turbine bases may provide habitat for small mammals, resulting in increased prey availability for raptors and putting them at increased risk of collision. To discourage small mammals from burrowing under or near turbine bases, gravel or artificial turf shall be placed at least 5 feet around each turbine foundation.

Additional design elements proven to minimize bird and/or bat strikes shall be implemented as information on such measures becomes available in the scientific literature and/or agency guidance documents.

M-BI-8e: Incidental Take Permit. As mentioned above, the proposed wind turbines

<table>
<thead>
<tr>
<th>M-BI-8c</th>
<th>M-BI-8d</th>
<th>M-BI-8e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Sponsor to retain qualified professional consultant</td>
<td>Upon conclusion of monitoring program, implementation of management strategies or compensation measures.</td>
<td>Planning Department</td>
</tr>
<tr>
<td>Project Sponsor to retain qualified professional consultant</td>
<td>Prior to wind turbine permit issuance, design measures shall be incorporated.</td>
<td>Planning Department</td>
</tr>
<tr>
<td>Project Sponsor</td>
<td>Prior to wind turbine</td>
<td>CDFG</td>
</tr>
</tbody>
</table>
may result in mortality of bank swallows, which is state-listed as threatened under the California Endangered Species Act (CESA) or other species of concern. Given the current uncertainty over the extent and magnitude of potential take of bank swallows or other species of concern, the Project Sponsor shall apply to the CDFG for an incidental take permit pursuant to Section 2081 of CESA and implement all CDFG conditions of that permit, which may include the some or all of the mitigation measures described above. The permit application will comply with the applicable requirements of Section 738.2 of CESA, as it may be amended.

<table>
<thead>
<tr>
<th>M-BI-9: Bird-Safe Design Practices. The Project Sponsor shall ensure that the new residential towers should follow bird-safe design practices as much as possible to minimize the potential for increased bird-window collisions. Building facades should create “visual noise” via cladding or other design features that make it easier for birds to identify buildings as such and not mistake windows for open sky or trees. Windows should not be comprised of clear or reflective glass, which is coated with a reflective film to control solar heat gain. Instead, windows should incorporate different glass types such as UV-A or fritted glass. Windows should also incorporate UV-absorbing and UV-reflecting stripe and grid patterns in locations with the highest potential for bird-window collisions (e.g., lower levels near trees).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Sponsor to retain qualified professional consultant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M-BI-10: Study of Willow Basin to Control Water Level and Duration of Inundation. A hydrological study shall be conducted on the willow basin to determine whether the additional input of storm runoff will affect the duration and depth of ponding. If the level of water will rise to within 3 feet of the base of any wax myrtle and remain at that level for more than 4 days, then the outlet of the willow basin shall be modified to prevent such rise of water level and duration. If the water level already exhibits these characteristics, then no change shall be made to ensure that the existing depth and duration of ponding in the willow basin remains as is.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Sponsor to retain qualified professional consultant</td>
</tr>
</tbody>
</table>

Hydrology and Water Quality

M-HY-1: Best Management Practices for SWPPP. A pollution prevention plan shall

<table>
<thead>
<tr>
<th>Project Sponsor and</th>
<th>Submit copy of NOI and</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFPUC</td>
<td>SFPUC</td>
</tr>
</tbody>
</table>
be developed for all construction activities on the Project Site. The applicant shall apply for coverage under the NPDES General Construction Activity Permit from the State Water Quality Control Board by filing a Notice of Intent (NOI), and, as part of the permit and monitoring process, prepare and implement a Stormwater Pollution Prevention Plan (SWPPP). The SWPPP shall include design details and construction specifications for all site drainage control and other water quality control strategies, including Best Management Practices (BMPs) and other measures for stormwater pollution reduction. These include, but are not limited to, the following:

- Soil stabilization controls, such as hydroseeding and/or placement of straw mulch;
- Watering for dust control;
- Perimeter silt fences;
- Sediment traps/basins;
- Minimizing the length of open trenches and stockpile volumes;
- Slip prevention and control, such as minimizing grading during the rainy season; and

Controlled entry and egress from the excavation area to minimize off-site tracking of sediment, and vehicle and equipment wash-down facilities.

Hazards and Hazardous Materials

The Proposed Project would be carried out in four major Phases over a 20-year construction period. Within the geographic boundaries to be redeveloped within each Phase, the Project Sponsor shall, if appropriate, identify large, planned areas of redevelopment. For the purpose of this mitigation measure, each such area is referred to as a "Sub-Phase." The steps below shall be taken for each Sub-Phase. If the Project Sponsor does not identify such areas within a Phase, then each step shall be taken for the geographic boundaries of the entire Phase at once.

Step 1: Soil Testing

Soil testing would be done incrementally over the 20-year construction period, including pre-testing of each Sub-Phase, prior to excavation and/or soil disturbance. Prior to obtaining building permits for a particular Sub-Phase, the Project Sponsor shall hire a consultant to collect soil samples (borings) from selected locations in the work area in which soil would be disturbed and/or excavated. (This initial soil sampling and reporting shall be done prior to excavation, but additional soil testing from on-site soil stockpiles

| Project Sponsor to retain qualified professional consultant for Steps 1, 2 and 4. Construction contractor to carry out and report on activities required in Step 3. | Soil report and SMP shall be approved by the San Francisco Department of Public Health prior to permit issuance for each phase, with a copy to the Planning Department. Construction contractor to provide annual reports to Department of Public Health (or quarterly reports if required by SMP), with copies to the Planning Department. | Department of Public Health |
may also be required, if there are indications [e.g., odors, visible staining] of contamination in the excavated soil.)

The soil samples shall be tested for these Compounds of Concern: total lead, petroleum hydrocarbons, volatile organic compounds (VOCs), and four heavy metals: chromium, nickel, copper, and zinc. The consultant shall analyze the soil borings as discrete, not composite samples. The consultant shall prepare a report on the soil testing for the Compounds of Concern that includes the laboratory results of the soil testing and a map that shows the locations from which the consultant collected the soil samples.

The Project Sponsor shall submit the report on the soil testing for the Compounds of Concern for the Sub-Phase and a fee of $501 in the form of a check payable to the San Francisco Department of Public Health (DPH), to the Hazardous Waste Program, Department of Public Health, 1390 Market Street, Suite 210, San Francisco, California 94102. The fee of $501 shall cover three hours of soil testing report review and administrative handling. If additional review is necessary, DPH shall bill the Project Sponsor for each additional hour of review over the first three hours, at a rate of $167 per hour. These fees shall be charged pursuant to Section 31.47(c) of the San Francisco Administrative Code. DPH shall review the soil testing program to determine whether soils on the Project Site are contaminated with any of the Compounds of Concern at or above potentially hazardous levels.

Step 2: Preparation of Site Mitigation Plans

Incrementally over the 20-year construction period, for each Sub-Phase, prior to beginning demolition, excavation, and construction work for that area, the Project Sponsor shall prepare a Site Mitigation Plan (SMP). The SMP for the Sub-Phase shall include a discussion of the level of contamination of soils by Compounds of Concern, if any, based on the soils testing in Step 1. The SMP shall set forth mitigation measures for managing contaminated soils on the site, if any, including but not limited to: 1) the alternatives for managing contaminated soils on the site (e.g., encapsulation, partial or complete removal, treatment, recycling for reuse, or a combination); 2) the preferred alternative for managing contaminated soils on the site and a brief justification; and 3) the specific practices to be used to handle, haul, and dispose of contaminated soils on the site. The SMP for each Sub-Phase shall be submitted to the Department of Public Health (DPH) for review and approval. A copy of the SMP shall be submitted to the Planning Department to become part of the case file. Additionally, the DPH may require confirmatory samples for the project site.

Step 3: Handling, Hauling, and Disposal Contaminated Soils

(a) Specific work practices: The construction contractor shall be alert for the presence of contaminated soils during excavation and other construction activities on the site (detected...
through soil odor, color, and texture and results of on-site soil testing), and shall be
prepared to handle, profile (i.e., characterize), and dispose of such soils appropriately (i.e.,
as dictated by local, State, and federal regulations, including OSHA work practices) when
such soils are encountered on the site.

(b) Dust suppression: Soils exposed during excavation for site preparation and project
construction activities shall be kept moist throughout the time they are exposed, both
during and after work hours.

(c) Surface water runoff control: Where soils are stockpiled, visqueen shall be used to
create an impermeable liner, both beneath and on top of the soils, with a berm to contain
any potential surface water runoff from the soil stockpiles during inclement weather.

(d) Soils replacement: If necessary, clean fill or other suitable material(s) shall be used to
bring portions of the Project Site, where lead-contaminated soils have been excavated and
removed, up to construction grade.

(e) Hauling and disposal: If soils are contaminated such that they must be hauled off-site
for treatment and/or disposal, contaminated soils shall be hauled off the Project Site by
waste hauling trucks appropriately certified with the State of California and adequately
covered to prevent dispersion of the soils during transit, and shall be disposed of at the
permitted hazardous waste disposal facility registered with the State of California.

Step 4: Preparation of Closure/Certification Report for Each Sub-Phase

After excavation and foundation construction activities are completed for a particular
Sub-Phase, the Project Sponsor shall prepare and submit a closure/certification report
to DPH for review and approval for that area. The closure/certification report shall
include the mitigation measures (if any were necessary) in the SMP for handling and
removing contaminated soils, if any, from the Project Site, and if applicable, whether
the construction contractor modified any of these mitigation measures, and how and
why the construction contractor modified those mitigation measures.

M-HZ-2B: Hazards (Decontamination of Vehicles)

If, for any Sub-Phase, the San Francisco Department of Public Health (DPH)
determines that the soils in that area are contaminated with contaminants at or above
potentially hazardous levels, all trucks and excavation and soil handling equipment
working in that area shall be decontaminated following use and prior to removal from
the site. Gross contamination shall be first removed through brushing, wiping, or dry
brooming. The vehicle or equipment shall then be washed clean (including tires).
Prior to removal from the work site, all vehicles and equipment shall be inspected to
ensure that contamination has been removed.

IMPROVEMENT MEASURES FOR THE PARKMERCED PROJECT

| Project Sponsor to retain qualified professional consultant | During construction for each phase, if determined by the San Francisco DPH | Department of Public Health |
Improvement Measure I-TR-7: Provide a southbound right turn deceleration lane at the new access from 19th Avenue at Cambon Drive to avoid interference with HOT lane operations.
As an improvement measure, to avoid conflict with the through traffic, a right-turn deceleration lane should be constructed on the west side of the fourth southbound lane, allowing vehicular access from 19th Avenue to Cambon Drive, minimizing disruption to flow in the HOT lane. This would require the removal of on-street parking in the vicinity of the ingress.

<table>
<thead>
<tr>
<th>Project Sponsor with coordination of SFMTA and Caltrans</th>
<th>Simultaneous with implementation of HOT lane.</th>
<th>Planning Department</th>
</tr>
</thead>
</table>

Improvement Measure I-TR-29: Install colored bike lanes to direct cyclists through the Brotherhood Way/Junipero Serra Boulevard interchange and raise auto awareness of bicycles. This improvement measure may not achieve the same level of comfort for a cyclist that exists under current conditions, but it would improve conditions with implementation of the auxiliary lanes.
Implementation of this improvement measure would require approval by Caltrans, which operates the facility.

<table>
<thead>
<tr>
<th>Project Sponsor with coordination of SFMTA and Caltrans</th>
<th>Simultaneous with construction of other project-proposed improvements at Junipero Serra Boulevard / Brotherhood Way interchange.</th>
<th>Planning Department</th>
</tr>
</thead>
</table>

Improvement Measure I-WS-A: Design Feature Consideration for Proposed Buildings.
Building massing can affect wind flow. podiums or terraced roofs create horizontal “shelves” that can deflect downward wind flow away from streets and sidewalks. These types of design features should be considered for the proposed buildings at the intersection of Chumaser Drive and Brotherhood Way and the intersection of Junipero Serra Boulevard and Brotherhood Way. Like podiums and terraced roofs, canopies can deflect downward wind flow from streets and sidewalks.

<table>
<thead>
<tr>
<th>Project Sponsor to retain qualified professional consultant</th>
<th>Prior to building permit issuance for proposed buildings at the intersection of Chumaero Drive and Brotherhood Way and the intersection of Junipero Serra Boulevard and Brotherhood Way.</th>
<th>Department of Building Inspection</th>
</tr>
</thead>
</table>

Improvement Measure I-WS-B: Incorporation if Landscaping to Reduce Wind Speeds.
Landscaping can be effective at reducing wind speeds. Porous materials (latticework, screens, vegetation, etc.) offer more effective wind shelter than solid surfaces. Landscaping should be installed in appropriate locations throughout the Project Site to reduce wind speeds. Wind-sheltering elements should be located west of the area being protected and should be of sufficient height.

<table>
<thead>
<tr>
<th>Project Sponsor to retain qualified professional consultant</th>
<th>Prior to building permit issuance for each phase</th>
<th>Planning Department</th>
</tr>
</thead>
</table>

Improvement Measure I-GE.a: Use of Soldier-Pile-and-Lagging Shoring System.
The Project Sponsor has agreed to follow the conclusions and recommendations of the 2008 Geologic, Geotechnical and Seismic Findings report to use a soldier-pile-and-lagging shoring system to shore up soils during excavation for building foundations and basements.

<table>
<thead>
<tr>
<th>Project Sponsor</th>
<th>Prior to building permit issuance for each phase</th>
<th>Department of Building Inspection</th>
</tr>
</thead>
</table>

Improvement Measure I-GE.b: Soil Corrosivity Tests.
The Project Sponsor has agreed to follow the conclusions and recommendations of the 2008 Geologic,
Geotechnical and Seismic Findings report to test the soils for corrosivity and take appropriate measures to protect new construction in contact with the soil from corrosion.
TO: Planning Department Transportation Consultant List
FROM: Planning Department Transportation Team
DATE: May 15, 2015
SUBJECT: Transit Data for Transportation Impact Studies

Purpose
The purpose of this memorandum is to provide an update to the data used in transportation analyses for determining capacity utilization for the San Francisco Municipal Transportation Agency (SFMTA) individual lines and screenlines. Additionally, included for your convenience is the regional transit screenline information previously distributed in the March 10, 2014 “Regional & Local 2040 Cumulative Transit Screenlines for Transportation Impact Studies” memo.

Background
The SFMTA Board has adopted an “85 percent” capacity utilization performance standard for transit vehicle loads. In other words, SFMTA local transit lines should operate at or below 85 percent capacity utilization. The SFMTA Board has determined that this performance standard more accurately reflects actual operations and the likelihood of “pass-ups” (i.e., vehicles not stopping to pick up more passengers). The Planning Department, in preparing and reviewing transportation impact studies, has similarly utilized the 85 percent capacity utilization standard as a threshold of significance for determining peak period transit demand impacts to the SFMTA lines. By contrast, regional transit agencies use 100 percent capacity utilization standard, and therefore the Planning Department uses 100 percent capacity utilization as a threshold of significance for determining peak period transit demand impacts to regional transit.

Over time and as with this current update, SFMTA will provide the Planning Department updated ridership counts using automatic passenger count data for buses and updated manual counts for rail. Previously, the Planning Department released a memo in December 18, 2012, with 2010/2011 SFMTA transit data, and Cumulative transit data for the year 2035. This was subsequently updated in June 2013 with transit data used during the SFMTA TEP review process, and in March 2014 with Cumulative SFMTA and regional data for the year 2040. This May 2015 memo supersedes these previous transit data memos (and while the Cumulative screenline data has not changed since March 2014, it is being provided again in this memo for your convenience). The notable updates contained in this May 2015 memo are the newly available Fall 2013 SFMTA Line Load and Capacity data provided in Attachment A, and updated SFMTA Existing Screenline provided in Attachment B.

SFMTA and Regional Transit Screenline Analysis
Typically, transit impacts are analyzed through a screenline analysis. A screenline analysis assumes that there are identifiable corridors or directions of travel which are served by a grouping of transit lines. Therefore, an individual line would be combined with other transit lines in a corridor and corridors combined into a screenline in determining significance. However, on a case-by-case basis the Planning Department may request individual line capacity utilization...
Four screenlines have been established in San Francisco to analyze potential impacts of projects on SFMTA service: the northeast screenline, the northwest screenline, the southeast screenline, and the southwest screenline, with sub-corridors within each screenline. The SFMTA routes by screenline and sub-corridors are shown in Attachment B. As discussed above, the Planning Department uses the 85 percent capacity utilization standard as the threshold of significance for identifying transit crowding impacts. If a project generates enough trips on a screenline or corridor that would cause that screenline or corridor to exceed the 85 percent capacity utilization performance standard, it would be considered to result in a significant transit impact. Similarly, if a screenline or corridor operates at above the 85 percent capacity utilization threshold, the analysis needs to calculate the percentage of trips that the proposed project would contribute to the corridor or screenline. If the percent contribution to the screenline or corridor ridership is five percent or greater, then the proposed project would contribute substantially to transit crowding and a significant transit impact.

Four principal regional transit providers serve San Francisco: BART from the East Bay and Peninsula; SamTrans from the Peninsula; AC Transit from the East Bay, and Golden Gate Bridge, Highway and Transportation District (GGBHTD) from the North Bay. Two additional ferry providers exist besides GGBHTD: Alameda Harbor Bay Ferry from the East Bay and Blue & Gold Fleet from the North Bay and East Bay. For regional transit providers, the Maximum Load Point (MLP) is typically at the San Francisco City limit (i.e., the East Bay MLP would occur at the Transbay Tube and on the Bay Bridge; the North Bay MLP would occur at the Golden Gate Bridge; and the South Bay MLP would occur at the southern city border). The regional transit providers by screenline are provided in Attachment C. The Planning Department uses 100 percent capacity utilization as the threshold of significance for identifying regional transit crowding impacts.

SFMTA Individual Line Analysis

As mentioned above, transit impacts may also be analyzed on a corridor or line-by-line basis at times. Generally, if a proposed project would generate enough trips on a particular line that it would cause the route to exceed the 85 percent capacity utilization, it would be considered to result in a significant transit impact. Similarly, using the line-by-line analysis, if the bus route operates above the 85 percent performance standard, the analysis needs to calculate the percentage of trips that the proposed project contributes to the line. If the percent contribution to the total peak hour ridership at the MLP is five percent or greater, then the proposed project would contribute substantially to transit crowding and would result in a significant transit impact.

Applicability

Generally, the attached updated SFMTA data should be used in any transportation impact study that has yet to reach the screech check submittal phase and all future transportation impact studies and technical memoranda, unless otherwise directed by your transportation planner. The
transportation planner, in coordination with the environmental planner, will determine on a case-by-case basis whether a project is not subject to this general applicability requirement. Applicability questions should be directed to the transportation planner.
Attachment A – Fall 2013 SFMTA Line Load and Capacity by Time Period and Direction of Travel
2) MLP, maximum load point represents the stop along the route with the highest total load & may not be the same as the point with the most boardings.

1) Updated data provided by MTA, including updates to headways, vehicle capacity, average max load, and MLP. Rest of data calculated from those values.

Muni Capacity

Route

<table>
<thead>
<tr>
<th>Line</th>
<th>Headway</th>
<th>Average Max</th>
<th>MLP</th>
<th>Peak Hour Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>40</td>
<td>250</td>
<td>75</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>150</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>120</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>50</td>
<td>70</td>
<td>10</td>
</tr>
</tbody>
</table>

Average Max Load

<table>
<thead>
<tr>
<th>Route</th>
<th>Average Max</th>
<th>MLP</th>
<th>Peak Hour Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

MLP (Maximum Load Point)*

<table>
<thead>
<tr>
<th>Route</th>
<th>MLP</th>
<th>Peak Hour Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Line</td>
<td>Muni #</td>
<td>3:00 AM</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>3.5</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>2.0</td>
</tr>
<tr>
<td>22</td>
<td>33</td>
<td>1.5</td>
</tr>
<tr>
<td>32</td>
<td>48</td>
<td>1.0</td>
</tr>
<tr>
<td>25</td>
<td>52</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Notes:
- FALL 2013 Route Load and Capacity by Time Period and Direction of Travel
- Updated data provided by MTA, including updates to headways, vehicle capacity, average max load, and MLP. Rest of data calculated from those values.

Muni:
- SFMTA Transit Resources & Data
- May 2015 update
- Updated Muni Screenlines
- May 2015_MuniMaxLoad_MTAFall2013v5.xlsx

1) Updated data provided by MTA, including updates to headways, vehicle capacity, average max load, and MLP. Rest of data calculated from those values.
2) SFMTA maximum load assessment points the row along the route with the highest load and may not be the same as the point with the true breakpoints.

FALL 2015

Attachment B – SFMTA Existing & 2040 Screenline Data
TABLE A-1
EXISTING PEAK HOUR

<table>
<thead>
<tr>
<th>Muni Screenline Sub-corridor</th>
<th>AM Peak Hour (Inbound)</th>
<th>PM Peak Hour (Outbound)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ridership</td>
<td>Capacity</td>
</tr>
<tr>
<td>Northeast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kearny/Stockton(^2)</td>
<td>2,211</td>
<td>3,050</td>
</tr>
<tr>
<td>Other Lines(^3)</td>
<td>538</td>
<td>1,141</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>2,749</td>
<td>4,191</td>
</tr>
<tr>
<td>Northwest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geary(^4)</td>
<td>1,821</td>
<td>2,490</td>
</tr>
<tr>
<td>California(^5)</td>
<td>1,610</td>
<td>2,010</td>
</tr>
<tr>
<td>Sutter/Clement(^6)</td>
<td>480</td>
<td>630</td>
</tr>
<tr>
<td>Fulton/Hayes(^7)</td>
<td>1,277</td>
<td>1,680</td>
</tr>
<tr>
<td>Balboa(^8)</td>
<td>758</td>
<td>1,019</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>5,946</td>
<td>7,828</td>
</tr>
<tr>
<td>Southeast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Street(^9)</td>
<td>350</td>
<td>793</td>
</tr>
<tr>
<td>Mission(^10)</td>
<td>1,643</td>
<td>2,509</td>
</tr>
<tr>
<td>San Bruno/Bayshore(^11)</td>
<td>1,689</td>
<td>2,134</td>
</tr>
<tr>
<td>Other Lines(^12)</td>
<td>1,466</td>
<td>1,756</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>5,147</td>
<td>7,193</td>
</tr>
<tr>
<td>Southwest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subway lines(^13)</td>
<td>6,330</td>
<td>6,205</td>
</tr>
<tr>
<td>Haight/Noriega(^14)</td>
<td>1,121</td>
<td>1,554</td>
</tr>
<tr>
<td>Other lines(^15)</td>
<td>465</td>
<td>700</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>7,916</td>
<td>8,459</td>
</tr>
</tbody>
</table>

Muni Screenlines Total

| Muni Screenlines Total | 21,758 | 27,671 | 78.6% | 19,693 | 27,328 | 72.1% |

Screens and corridors operating at capacity utilization of 85 percent or greater are highlighted in **bold**.

1. Muni bus and rail data collected in 2013.
2. 8X Bayshore Express, 30 Stockton, 30X Marina Express, 41 Union, 45 Union-Stockton
3. F Market & Wharves, 10 Townsend, 12 Folsom-Pacific
4. 38 Geary, 38L Geary Limited, 38AX Geary 'A' Express, 38BX Geary 'B' Express
5. 1 California, 1AX California 'A' Express, 1AX California 'B' Express
6. 2 Sutter, 3 Clement
7. 5 Fulton, 21 Hayes
8. 31 Balboa, 31AX Balboa 'A' Express, 31BX Balboa 'B' Express
9. T Third Street
11. 8AX Bayshore 'A' Express, 8BX Bayshore 'B' Express, 8X Bayshore Express, 9 San Bruno, 9L San Bruno Limited
12. J Church, 10 Townsend, 12 Folsom-Pacific, 19 Polk, 27 Bryant
13. K Ingleside, L Taraval, M Ocean View, N Judah
14. 6 Parnassus, 71/71L Haight-Noriega Limited, 16X Noriega Express, NX Judah Express
15. F Market & Wharves

<table>
<thead>
<tr>
<th>Muni Screenline Sub-corridor</th>
<th>AM Peak Hour (Inbound)</th>
<th>PM Peak Hour (Outbound)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ridership</td>
<td>Capacity</td>
</tr>
<tr>
<td>Northeast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kearny/Stockton(^1)</td>
<td>7,394</td>
<td>9,473</td>
</tr>
<tr>
<td>Other Lines(^2)</td>
<td>758</td>
<td>1,785</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>8,152</td>
<td>11,258</td>
</tr>
<tr>
<td>Northwest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geary(^3)</td>
<td>2,673</td>
<td>3,763</td>
</tr>
<tr>
<td>California(^4)</td>
<td>1,989</td>
<td>2,306</td>
</tr>
<tr>
<td>Sutter/Clement(^5)</td>
<td>581</td>
<td>756</td>
</tr>
<tr>
<td>Fulton/Hayes(^6)</td>
<td>1,962</td>
<td>1,977</td>
</tr>
<tr>
<td>Balboa(^7)</td>
<td>690</td>
<td>1,008</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>7,895</td>
<td>9,810</td>
</tr>
<tr>
<td>Southeast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Street(^8)</td>
<td>2,422</td>
<td>5,712</td>
</tr>
<tr>
<td>Mission(^9)</td>
<td>3,117</td>
<td>3,008</td>
</tr>
<tr>
<td>San Bruno/Bayshore(^10)</td>
<td>1,952</td>
<td>2,197</td>
</tr>
<tr>
<td>Other Lines(^11)</td>
<td>1,795</td>
<td>2,027</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>9,286</td>
<td>12,944</td>
</tr>
<tr>
<td>Southwest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subway lines(^12)</td>
<td>6,314</td>
<td>7,020</td>
</tr>
<tr>
<td>Haight/Noriega(^13)</td>
<td>1,415</td>
<td>1,596</td>
</tr>
<tr>
<td>Other lines(^14)</td>
<td>175</td>
<td>560</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>7,904</td>
<td>9,176</td>
</tr>
<tr>
<td>Muni Screenlines Total</td>
<td>33,237</td>
<td>43,188</td>
</tr>
</tbody>
</table>

Screenlines and corridors operating at capacity utilization of 85 percent or greater are highlighted in bold. Some of the individual lines within certain corridors have been adjusted to be in the appropriate city “quadrant” per the screenline. Thus, for some sub-corridors (e.g., Kearny/Stockton AM Peak Hour), the total does not match the individual lines’ maximum load point ridership and capacity.

1. 8X Bayshore Express, 30 Stockton, 30X Marina Express, 41 Union, 45 Union-Stockton, T-Third
2. E Embarcadero, F Market & Wharves, 10 Townsend, 12 Folsom-Pacific
3. 38 Geary, 38L Geary Limited, 38X Geary Express
4. 1 California, 1 California Short, 1AX California ‘A’ Express, 1BX California ‘B’ Express
5. 2 Clement, 2 Clement Short
6. 5 Fulton, 5L Fulton Limited, 21 Hayes
7. 31 Balboa, 31AX Balboa ‘A’ Express, 31BX Balboa ‘B’ Express
8. T Third Street
10. 8AX Bayshore Express, 8BX Bayshore Express, 9 San Bruno, 9L San Bruno Limited
11. J Church, 10 Townsend, 19 Polk, 27 Bryant
12. K Ingleside, L Taraval, M Ocean View, N Judah
13. 6 Parnassus, 71L Haight-Noriega Limited, 16X Noriega Express, NX Judah Express
14. F Market & Wharves

Source: SFMTA March 2014.
Attachment C – Regional Transit Providers Existing and 2040 Cumulative Screenline Data
TABLE B-1
EXISTING (2012) PEAK HOUR

<table>
<thead>
<tr>
<th>Regional Screenline</th>
<th>AM Peak Hour (Inbound)</th>
<th>PM Peak Hour (Outbound)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Provider/Service</td>
<td>Ridership</td>
<td>Capacity</td>
</tr>
<tr>
<td>East Bay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BART</td>
<td>19,716</td>
<td>22,050</td>
</tr>
<tr>
<td>AC Transit</td>
<td>1,568</td>
<td>2,829</td>
</tr>
<tr>
<td>Ferries</td>
<td>810</td>
<td>1,170</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>22,094</td>
<td>26,049</td>
</tr>
<tr>
<td>North Bay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden Gate Transit Bus</td>
<td>1,330</td>
<td>2,543</td>
</tr>
<tr>
<td>Ferries</td>
<td>1,082</td>
<td>1,959</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>2,412</td>
<td>4,502</td>
</tr>
<tr>
<td>South Bay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BART</td>
<td>10,682</td>
<td>14,910</td>
</tr>
<tr>
<td>Caltrain</td>
<td>2,171</td>
<td>3,100</td>
</tr>
<tr>
<td>SamTrans</td>
<td>255</td>
<td>520</td>
</tr>
<tr>
<td>Ferries</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>13,108</td>
<td>18,530</td>
</tr>
<tr>
<td>Regional Screenlines Total</td>
<td>37,615</td>
<td>49,081</td>
</tr>
</tbody>
</table>

Screenlines and transit providers/services operating at capacity utilization of 100 percent or greater are highlighted in **bold**.

Source: SFMTA TEP Project, Case No. 2011.0558E, October 2012
<table>
<thead>
<tr>
<th>Regional Screenline</th>
<th>AM Peak Hour (Inbound)</th>
<th>PM Peak Hour (Outbound)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ridership</td>
<td>Capacity</td>
</tr>
<tr>
<td>East Bay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BART</td>
<td>32,608</td>
<td>33,170</td>
</tr>
<tr>
<td>AC Transit</td>
<td>7,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Ferries</td>
<td>4,682</td>
<td>5,940</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>44,290</td>
<td>51,110</td>
</tr>
<tr>
<td>North Bay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden Gate Transit Bus</td>
<td>1,990</td>
<td>2,543</td>
</tr>
<tr>
<td>Ferries</td>
<td>1,619</td>
<td>1,959</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>3,609</td>
<td>4,502</td>
</tr>
<tr>
<td>South Bay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BART</td>
<td>13,942</td>
<td>24,182</td>
</tr>
<tr>
<td>Caltrain</td>
<td>2,310</td>
<td>3,600</td>
</tr>
<tr>
<td>SamTrans</td>
<td>271</td>
<td>520</td>
</tr>
<tr>
<td>Ferries</td>
<td>59</td>
<td>200</td>
</tr>
<tr>
<td>Screenline Total</td>
<td>16,582</td>
<td>28,502</td>
</tr>
<tr>
<td>Regional Screenlines Total</td>
<td>64,481</td>
<td>84,114</td>
</tr>
</tbody>
</table>

Screenlines and transit providers/services operating at capacity utilization of 100 percent or greater are highlighted in **bold**.

Source: SFMTA, March 2014
Attachment D – Glossary of Terms

Average Max Load – The actual ridership (or load) number at the maximum load point for the worst half hour (doubled) during the peak period.

Headway – The scheduled peak period time between buses, streetcars, trains, or light rail vehicles on the same line.

Maximum Load Point – The transit stop on a given line with the estimated greatest demand.

Net Available Capacity – The estimated number of passengers that can be accommodated during the peak hour on a line without exceeding the line’s capacity. Calculation is peak hour capacity multiplied by 85 percent minus the peak hour load.

Peak Hour – The one-hour during the peak period where ridership at a maximum load point is estimated to be at its highest.

Peak Hour Capacity – The estimated volume of ridership that can be accommodated per line during the peak hour. The calculation is equal to the peak hour (60 minutes) divided by the peak hour scheduled headway multiplied by the capacity of the line (provided by SFMTA).

Peak Hour Capacity Utilization – The estimated percent capacity of the line that is being used by riders during the peak hour. The calculation is equal to the peak hour load (ridership) divided by the peak hour capacity.

Peak Hour Load – The estimated ridership for a bus or rail route at the maximum load point during the peak hour. Calculation is sixty minutes divided by the headway multiplied by the average max load.

Peak Period – The time period during the day where crowding on the transit system is at its highest. During the AM, it is defined between 6 AM to 9 AM. During the PM, it is defined between 4 PM to 7 PM.

100 Percent Capacity per Vehicle – The capacity per SFMTA vehicle that includes both seated and standing capacity, where standing capacity, is somewhere between 30 to 80 percent seated capacity (depending upon the specific transit vehicle configuration). The capacity per regional transit vehicle is equal to the seated capacity. The following presents the 100 percent capacity of different SFMTA vehicles:¹

- historic streetcar – 70 passengers (F Market & Wharves);
- light rail vehicle – 119 passengers (J Church, KT Ingleside);
- modified light rail – 238 passengers (L Taraval, M Ocean View, and N Judah);

¹ Note that the different capacities for each line are provided by SFMTA and are subject to change.
• standard bus – 63 passengers (remaining lines not listed in modified bus); and
• modified bus:
 o 45 passengers (35 Eureka, 36 Teresita, 37 Corbett, 39 Coit, 56 Rutland, and 66 Quintara)
 o 69 passengers (81X Caltrain Express, 82X Levi Plaza Express\(^2\))
 o 73 passengers (1AX California ‘A’ Express)\(^3\)
 o 94 passengers (1BX California ‘B’ Express, 8X Bayshore Express, 8AX Bayshore ‘A’ Express, 8BX Bayshore ‘B’ Express, 14 Mission, 14L Mission Limited, 14X Mission Express, 38 Geary, 38L Geary Limited, 41 Union, \(^3\) 49 Van Ness-Mission)
 o Other (lines 16X Noriega Express and 30 Stockton)\(^4\)

\(^2\) Only during AM inbound peak period.
\(^3\) Only during AM peak period.
\(^4\) These two lines have other modified buses specific to these lines that differ throughout the day (see Attachment C).
DATE: August 2, 2016

FROM: Charles Rivasplata, SFMTA

TO: Wendy Bloom, Director - Capital Planning
San Francisco State University

RE: San Francisco State University Creative Arts and Holloway Mixed-Use Project: Comments on the Tiered Initial Study for the Draft Environmental Impact Report

Staff at the SFMTA has reviewed the transportation-related sections of the July 6, 2016 Tiered Initial Study for the San Francisco State University (SFSU) Creative Arts/Holloway Mixed-Use Project. Staff submits the following comments (below):

Page 15, Bicycle Parking. The report should mention the number of Class 1 bicycle parking spaces proposed for the new Student Housing Building (located on the southeast corner of Holloway and Varela Avenues) and in the vicinity of the Creative Arts Replacement Building and Concert Hall.

Page 15, Loading Facilities. Can the surrounding streets adequately handle large trucks accessing the loading and service areas for the Creative Arts and the Student Housing Buildings? What are the turning radii of large trucks entering these areas?

Page 55, Last Paragraph. This segment provides a very good summary of the proposed analysis to determine whether the project could result in increased impacts above those described in the 2007 Campus Master Plan (CMP) EIR.

The SFMTA looks forward to reviewing transportation-related aspects of the Draft Environmental Impact Report (DEIR) when it becomes available.
The attached table provides SFPUC comments on the information that should be included in the EIR, as well information for the project proponent regarding SFPUC requirements with respect to the hydraulic analysis and water facility design.

If you require further information, please contact Sally Morgan at (415) 934-3938 or smorgan@sfwater.org. Thanks for the opportunity to provide input.

Attachment: Table of SFPUC's compiled comments
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Commenter Name & SFPUC Division</th>
<th>Document Section Title or Number</th>
<th>Page Number and Line or Paragraph Number</th>
<th>Figure Number</th>
<th>Review Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fan Lau, Water Resources Division</td>
<td>Section 2.3.6 Utilities and Energy Use</td>
<td>N/A</td>
<td>N/A</td>
<td>General comment: The SFPUC, as the water service purveyor to the SFSU campus, strongly encourages the campus to endeavor to uphold the SFPUC's measures to protect local water resources, as set forth in the City and County of San Francisco's ordinances related to water conservation, recycled water, and non-potable water, a few of which are specifically referenced in the additional comments provided below.</td>
</tr>
<tr>
<td>2</td>
<td>Cheryl Muñoz, Water Resources Division</td>
<td>Section 2.3.6 Utilities and Energy Use</td>
<td>page 15, paragraph 5</td>
<td>N/A</td>
<td>The SFPUC has reviewed the Initial Study, and in accordance with the requirements of the Recycled Water Ordinance, it appears that a recycled water piping system(s) will be included. Please be aware of the following recycled water requirements. Recycled Water: A project of the proposed size and location is required to comply with San Francisco’s Recycled (or Reclaimed) Water Use Ordinance, adopted as Article 22 of the San Francisco Public Works Code. The project shall include all necessary plumbing for the future use of recycled water for non-potable applications including, but not limited to, toilet flushing and irrigation. Please refer to our web page for more information: www.sfwater.org/RWreqs. The SFPUC's City Distribution Division and the Department of Building Inspection’s Plumbing Division shall review all technical aspects of the water and recycled water infrastructure (mains, piping, valves, etc.) in the project designs.</td>
</tr>
<tr>
<td>3</td>
<td>Fan Lau, Water Resources Division</td>
<td>Section 2.3.6 Utilities and Energy Use</td>
<td>page 15, paragraph 5</td>
<td>N/A</td>
<td>On-site Non-potable Water: SFSU and the City are currently in discussions regarding the installation and operation of onsite water reuse systems at SFSU with respect to San Francisco’s Mandatory Use of Alternate Water Supplies in New Construction Ordinance, adopted as Chapter 12C of the San Francisco Health Code. Please refer to www.sfwater.org/np for requirements.</td>
</tr>
<tr>
<td>4</td>
<td>Fan Lau, Water Resources Division</td>
<td>Section 2.4 Demolition and Construction</td>
<td>page 17, paragraph 8</td>
<td>N/A</td>
<td>Non-potable Water Use for Soil Compaction and Dust Control: CCSF Ordinance 175-91 restricts the use of potable water for soil compaction and dust control activities undertaken in conjunction with any construction or demolition project occurring within the boundaries of San Francisco, unless permission is obtained from San Francisco Public Utilities Commission (SFPUC). Non-potable water must be used for soil compaction and dust control activities during project construction or demolition. Recycled water is available from the SFPUC for dust control on roads and streets. However, per State regulations, recycled water cannot be used for demolition, pressure washing, or dust control through aerial spraying. The SFPUC operates a recycled water truck-fill station at the Southeast Water Pollution Control Plant that provides recycled water for these activities at no charge. For more information please contact (415) 695-7378.</td>
</tr>
<tr>
<td>Comment Number</td>
<td>Commenter Name & SFPUC Division</td>
<td>Document Section Title or Section Number</td>
<td>Page Number and Line or Paragraph Number</td>
<td>Review Comment</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fan Lau, Water Resources Division</td>
<td>Section 4.17 Utilities and Service Systems</td>
<td>page 57, paragraph 2</td>
<td>Water Supply Assessment SFSU and SFPUC are currently in discussions regarding how the proposed water demands should be analyzed, whether through a formal Water Supply Assessment or other document.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ed Ho, Wastewater Enterprise, Collection System Division (CSD)</td>
<td>Wastewater</td>
<td>16</td>
<td>Additional wastewater flows associated with the development of Blocks 1 and 6 constitute an impact to the WWE which can be mitigated by calculating and paying SFPUC Capacity and Service Fees.</td>
<td></td>
</tr>
</tbody>
</table>

In addition, the Project sponsor should be aware of the following:

1. City Distribution Division (CDD) General
 - The project site is located within an area that is owned, operated, and maintained by Park Merced. In the event that these water mains are transferred to SFPUC ownership in the future, all water facilities, including potable, fire-suppression, and non-potable water systems, must conform to the current SFPUC City Distribution Division (CDD) and San Francisco Fire Department (SFFD) standards and practices. These include, but are not limited to, the following:
 - Protection of Existing Water and AWSS Facilities;
 - SFPUC Wastewater & Water Standards for Surface Improvement Projects (June 2014);
 - Rules and Regulations Governing Water Service to Customers;
 - SFPUC- CDD Design Criteria for Potable Water Systems;
 - Application for Water Supply and Responsibility of Applicants;
 - San Francisco Fire Code and Reliability;
 - California Waterworks Standards; California Code of Regulations Titles 17 and 22
 - Auxiliary Water Supply System (AWSS) Distribution Piping; and
 - Any other regulation governing the installation and protection of water facilities not already stated.
 - To ensure adequate fire suppression reliability and capacity, the Project Sponsor may be required to include one or more of the following: two sources of water delivery (connections to two separate water mains), AWSS high pressure distribution piping, AWSS cistern, and/or Potable Water Supply System equipment.

2. Ed Ho, WWE CSD Wastewater
 - Project Sponsor should be aware that for Block 6, our GIS indicates that the sewer main is on the south side of Holloway, not the north. Any connections to SFPUC mains must be consistent with CCSF Standards.

2. Ed Ho, WWE CSD Wastewater
 - Access to and maintenance of SFPUC assets not located in the public right of way is considered impaired and may constitute an operational impact. So if any public right of way is to be vacated, Project Sponsor should consider the acquisition of any underlying SFPUC assets.
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Commenter Name & SFPUC Division</th>
<th>Document Section Title or Section Number</th>
<th>Page Number and Line or Paragraph Number</th>
<th>Review Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Ed Ho, WWE CSD</td>
<td>Stormwater</td>
<td>45</td>
<td>Project Sponsor should be aware that while compliance with CCSF Stormwater Design Guidelines can reduce impacts to the combined sewage collection system, the cumulative impacts of climate change and development within this urban watershed can result in situations where stormwater flows exceed the capacity of the collection system, which can impact human health, the environment, public and private property and the SFPUC.</td>
</tr>
</tbody>
</table>
Dear Ms Bloom:
I wished to offer some suggestions on the above. I hope you will be able to pass it on to the relevant parties for consideration.
In the Master Plan several time the term "iconic building" has been mentioned. I feel strongly about the appearance of school buildings. They should look beautiful and inviting. The students see the façade of the school building before they see anything else. I can not forget the impact one particular school building had on my mind when I was a little. I felt so privileged when I got the opportunity to attend that school a decade later.
I do not think at SF State there are any iconic buildings or spots that would impress young minds. As possible options I'm attaching pictures of some impressive school buildings. Also attached is a suggestion for a statue of Minerva. Minerva is the icon prominently displayed in SF State logo. Let's make SF State a tourist attraction for the City of San Francisco.
Regards,

Dr. Dipendra K. Sinha
Trinity College, Cambridge

University of Southern California
SAND FRANCISCO STATE UNIVERSITY
CREATIVE ARTS & HOLLOWAY MIXED-USE PROJECT

Name: Siang Ho
Organization (if any): Associated Student Body
Do you represent this Organization? Yes: x No: 0
Address: Student Center
City, State, Zip: San Francisco, CA, 94132
E-mail: H-Sangho@adl.com
Telephone: (415) 368-6552

Written Comments

I was very uninterested at what is going on around campus and off-campus. However, after learning a little bit more about how the California Environmental Quality Act, I am surprised at the plethora of factors that goes on into creating and facilitating an area. It is unbelievable how uninformed we are in addition to how we tend to take our living situations for granted. Before attending your event, I did not know how specifically creating a co-housing project would turn out. You are creating a newer environment for the next generation to live in. I think that it is imperative for every student and faculty member to band together in order to initiate conversations that would beneficially alter the individual’s life, such as strengthening the community of future academics and physicians and researchers by providing our students with the options of more choices to live in a safer alternative off-campus housing as opposed to the dangers of West Oakland’s off-campus housing situations. Moreover, students within the Broadcasting and Electronic Communication Arts would be able to have a larger campus support to present and broadcast their voices, in addition to utilizing the latest technology.

Please note: Comments, including personal information, become public information and may be released to interested parties if requested.

Please either leave this sheet at the “comment table” before you leave today or mail, email, or fax to the address below.

(See Reverse for Additional Information)
Written Comment Form

Please note that your address, phone number, e-mail address, or other personal identifying information in your comment, is part of your entire comment. Including your personal identifying information—may be made publicly available at any time. While you can ask us in your comment to withhold your personal identifying information from public review, we cannot guarantee that we will be able to do so.

Mail comments to:
Wendy Bloom
Director of Campus Planning
Capital Planning, Design & Construction
San Francisco State University
1600 Holloway Avenue
San Francisco, California 94132
wbloom@sfsu.edu (subject line of emails: “Creative Arts & Holloway Mixed-Use Project”)

Public Scoping Ends: August 8, 2016

To ensure that comments will be considered during the scoping period, San Francisco State University must receive written comments by the close of the public scoping period (August 8, 2016). There will be additional opportunities to comment on the Draft EIR for the Project during the EIR public review period in the fall of 2016.
Anais Schenk

From: Aaron Goodman <amgodman@yahoo.com>
Sent: Tuesday, August 02, 2016 1:25 PM
To: Wendy Bloom
Cc: Ann Sansevero; Anais Schenk
Subject: Re: SFSU-CSU NOP Comments - A.Goodman

Thank you for including time is limited and there is some great options that SFSU can do to improve the situation if they look at the alternatives

I have some pics from SOM's prior alternatives Craig Hartman had the studies with Leo Chow for taller buildings at entry parking areas and central courtyards on pie shaped blocks for mix of unit types

May be a good alternative for the EIR with mills act funding for the townhouse and courtyards?

I will see if I can find the concept for you on block 9 longer block could be an interesting option on Holloway!

Ag

Sent from my iPhone

On Aug 2, 2016, at 8:44 AM, Wendy Bloom <wbloom@sfsu.edu> wrote:

Aaron,

Thank you for your comments on the Notice of Preparation and Initial Study for the Creative Arts Replacement and Holloway Mixed-Use Project. We’ve downloaded all the documents posted at the link below.

Best,

Wendy

From: Aaron Goodman [mailto:amgodman@yahoo.com]
Sent: Monday, August 01, 2016 5:16 PM
To: Wendy Bloom <wbloom@sfsu.edu>
Subject: Fwd: SFSU-CSU NOP Comments - A.Goodman

Forward memo

To: "amgodman@yahoo.com" <amgodman@yahoo.com>
Subject: SFSU-CSU NOP Comments - A.Goodman

Memo for the NOP Tiered EIR for Wendy Bloom

Drop Box Link to additional Documents
https://www.dropbox.com/sh/85569dwtgl4j23o/AABFwfsWigjxNqY3bQEYyw2a?dl=0
I can send individual emails with documents attached if you cannot get links attached and downloaded.

A. Goodman
25 Lisbon St.
SF, CA 94112

D11 Resident (*currently)
D7 former Parkmerced resident (11 Fuente and 405 Serrano Drive Apt. #11-H) 5 years living in Parkmerced during the SFSU-CSU land changes and proposal Masterplans at both units
SF Tomorrow Board Member
Aaron Goodman
25 Lisbon St. SF, CA 94112
E: amgodman@yahoo.com
T: 415.786.6929

Wendy Bloom (Campus Planner)
Capital Planning, Design & Construction
San Francisco State University (CSU)
1600 Holloway Avenue, San Francisco, California 94132
T: 415.338.3838 / F: 415.338.2960
E: wbloom@sfsu.edu

RE: NOTICE OF PREPARATION - TIERED ENVIRONMENTAL IMPACT REPORT FOR THE
SAN FRANCISCO STATE UNIVERSITY CREATIVE ARTS & HOLLOWAY MIXED-USE PROJECT

Wendy Bloom, and the Associated EIR and SFSU-CSU Planners;

I have submitted prior comments as a resident living in the Parkmerced Complex in a town-home and tower unit(s) prior at 11 Fuente and 405-Serrano Drive Apt.#11-H regarding the SFSU-CSU Masterplan EIR Document as an overall impacting project and especially on its impacts on the D7 district and community residing at Parkmerced in terms of housing, parking, traffic, transit, open-space, and loss of amenities to residents. I would first and foremost request you look at the memo’s sent prior due to the efforts in addressing and speaking at the NOP prior for the overall masterplan projects of the SFSU-CSU and Parkmerced projects. These comments were directed primarily at the impacts and lacking address of CSU-SFSU expansion and its effects short and long-term on the prior residential low-scale community of Parkmerced tenants which comprised of working families, seniors, and faculty-staff of SFSU, along with student populations that changed regularly due to the year short-term rental needs of students attending the SFSU-CSU campus.

The original “border” of the university was along Font and Holloway, but was stepped over by land-acquisitions by the University in 2000-2004 by SFSU-CSU President Corrigan, during his mentioned “viewpoints” available doing a google search online, discussing a new financing wing of the SFSU-Foundation (transformed into the U.Corp) to provide the CSU campus with new method or means of securing financing and development money’s for the CSU-SFSU growth of enrollment proposed and new facilities. Maps show directly the increase in overall land mass of the university campus in the acquisition of UPN (formerly Stonestown Apartments a family and senior housing area for workforce communities in the D7 area) along with UPS (portions of Parkmerced)

The prior impacts on housing and land-use have to date not been documented by the SF Planning Department or SFSU-CSU planners on the Parkmerced and SFSU-CSU proposed masterplanned developments to ascertain the consistent and continual loss of family/staff/senior housing in the district, and the continued pressures on the housing rental stock in its transformation and gentrification to
“student housing” that promotes student living at the cost of community needed general rental housing stock.

The impacts noted in the NOP ignore a number of concerns in regards to the overall prior EIR for the SFSU-CSU Masterplan and the more limited “tiered” EIR being done for these specific sites under the SFSU Masterplan’s original EIR document. The original EIR was not challenged to my knowledge legally due to the costs and difficulties in the communities tenants group prior, and the overall dual masterplans submitted that split the community of Parkmerced into two segments one owned by SFSU-CSU the other by the Parkmerced development. The proposed dual developments split a prior overall masterplanned community and threatened to displace and isolate the existing tenants living in the SFSU-CSU blocks proposed for redevelopment and change the scale and character of a low-scale community designed and built for the micro-climate that exists in this district.

I submitted prior comments on many of these issues which should be reviewed and referenced, including the importance of the landscaped courtyards of Thomas Dolliver Church and the need to ascertain, educate, and document physically the loss of individual designed courtyards done by a master-class landscape architect also affiliated with the modern movement in landscape architecture. A travelling exhibit was featured in The Cultural Landscapes “Marvels of Modernism” Landscapes @ Risk in 2008, and was featured in the Labor-Fest SF walks by groups from the Netherlands (which Edwin Oostermeijer continually conducted with me in relation to housing, planning, and landscape interests in the Parkmerced blocks). An example of the HABS study is in the Juan Bautista Circle. A more improved version for the educational means of the architectural and planning departments in SFSU-CSU should be provided possibly including 360 degree video possibly with the Creative Arts Center students and artists, and aireal plans along with interior and exterior detailing and courtyard photos showing prior views and the low-scale low-cost design elements that helped transform the individual courtyards into an exemplary example of T.Church’s work on Parkmerced.

The difficulty in addressing the NOP for this Tiered impact report is in the two blocks directly affected, which contain existing residents left stranded by the initial split in ownership, along with the more detailed front entry blocks in the Tapia Triangle (wood-working screens) and features not “disturbed” by SFSU-CSU Campus Housing to date in their landscape work on site and placement of benches, seating and trashcans in the internal courtyards of the sites.

The existing residents remaining should not be “displaced” to UPN or Stonestown as it is far away on the opposite northern end of the SFSU-CSU Campus. Options that look directly at protecting or relocating residents initially to other SFSU-CSU owned blocks for a staff/faculty housing block should be approached as an initial possible impact to reduce overall displacement from the existing site.

Block 1 and 6 are the initial proposals but should be reviewed in terms of overall impacts and referral to the prior boundaries of the original SFSU Campus build-out and should be designed to mesh and blend with or provide a buffer and low-scale transition between SFSU and Parkmerced future blocks. Options that look land-use wise at low-scale pencil thin towers, and Mills-Act rehabilitation of the existing blocks should be considered as the most environmental stance to the existing units and courtyards. Drive-ways and parking areas could be densified as an option to showcase the alternative not explored by the
Parkmerced Developers, but as a method initially done during the UPS rehabilitation, which included roof, and wall work and rehab on existing townhouse structures on the UPS site.

Block 41 should be noted as a loss-of-use of tenant amenities to the prior Parkmerced community inclusive of the community center, tennis courts, handball courts, garden planters, and fields (Title 9 Softball) that already are a loss to the prior and future residents of Parkmerced. No indication has been made by the Campus Planners that the future featured Moushaff Center will include community accessible features including a discounted access program to long-term tenants in Parkmerced, or future tenants of Parkmerced’s rebuild. Access for the tenants groups and existing meeting space for residents of the UPS blocks should be made available in any future build-out. Benefits to students such as transit passes, should be made also available to low-income residents and seniors, and students of the UPS blocks that reside there pre-post construction to emphasize use of mass-transit.

The 19th Ave Transit study also discussed issues of MOU’s with the SFSU-CSU campus, and the concern that documenting the traffic/transit and parking issues would be exacerbated by the removal of the central SFSU-CSU garage on campus. Already parking in and along Holloway and Font have visibly increased with cars parking along medians perpendicular and not at the 45 degree areas only prior on the existing streets. This increase has occurred consistently and lacking efforts to document and require funding towards the Tier-5 level transit improvements and future connection to Daly City BART is required to make this future project transit friendly and really an environmental effort to reduce traffic, parking and transit load created by the SFSU-CSU campus and enrollment increases. The increased density will have a similar increase in commute loads, and biking is not a currently safe endeavor that all people can utilize. So efforts to link and connect to Daly City BART with a new transit hub, should be the priority along with funding the M-J line connectivity to Balboa Park Station and Daly City BART as a bi-county improvement and development of critical importance to the success of this project.

On the initial study checklist;
Significant impacts and factors that potentially are affected should be included as significant and are included and are elaborated below;

- **Land-Use and Planning** - overall dividing an existing community 4.10(a) is a significant and increased impact based on the division of the prior Parkmerced masterplanned community in the sale of parcels to SFSU-CSU as the UPS blocks. Efforts to look at scale and planning of the future Parkmerced parcels, and either lessen the impact or look at ways to bridge softly the transition between the Parkmerced taller buildings with projects that lessen the overall massing and height of the future build-out with pencil thin housing towers, open plazas and accessible landscape features in all blocks on plinth levels, or directly from the streetside. 4.10 (B) is also a significant issue due to the demolition of sound housing (please see attached report on the existing condition of the housing in the UPS blocks and need to look at more preservation based solutions to density including infill and re-integration of denser housing using 6-8 and 4-6 story townhomes and tower buildings that could go up to 10-12 stories.

- **Population and Housing** - No information has been provided in terms of a nexus study, on the loss of family, senior, and staff housing on site at Parkmerced and the continual impact of
student growth, and spread into the Parkmerced blocks and Stonestown apartments. Documentation on the gentrification of these blocks since 2000-2016 should be part of the analysis on overall impacts and housing needs affordable to working class families which are a protected class in the city and county of SF. 4.13 items a b and c should all be seen as potentially significant new or increased impacts. These impacts have been well visually documented, and are a consistent issue with the future Parkmerced development in terms of unit costs and the lacking affordable housing options in the westside of San Francisco.

- **Public Services** – section 4.14 (a) should all be significant impacts in terms of Fire, Police, Emergency, Medical, Schools, and Parks and Public Facilities such as libraries and public outdoor features (tennis courts, basketball courts, and public pools). With increased enrollment all infrastructure is impacted especially easy access to public schools (Prior demolition of Frederick Burke Elementary) and the loss of block 41 for open space needs of Parkmerced residents and students living at the dormitories. Increase density already taxes the local fire-department and police departments including CSU campus police, and will cause longer response times unless adequately planned for in the future development. The Library project and new Creative Arts and Wellness Center should be made available to residents of UPS as prior suggested at a reduced rate, and provisions for new facilities suggested to replace existing and prior lost spaces for residents, students and staff. Buildings designed should provide for opportunities to house new amenities on plinth levels, in courtyards, or in the buildings themselves (underground) or at street level.

- **Geology and Soils** – Earthquake issues were noted on the Parkmerced EIR, and should be documented in terms of sandy-silty conditions, and concerns on liquefaction in the areas noted on the USGS maps. UPS townhomes were bolted and brick walls reinforced, but the overall projects proposed should take into account the standards for earthquakes and concerns with building taller towers adjacent to other buildings, along with base-isolation, and infrastructure which has aged significantly on site below grade.

- **Hydrology and Water Quality** - Concerns were mentioned prior on the issue of water retention, and need to look more proactively during the UPS renovations and re-roofing at water conservation and “collection” on site for re-use and consumption. Grey-water and recycled water systems including water collection, and fog-water collection systems should be looked at to increase the inventiveness and solutions created with this project due to the fog micro-climate and possible new means of water collection. Water run-off and increased density on site, increases water use, and thus should be documented in terms of household quantities/occupants and water use monthly proposed, and how to lessen that impact due to laundry, and water facilities (toilets, showers, etc) in the future proposed development.

- **Noise** – section 4.12(a) noise increase was a cause of displacement of many families existing prior in UPN and UPS blocks, and is a consistent issue with the increased student population on campus and lacking enforcement in the CSU rules (no drinking smoking or pets, on CSU campus) which pushes more students to live in Parkmerced vs. Campus Housing. Noise roving parties and
consistent loud noise would cause many families to leave Parkmerced since 2000 initial purchases and expansion.

- **Recreation** – 4.15 (a and b) both are significant in how the project impacts open space (gradation of public to private spaces in existing units in the UPS blocks, which is based on the original garden rental apartment community concept. Future build out ideas proposed should include individual green-space and gardening potential in every block, along with gradation of public to private courtyards for future residents. Please also see Public Services comments above and issues with Block 41 mentioned prior.

- **Transportation and Traffic** – per section 4.16 A-F is highlighted as significant and should remain so or be extra highlighted as EXTREMELY URGENT and a PRIORITY, due to the overall issues of emergency access, and egress along 19th Ave post a disaster over the 1952 interchange, Alemany Fly-Over and I-280 interchange which will be impeded post earthquake. Also key to enforce is that the future removal of the SFSU-CSU parking garage central to campus will cause additional stress on parking, traffic and 19th Ave congestion due to the overall proximity of this development to the already congested and backed up 19th Ave and Junipero Serra Blvd. streets, including Font, Holloway, and Brotherhood Way. Many cars already transverse the Parkmerced site to the eastern and southern edges looking for temporary parking and even with underground parking facilities proposed by Parkmerced’s development, new garage structures, and or an improved MASS-TRANSIT fix (known as the Tier-5 level connection to Daly City BART) should be made a CSU-SFSU priority in terms of co-funding and planning efforts to encourage mass-transit connectivity through an aerial or below grade subway extension. Many students and faculty / visitors speed around blocks in parkmerced and along major thoroughfares, and thus consideration should be given to the location of safety measures to prevent pedestrian fatalities adjacent to schools, pre-schools and senior housing sites.

- **Costs** – **Financial Feasibility** – to date no financial update has been publicly sent out regarding the housing acquisition costs, due dates on their initial purchases (CALPERS) and the impacts on needed profit margins on these purchases, (Stonestown UPN, and UPS Parkmerced blocks) A prior report delineated costs upcoming in 2017 and thus there is a need to ascertain the increased Housing Maintenance and repairs issues on multiple buildings noted in the news including the science building, and other older campus facilities and the needs to re-store and structurally retrofit existing buildings. Financial Feasibility and the ability to final and secure funding in the current markets for construction is key and critical to completion of projects. It may not be an official EIR segment, but needs to be addressed in terms of the SFSU-CSU “largess” documented in Corrigan's Viewpoint, its financial shifts between the SFSU-Foundation and now U.Corp, and how it intends to protect and provide affordable living and education standards of a State CSU, with the increased costs of housing and construction documented in SF’s housing element and updates yearly.
Thank you for the opportunity to comment,
Please find the additional attached documents (Drop-Box link) to all files

https://www.dropbox.com/sh/85569dwtgl4j23o/AABFwfsWigijxNqY3bQEYyw2a?dl=0

2010_03_12 Comment letter by the WOTPCC on the 19th Ave Corridor Study

2010_07 West of Twin Peaks Central Council Parkmerced Memo (relates to SFSU development)
Copy of SFSU MOU (In relation to transit costs, and development of the 19th Ave Transit Proposal and overall future costs to date undetermined and far beyond the cities current proposals, but increasingly critical due to traffic/transit issues in D7)

DOCOMOMO News Letter 2008 (Parkmerced)

National Trust Historic Preservation (Joint organization memo on significance of the Parkmerced and UPS University Park South blocks) that needs to be addressed as a CSU State Entity.

Parkmerced Soundness Report (A.Goodman) as a resident and local Architect concerned with the rehabilitation and possible use of the Mills-Act and alternatives in proposals environmentally.

SFSU-CSU Corrigan’s Viewpoint – online documents

SFSU Masterplan Map – showing different layouts and phasing than currently proposed, reasoning was not given for the changes, nor the reason how it provides more upfront to build a smaller parcel than the larger blocks initially.

SFSU-CSU Findings of Fact – was not challenged in court, but provides a questionable document as it was done prior to the Parkmerced EIR and legal challenge by San Francisco Tomorrow, which pointed out significant flaws in the EIR of Parkmerced’s project and proposal.

SFSU – Financial Feasibility – most recent document I have on financial issues related to SFSU’s growth and ability to construct these projects at the same time as handling the maintenance issues and ongoing construction projects on campus.

SF Heritage – memo on Parkmerced and need to look at a preservation based alternative.

Thank you again for including and reviewing as part of the general NOP discussion.

Sincerely

Aaron Goodman
Mr. Rick Cooper
Senior Environmental Planner
San Francisco Planning Department
1650 Mission Street, Suite 400
San Francisco, CA. 94103

Dear Mr. Cooper,

Thank you for completing the 19th Avenue Corridor Study.

The WTPCC helped to initiate this study so that the cumulative impact of several individual planning projects could be reviewed comprehensively. Heretofore, each planning review project was examined on an individual basis and approved on its merits. It is our organization's belief that the 19th Avenue Corridor Study will help the Planning Department and the Western neighborhoods mitigate the combined infrastructure impacts of the Parkmerced, San Francisco State University, 800 Brotherhood Way, 77-111 Cambon, 700 Font (SFUSD), Stonestown, 445 Wawona (Arden Wood) and 1150 Ocean (Balboa Park) projects. Planning needs to take a close look at any large new development consisting of 20 residential units or more and/or 50,000 square feet of retail or commercial space that would be located along or near the southern portion of the 19th Avenue Corridor. This forwards the West of Twin Peaks Central Council's (WTPCC) written testimony for the 19th Avenue Corridor Study for your review.

COMMENT/TESTIMONY

The build-out of the above identified development projects is estimated to increase the city's population by about 16,850 persons by 2030. These projects would include about 7,375 residential units, 460,000 gsf of retail uses, 834,000 gsf of institutional/educational uses, 80,000 gsf of office uses, 214,000 gsf of community facilities, and an eight-screen movie theater.

-Water Delivery Services: We agree with your reports assessment that there will be an adequate water supply for the 16,850 people who will be added to the 19th Avenue corridor by 2030. The term adequate is deceptive in that the average daily per capita water consumption in San Francisco is already a very low 58.7 gallons of water per day. This is an extraordinarily low amount when compared to the 120 gallons per day used by San Jose residents. The Association of Bay Area Governments (ABAG) growth demands for San Francisco dictate that the average daily water consumption in San Francisco may be as low as 47.8 gallons per day by 2030. This low level of water usage will become a quality of life issue.
San Francisco’s new 25 year master water contract, signed in the Summer of 2009, will allow San Francisco only 81 million gallons per day from Hetch Hetchy. The 94.5 million gallons of available water that you are projecting is not reliable and the SFPUC costs to achieve this 94.5 million is cost prohibitive. The costs to achieve this additional 13.5 million gallons of water (14% increase) through the WISP and Wastewater bonds will double to triple the cost of water and sewage for the average San Francisco consumer. At some point the City is going to have ask if the costs of this additional water and growth is worth burdening the existing population for the 7,375 net housing units that will be added by 2030. The Planning Department will have to monitor city water consumption very closely to make sure that planned growth is feasible AND affordable for the average citizen. The expected high cost of water and sewage will have a tremendous impact on future developments. The citizens of San Francisco will be subsidizing this population growth at a very high cost

-The study's conclusions for “available schooling” is completely inaccurate. The study concludes, "The geographic context for the analysis of the development projects' effects on schools is the entire City, because while school assignments take into account parents' preferences, which often include where a student lives, assignment is not necessarily to the closest neighborhood school." Due to changes in SFUSD admissions policy, proximity to a neighborhood school for elementary and middle-school children will now be prioritized geographically. Showing that there is availability throughout the entire system is no longer relevant. The study needs to show how the additional 1,500 children living in the 19th Avenue Corridor will be able to go to schools in the proximity of their neighborhoods. Under the new SFUSD admission guidelines the schools inside the 19th Avenue Corridor will not be able to adequately service the higher population of children.

Transit: It is commendable that Planning reviewed the 4A - 4C tier approaches. All four are good representations of logical and well thought out transportation options. The true test will be the Planning Departments Tier 5 option. As stated in the study, "Subsequent to the evaluation of these four future tiers, a Tier 5 study will be conducted that assesses large-scale and long-term projects to address corridor-wide transportation issues. This study will be scoped and conducted at a later date." It is critical that this Tier 5 study be completed as soon as possible.

The WTPCC questions the ability of the SFMTA to deliver on its promise of faster transit times. Muni's delivery time has dropped steadily over the last five years. In 2008, the average speed of a Muni bus/train was 9.1mph. The average speed is now 8.75mph and still falling. Declining rates of speed add millions to the costs of operation and continue to make Muni less efficient. Muni light rail used to travel at speeds of up to 55 mph through the West Portal tunnel. Due to poor track conditions, light rail trains are traveling at a much slower rate of speed. Muni may be able to repair rail lines and purchase new buses because of the
capital improvement funds that they are and will be receiving. Muni's operational funds are in shambles with Muni running huge operating deficits that will no longer be paid for through State funding. If Muni follows through on it's promised 10% service cuts by May 1st, 2010 Muni will have reduced it's operating services by 20% over the last year. As Muni's operational budget continues to go deeper and deeper into debt, there is no reason to be optimistic about increases in Muni's service times. At Muni's current reduction rate in operational service, Muni may be operating at 50% of its current service level by the time that the 19th Avenue Corridor developments are completed. Muni's lack of service will cause more people to rely on automobiles and create higher rates of traffic congestion and a greater need for parking.

On page III.3 of the study states the following, "In addition, the review of operating speeds indicated that bus delays would noticeably increase under Tier 1 and Tier 2 conditions, due to projected congestion levels along the streets. The transportation improvements included in Tier 3, Tier 4A, Tier 4B and Tier 4C would help reduce the travel time increases, but buses would still operate more slowly than they do under existing conditions, which could have impacts on Muni schedule adherence and service reliability."

The 19th Avenue Corridor study is only evaluating transportation from a capital improvement point-of-view and must consider the SFMTA's operational budget constraints. Federal, State and developer funding will allow the city to proceed and build Tier 5 plan, but operationally Muni will not be able to perform to anticipated standards. We believe that the Planning Department should take a close look at what has happened at St. Francis Circle. This main intersection has the longest stoplight waiting times in San Francisco. These excessive intersection waits are caused by the Muni light-rail trains running directly through the intersection. The 19th Avenue Corridor plan will have the same problems at Ocean Avenue and going into the Park Merced development. Although the cost is anticipated to be four times greater, the Planning Department's Tier 5 plan should analyze having the Muni light-rail trains go underground at the Ocean Avenue intersection and going into Park Merced. Without the underground option, the expected increases in population and traffic will greatly impede 19th Avenue traffic.

Parking: The 19th Avenue Corridor plan is projecting that there will be a substantially greater parking demand primarily focused near Stonestown, SFSU and Parkmerced. The study states, "It is likely that both SFSU and Parkmerced will have a substantial parking shortfall. As a result, the unmet parking demand in the area would tend to spill over into the adjacent residential neighborhoods, exacerbating any current parking problems." The bicycle lanes installed along Holloway Avenue would also reduce existing parking. Under new city planning guidelines parking is almost eliminated from the Balboa Park development and is rationed by income at Parkmerced. City Planning's insistence on higher density housing developments with limited parking will only discourage a limited number
of people from owning an automobile. These cars will be warehoused in existing neighborhoods. As Muni fare costs soar and service becomes more constricted and unreliable, development residents will purchase MORE cars and have less incentive to ride Muni. Parking along the 19th Avenue Corridor and in the surrounding neighborhoods will be horrendous.

CONCLUSION:

The WTPCC wants to again thank the San Francisco Planning Department for producing such a detailed plan of the 19th Avenue Corridor developments. It is our hope that the approved developments will lead to a satisfying and affordable quality of life for West side neighborhoods. We are concerned that the Planning Departments good intentions may lead to unintended negative consequences with respect to water availability, school admissions, mass transportation operations and parking.

Thank you for your consideration.

Sincerely,

George Wooding
President
West of Twin Peaks Central Council
July 11, 2010

Mr. Bill Wyco
Environmental Review Officer
San Francisco Planning Department
1650 Mission Street, Suite 400
San Francisco, CA. 94103

Subject: Re Parkmerced Project Draft EIR

Dear Mr. Wyco,

This forwards the West of Twin Peaks Central Council’s (WTPCC) Comments on: 1) the Parkmerced DEIR and 2) how this DEIR relates to the San Francisco Planning Departments recently published 19th Avenue Corridor Study.

The WTPCC helped to initiate the 19th Avenue Corridor study so that the cumulative impact of several individual planning projects could be reviewed comprehensively on the West side of San Francisco. Heretofore, each planning review project was examined on an individual basis and approved on its merits. It is our organizations belief that the 19th Avenue Corridor Study will help the Planning Department and the Western neighborhoods mitigate the combined infrastructure impacts of the Parkmerced, San Francisco State University, 800 Brotherhood Way, 77-111 Cambon, 700 Font (SFUSD), Stonestown, 445 Wawona (Arden Wood) and 1150 Ocean (Balboa Park) projects.

It was the intention of the San Francisco Planning Department to apply the findings of the 19th Avenue Corridor study to developments like the Parkmerced Project and by extension to the Parkmerced DEIR.

City Code requires the Planning Department to review any development consisting of 20 residential units or more and/or 50,000 square feet of retail or commercial space that would be located along or near the southern portion of the 19th Avenue Corridor. The build-out of the above identified development projects is estimated to increase the city’s population by about 16,850 persons by 2030. These projects would include about 7,375 residential units, 460,000 gsf of retail uses, 834,000 gsf of institutional/educational uses, 80,000 gsf of office uses, 214,000 gsf of community facilities, and an eight-screen movie theater.

PARKMERCED PROJECT DESCRIPTION: Parkmerced is an existing residential neighborhood with 3,221 residential units on approximately 152 acres of land in the southwest portion of San Francisco adjacent to Lake Merced. The existing on-site residential units are located in 11 towers and 170 two-story buildings. The proposed Parkmerced Project is a long-term mixed-use development program to comprehensively re-plan and redesign the site. The Parkmerced Project would increase residential density, provide a neighborhood core with new commercial and retail services, modify transit facilities, and improve utilities within the development. About 1,683 of the existing apartments located in 11
tower buildings would be retained. The remaining 1,538 existing garden apartments would be
demolished and fully replaced, and an additional 5,679 net new units would be added to the Project Site,
resulting in a total of about 8,900 units on the Project Site.

WTPCC FINDINGS/TESTIMONY

The WTPCC believes that the Parkmerced Project should be built and can be successfully completed,
however; after carefully reviewing the detail in the 19th Avenue Corridor study, the Parkmerced Project
DEIR and the financial situation of the developer - Stellar Management - the WTPCC has concluded
that: 1) the 19th Avenue Corridor study’s findings are overly optimistic and do not accurately represent
the ability of the City of San Francisco to provide the infrastructure improvements required to support
the proposed growth, and 2) Stellar Management’s current financial situation is very weak, and calls into
question their ability to actually deliver the proposed project at all. More importantly, the WTPCC feels
that the DEIR fails to adequately address the following issues:

- Project Financial Viability
- Water Delivery Services
- Schools & Education
- Transit Services
- Parking

Financial Viability

We realize that DEIR’s do not consider the financial components of a project. However, the net benefit
to the City in increased property taxes must be equal to or greater than the cost of providing and
maintaining the infrastructure needed to support that development. This must be considered for projects
of this size and potential negative impact.

We disagree with the premise that the infrastructure along the 19th Avenue corridor is adequate to
support the proposed growth. We also feel that the required improvements to that infrastructure will
demand significantly more capital investment than could ever be recovered by the City through the
increased property taxes that the growth would result in. The City is requiring that Stellar management,
the project developer pay for any property tax shortfalls caused by the project. This is unrealistic as the
developer will not have the additional funds needed and we believe that the financial burden of this
project will be subsidized by the general fund and ultimately the San Francisco taxpayers.

Stellar Management is currently in default of it’s mortgage payments. A Special Servicer, not Stellar
Management is controlling Parkmerced’s financial assets while they attempt to restructure the
developer’s debt. Stellar Managements has a $550 million note coming due in October. The Riverton
housing complex in Harlem, a 1,228 unit property owned by Stellar Management, was just foreclosed
on. The WTPCC is concerned about the Stellar Management’s ability to finance and complete this
project in a timely manner. Caveat Emptor (Buyer Beware).
Water Delivery Services

We agree with DEIR’s assessment that there will be an adequate water supply for the 16,850 people who will be added to the 19th Avenue corridor by 2030. The term adequate is deceptive in that the average daily per capita water consumption in San Francisco is an already a very low 58.7 gallons of water per day. This is an extraordinarily low amount when compared to the 120 gallons per day used by San Jose residents. The Association of Bay Area Governments (ABAG) growth demands for San Francisco dictate that the average daily water consumption in San Francisco may be as low as 47.8 gallons per day by 2030. This low level of water usage will become a quality of life issue.

San Francisco's new 25 year master water contract, signed in the Summer of 2009, will allow San Francisco only 81 million gallons per day from Hetch Hetchy. The 94.5 million gallons of available water that you are projecting is not reliable and the SFPUC costs to achieve this 94.5 million is cost-prohibitive. The costs to achieve this additional 13.5 million gallons of water (14% increase) through the WISP and Wastewater bonds will double to triple the cost of water and sewage for the average San Francisco consumer. At some point the City is going to have ask if the costs of this additional water and growth is worth burdening the existing population for the 7,375 net housing units that will be added by 2030. The Planning Department will have to monitor city water consumption very closely to make sure that planned growth is feasible AND affordable for the average citizen. The expected high cost of water and sewage will have a tremendous impact on future developments. Once again, the citizens of San Francisco will be subsidizing the Parkmerced development at a very high cost.

Schools & Education

The 19th Avenue Corridor Study conclusion for “available schooling” is completely inaccurate. The study states:

"The geographic context for the analysis of the development projects' effects on schools is the entire City, because while school assignments take into account parents’ preferences, which often include where a student lives, assignment is not necessarily to the closest neighborhood school."

Due to changes in SFUSD admissions policy, proximity to a neighborhood school for elementary and middle-school children will now be prioritized geographically. Showing that there is availability throughout the entire system is no longer relevant. The study needs to show how the additional 1,500 children living in the 19th Avenue Corridor will be able to go to schools in the proximity of their neighborhoods. Under the new SFUSD admission guidelines the schools inside the 19th Avenue Corridor will not be able to adequately service the higher population of children.

The SFUSD sold off the Frederick Burke Elementary School and thus eliminated the only public school in walking distance to the Park Merced Development. Stellar Management, the Parkmerced developer will be building a new Pre K – 5 school and a day care facility, however, These will not be public schools, and as such should not be considered when calculating the number of students that will be added to the SFUSD. The proposed new private school would not be large enough to adequately meet the needs of the Parkmerced children and children from the surrounding neighborhoods even if it were turned over to the SFUSD to operate.
San Francisco taxpayers will be subsidizing the costs for new schools to serve the additional residents that Parkmerced will bring to San Francisco.

Transit Service

It is commendable that Planning reviewed the 4A - 4C tier approaches for the 19th Avenue Corridor plan. All four are good representations of logical and well thought out transportation options. The true test will be the Planning Departments Tier 5 option. As stated in the study, "Subsequent to the evaluation of these four future tiers, a Tier 5 study will be conducted that assesses large-scale and long-term projects to address corridor-wide transportation issues. This study will be scoped and conducted at a later date." It is critical that this Tier 5 study be completed as soon as possible.

The WTPCC questions the ability of the SFMTA to deliver on its promise of faster transit times. Muni's delivery time has dropped steadily over the last five years. In 2008, the average speed of a Muni bus/train was 9.1mph. The average speed is now 8.75mph and still falling. Declining rates of speed add millions to the costs of operation and continue to make Muni less efficient. Muni light rail used to travel at speeds of up to 55 mph through the West Portal tunnel. Due to poor track conditions, light rail trains are traveling at a much slower rate of speed. Muni may be able to repair rail lines and purchase new buses because of the capital improvement funds that they are and will be receiving. Muni's operational funds are in shambles with Muni running huge operating deficits that may no longer be paid for through State funding. MUNI cut services by an additional 10% on May 1st, 2010. Muni has reduced its operating services by 20% over the last year and more service cuts are expected over the next five years. As Muni's operational budget continues to go deeper and deeper into debt, there is no reason to be optimistic about increases in Muni's service times. At Muni's current reduction rate in operational service, Muni may be operating at 50% of its current service level by the time that the 19th Avenue Corridor development projects are completed, especially the Parkmerced development.

Muni's lack of service will cause more people to rely on automobiles and create higher rates of traffic congestion and a greater need for parking. People want to get off of the bus, not on the bus. On page III.3 of the 19th Avenue Corridor study states the following, "In addition, the review of operating speeds indicated that bus delays would noticeably increase under Tier 1 and Tier 2 conditions, due to projected congestion levels along the streets. The transportation improvements included in Tier 3, Tier 4A, Tier 4B and Tier 4C would help reduce the travel time increases, but buses would still operate more slowly than they do under existing conditions, which could have impacts on Muni schedule adherence and service reliability."

The 19th Avenue Corridor study is only evaluating transportation from a capital improvement point-of-view and must consider the SFMTA's operational budget constraints. Federal, State and developer funding will allow the city to proceed and build Tier 5 plan, but operationally Muni will not be able to perform to anticipated standards. We believe that the Planning Department should take a close look at what has happened at St. Francis Circle. This main intersection has the longest stoplight waiting times in San Francisco with traffic stops averaging 90 - 120 seconds. These excessive intersection waits are caused by the Muni light-rail trains running directly through the intersection. MUNI trains traveling across or along 19th avenue and into the Parkmerced development will receive right-of-way priority over...
other types of transportation. Stoplight waits are projected to increase by at least 27 seconds. Parkmerced's increased population density will have a tremendous impact on 19th Avenue traffic.

The Parkmerced Project includes construction of (or provides financing for construction of) a series of transportation improvements, which include rerouting the existing Muni Metro M Ocean View line from its current alignment along 19th Avenue. The new alignment, as currently envisioned, would leave 19th Avenue at Holloway Avenue and proceed through the neighborhood core in Parkmerced. The Muni M line trains would then travel alternately along one of two alignments: trains would either re-enter 19th Avenue south of Felix Avenue, and terminate at the existing Balboa Park station, or they would terminate at a new station, with full layover and terminal facilities, constructed on the Parkmerced Project Site at the intersection of Font Boulevard and Chumasero Drive. Although the cost is anticipated to be four times greater, the Planning Department's Tier 5 plan should analyze having the Muni light-rail trains go underground at the Ocean Avenue intersection and going into Park Merced. The Tier 5 plan should also consider connecting the M Ocean View line to the Daily City Bart Station.

Due to Stellar Management's current financial situation, it is questionable whether they will be able to afford to build these track extensions and additional stations or purchase the additional Muni trains that their agreement with the city will require. If Stellar Management does build the stops, San Francisco will still have to pay the future operation and maintenance costs. If the developer cannot complete the transit extension, San Francisco will be forced to pay for the extension and possibly more trains.

Parking

The 19th Avenue Corridor plan is projecting that there will be a substantially greater parking demand primarily focused near Stonestown, SFSU and Parkmerced. The study states, "It is likely that both SFSU and Parkmerced will have a substantial parking shortfall. As a result, the unmet parking demand in the area would tend to spill over into the adjacent residential neighborhoods, exacerbating any current parking problems." The bicycle lanes installed along Holloway Avenue would also reduce existing parking. Under new city planning guidelines parking is almost eliminated from the Balboa Park development and is rationed by income at Parkmerced. City Planning's insistence on higher density housing developments with limited parking will only discourage a limited number of people from owning an automobile. The Parkmerced Project has a one parking spot per apartment spot component. Additional cars will be warehoused in existing neighborhoods. As Muni fare costs soar and service becomes more constricted and unreliable, development residents will purchase MORE cars and have less incentive to ride Muni. Parking along the 19th Avenue Corridor and in the surrounding neighborhoods will be horrendous.

CONCLUSION

The WTPCC wants to again thank the San Francisco Planning Department for producing such a detailed plan of the 19th Avenue Corridor developments. However, we disagree with the overall finding of the study that supports the proposed growth by making overly optimistic estimations of the ability of the City of San Francisco to deliver the infrastructure improvements necessary to support this growth. We are concerned that the Planning Departments desire to facilitate increased housing density along 19th Avenue (in order to meet housing growth metrics prescribed in the 2009 Housing Element) may lead to
unintended negative consequences with respect to the City’s financial wellbeing, water availability, schools and education, mass transportation operations and parking.

The WTPCC supports the Parkmerced Project but believes that the project is hampered by the current economy, the financial strength of Stellar Management and the San Francisco Planning Departments over-optimistic analysis of the infrastructure support that the City of San Francisco can provide to the Parkmerced Project.

Sincerely,

George Wooding
President, West of Twin Peaks Central Council
Memorandum of Understanding
City & County of San Francisco and California State University/ San Francisco State University

This Memorandum of Understanding ("MOU") is entered into by and between the City & County of San Francisco and California State University ("CSU") / San Francisco State University, a California public post-secondary institution for higher education, on this 24th day of October 2007.

RECITALS

WHEREAS, California State University includes institutions for higher education throughout the State including San Francisco State University (the "University"), a location within the City & County of San Francisco ("City"); and

WHEREAS, as part of its strategic vision to become the nation's preeminent public urban university, the University has prepared a San Francisco State University Campus Master Plan ("Master Plan") that establishes a long-term vision for the physical environment and identifies improvements to occur through 2020; and

WHEREAS, these improvements focus on accommodating increased enrollment from 20,000 to 25,000 full-time equivalent students (FTES), 711 additional faculty and staff, 657 additional housing units, expanded academic initiatives, and ways to best serve its many constituents—from students, faculty and staff to alumni, friends and neighbors—who contribute to the University's success; and

WHEREAS, the University produces over 7,000 well-educated graduates each year—80 percent of whom remain in the San Francisco Bay Area; and

WHEREAS, the University plays an important role in fueling the City's vibrant economic, cultural, and civic institutions; and

WHEREAS, the City recognizes the significant contributions that the University makes to the community and supports the institution's efforts to modernize and plan for its future needs; and

WHEREAS, the City recognizes and supports the University's commitment to ensuring that it has the resources to provide outstanding educational opportunities for students and unrivaled cultural, recreational, and intellectual opportunities for the community; and

WHEREAS, the University has completed a Final Environmental Impact Report ("FEIR") as required by the California Environmental Quality Act, Public Resources Code §§ 21000 et seq. ("CEQA"); and

WHEREAS, the FEIR identifies at a programmatic level the environmental impacts that the Master Plan would have on the community and sets forth mitigation measures; and

WHEREAS, on March 30, 2007, the City submitted comments on the Campus Master Plan Draft EIR regarding identification and mitigation of off-campus impacts and offering to help facilitate a Memorandum of Understanding ("MOU") to address such impacts; and
Memorandum of Understanding
City & County of San Francisco and California State University/San Francisco State University

WHEREAS, the City and the University began MOU discussion in June 2007 and have expressed the desire to formalize an agreement addressing environmental impacts resulting from the Master Plan and to strengthen their relationship and support mutually beneficial cooperation in the future and particularly during the 2007–2020 implementation period of the Master Plan; and

WHEREAS, in the course of MOU negotiations the City and the University identified differences of opinion regarding the methodology and conclusions set forth in the FEIR, particularly with respect to off-campus impacts and related mitigation measures; and

WHEREAS, the City and the University desire to avoid challenges and/or litigation over the FEIR through good faith negotiations and mutual commitments as set forth herein; and

WHEREAS, the University acknowledges its obligation under CEQA to negotiate with the City and seek funding for its fair share of mitigation costs to offset the public capital costs of providing City infrastructure as set forth herein, where a nexus exists between such improvements and the University’s redevelopment and growth as described in the Master Plan; and

WHEREAS, the City and the University seek to provide additional clarity and performance criteria with regard to off-campus mitigation measures and fair share contributions; and

WHEREAS, the City intends to administer any University payments in a separate account, overseen by the City Controller’s Office, which shall be used solely for expenditures authorized herein; and

WHEREAS, the Master Plan calls for some improvements, such as those in the Buckingham Way and Holloway Avenue rights-of-way, that may be subject to City permit, the granting of which may be contingent upon performance of the fair share provisions of this MOU; and

WHEREAS, the City and the University intend for this MOU to be a legally binding contract; and

WHEREAS, the City and the University intend that performance of the University’s obligations contained in this MOU shall satisfy the University’s CEQA and fair share obligations with respect to the FEIR; and

WHEREAS, performance of the University's obligations contained in this MOU will be contingent upon the Board of Trustees’ approval and certification of the FEIR and approval of related Board resolutions;

NOW, THEREFORE, the City on the one hand and California State University and San Francisco State University on the other, agree as follows:

I. FAIR SHARE CONTRIBUTION

A. General Principles for Fair Share Contribution for Capital Projects
Memorandum of Understanding
City & County of San Francisco and California State University/San Francisco State University

1. Any contributions to be made by the University as set out herein shall be adjusted according to the California Construction Cost Index at the time the contribution is made to the City.

2. CSU and the University shall make a good faith and timely effort to obtain approval by the Board of Trustees, governor, and legislature of requested capital appropriations for the funding required to perform its obligations under this MOU.

3. The City shall make a good faith effort to notify the University at least twenty-four (24) months in advance of implementation of any capital improvement project for which the University has a fair share contribution as identified in this MOU. Upon receipt of the City’s notification, the University will submit a funding request to the CSU for inclusion in the CSU’s annual capital budget request process for the governor’s and legislature’s approval.

B. Traffic Measures

1. The University shall implement all Transportation Demand Management ("TDM") measures identified in the Board of Trustees-approved FEIR to minimize the daily AM and PM vehicle trips to the campus. The TDM program shall include, at minimum, the following:

 a. The University shall encourage its affiliates, including the students and employees, to follow the City’s Transit First policy and use alternative modes of transportation whenever possible.

 b. Within six months from the certification of the FEIR, in partnership with the City, the University shall establish a formalized TDM program. The TDM program shall include development and implementation of an aggressive TDM work plan for the University campus.

 c. The University shall hire a transportation consultant, or staff employee, specializing in TDM development to prepare a site specific work plan for the University campus. The work plan shall be reviewed with the San Francisco Municipal Transportation Agency ("SFMTA") on an annual basis beginning in June 2008. The work plan would be developed to satisfy the goals of the TDM program outlined in this MOU.

 d. The TDM program shall aggressively pursue facilitating the effective use of transit, bicycle, and other modes of transportation, encouraging ridesharing among University affiliates, and employing other practical means to reduce commute travel by single-occupant vehicles.

 e. The TDM program’s objective is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts of increasing the number of students by 5,000 FTE and expanding the number of employees by 771 as set forth in the Master Plan.

 f. A transportation coordinator shall be designated by the University who shall be responsible for campus-wide coordination of all TDM related services. Said Coordinator shall serve as the liaison to the SFMTA concerning compliance with this TDM program.

2. The University shall work in good faith with the City to mitigate to less-than-significant-levels the impacts University traffic growth could have at any affected intersections identified in
Section (I)(B)(4)(f) while ensuring traffic mitigation measures do not impair or undermine pedestrian, bicycle or transit access.

3. The City and the University agree that for purposes of determining traffic impacts subject to this MOU, the University and its consultants shall utilize the City’s standards of significance as set forth by the Planning Department in 3(a) and (b) below, unless the parties mutually agree to use different standards of significance. These standards indicate that the project’s traffic impact at a signalized intersection would be considered significant if:

a. The project-related traffic causes the Level of Service (LOS) to deteriorate from LOS D or better to LOS E or F; or from LOS E to LOS F; or

b. A signalized intersection operates at LOS E or F under cumulative conditions in 2020 and both of the following conditions occur: (1) project-related traffic contributes 5 percent or more of the total traffic at the intersection, and (2) the project-related traffic contributes 5 percent or more of the cumulative growth in traffic volumes at the affected intersection.

4. The University shall establish a traffic monitoring and mitigation program, as detailed in the Campus Master Plan Final EIR. The program will monitor and determine whether the University’s expanded TDM program identified in Section I(B)(1) above is successfully minimizing or avoiding new peak hour trips. The program will provide for mitigation, including additional TDM measures, or if necessary, improvement at affected intersections, if required to address project traffic impacts. The program will include the following elements:

a. The University will conduct a new baseline cordon count and intercept survey (collectively herein "cordon survey") no less than 12 months following the certification of the EIR. This cordon survey shall serve as a baseline against which future growth shall be measured. The cordon survey will cover all entrances to campus used by more than 100 people per day, and will examine the travel behavior of University affiliates. Surveyors may be stationed to cover more than one campus entrance at a single location, such as the south end of the parking garage footbridge, which captures travelers from South State Drive, North State Drive and Lot 25. Surveyors will count all persons entering and leaving the campus. The survey will be conducted during typical days while classes are in session, excluding final examination, national holiday or orientation weeks. The University shall work in good faith with the City to develop a survey methodology that provides reasonable statistical confidence in the number of University affiliates driving motor vehicles and riding Muni to and from the campus in the evening peak hour, including those motorists who park off campus within a ten-minute walk from the campus.

b. In addition, at intervals of no more than every three years, or no later than the addition of each 1,000 students in enrollment by headcount, the University will conduct a statistically significant cordon survey of campus commuters during the PM peak hour. The cordon survey will cover all major entrances to the campus as defined above and will examine the travel behavior of University affiliates. The survey will be conducted during typical
days while classes are in session, excluding final examination, national holiday or orientation weeks.

c. If cordon surveys show that the PM peak period auto trips to and from campus are greater than 5 percent above the baseline to be determined according to section (4)(a), the campus shall conduct the cordon surveys annually until such trips fall below 5 percent above the baseline for 2 years in a row. If and when this occurs, cordon surveys will continue in accordance with section (4)(b) above.

d. If the cordon surveys show an increase in PM peak period auto trips sufficient to result in project impacts at any affected intersections (including those listed in item 4.f below), the campus will increase the level of TDM programs until the project impacts associated with traffic increases are mitigated to a less-than-significant level. Pursuant to Section I (B)(1), above, the University transportation coordinator will report in June 2008 and annually thereafter until 2020 to update the San Francisco Municipal Transportation Agency ("SFMTA") on the implementation of TDM programs described herein.

e. The City and the University agree that the University will conduct statistically significant cordon surveys of campus commuters, in accordance with the scheduling criteria identified in Section I (B)(4) above. The University agrees to provide the cordon count raw data and data analysis to the City within three months of collection. The data should include information about campus affiliation, mode choice, and local residence zip code. The City and the University further agree that the City will be given a 30-day opportunity to review and comment on the scope of work for such surveys, but both parties agree that the methodology and approach will be similar to that taken for the previously conducted 2006 surveys.

f. If the campus fails to reduce its traffic impacts to a less-than-significant level for more than two years in a row, it will make payments totaling $175,000 to the City toward co-funding the cost of intersection and roadway improvements on 19th Avenue, Holloway Avenue, Font Boulevard, Lake Merced Boulevard, Winston Drive, and/or Buckingham Way in order to reduce University traffic impacts to less than significant levels. Such improvements may include but are not limited to the intersections of Lake Merced Boulevard/South State Drive and Lake Merced Boulevard/Font Boulevard. Payments shall be made in the following manner:

i. Ten percent of these funds will be provided to the City at the completion of the schematic design process, including CEQA certification and expiration of the 30-day statutory appeal period for legal challenges, and

ii. Fifty percent once construction completion is fifty percent complete; and

iii. The remaining forty percent at the completion of construction.
Memorandum of Understanding
City & County of San Francisco and California State University/San Francisco State University

C. Transit

1. The San Francisco Municipal Transportation Agency ("SFMTA") and the San Francisco County Transportation Authority ("SFCTA") are currently working to implement improvements to transit services along 19th Avenue via the implementation of SFMTA’s Transit Effectiveness Project and SFCTA’s 19th Avenue Project. Improvements are planned that would reduce travel time along the M-line and 28/28L lines (e.g., bus rapid transit, improved stop spacing, transit prioritization treatments, expanded Proof-of-Payment, in-lane bus stops), re-establishing a “short-run” of the M-line between the Embarcadero and the University stations, etc. Concurrent with that effort, the University agrees to work in good faith with the City to assist with the implementation of those improvements as well to mitigate transit capacity impacts related to campus growth. The University and the City agree to the following:

a. Transit Data Collection

i. SFMTA will provide data that establishes the baseline average peak period, peak direction passenger loading at key transit gateways such as Holloway/19th Avenue, 19th/Hensill, Tapia Drive, and Holloway/Arellano for the following Muni lines: 17, 18, 28, 28L, 29, 88, and M.

ii. The University will monitor the University peak period transit use as part of the overall access survey by conducting cordon counts as specified in the Traffic section above.

b. On-Campus Transit Conveniences. The University shall provide the following conveniences to enhance and promote the use of Muni and shuttle services at key locations on Campus to increase trip-making choices and certainty. These locations may include the Holloway/19th Avenue entrance, the bookstore, existing or planned information screens in the Student Center and library, and cafes/dining areas:

i. Prominent display of NextMuni or comparable Internet-accessible monitors to alert waiting transit/shuttle users to the arrival of all University shuttles and Muni lines 17, 18, 23, 28, 28L, 29, 54, 88 and the M-Oceanview,

ii. Transit ticket purchase options: Fast Pass/BART ticket sales services and access to automatic vending machines installed and maintained by the City,

iii. Lighting and shelter from wind/rain at major transit boarding areas as deemed by the University to be practicable.

c. 19th Avenue Transit

i. The City agrees to continue the current arrangement to work with BART to provide free transfers for all individuals including the University affiliates between the Daly City BART Station and campus.

ii. The City and the University agree to work together to advocate that BART improve transit connectivity at the Daly City BART station, including locating 28/28L and campus shuttle stops adjacent to one another, provide NextMuni or comparable
Memorandum of Understanding
City & County of San Francisco and California State University/ San Francisco State University

Internet-accessible “Real Time” transit vehicle arrival information at this location for the campus shuttles and the Muni line 28, and including BART in a universal transit pass program.

iii. The City and the University agree to work together to implement transit prioritization treatments along 19th Avenue to expedite and prioritize high-capacity transit service along this corridor, particularly for the 28/28L Muni bus line and the M Oceanview line.

iv. The City agrees to review with the University and recommend service and route changes to Muni lines serving the University.

v. The University agrees to monitor peak hour utilization of Campus Shuttle buses on an annual basis and if average peak period, peak direction passenger loading exceeds 85 percent of combined seated and standing load capacity for shuttle service between the campus and the Daly City BART station, the campus shall improve services during the peak period(s) until this standard is met.

vi. The City agrees to monitor peak period, peak direction utilization of Muni routes, including the M and 28/28L, and work toward meeting Muni’s adopted reliability and passenger loading standards.

d. M Line Corridor and Platform. The City and University agree to:

i. The University will continue to provide maintenance at the 19th/Holloway M platform as defined in the agreement between the City and the University, signed August 5, 1994, whereby the University provides platform maintenance in exchange for the right to display University-related information and artwork on the platform;

ii. The University will allow the City to locate and maintain automated ticket vending machines at campus locations to be determined by the University to ensure tickets may be purchased where queues do not impair loading of Muni transit vehicles or shuttles. Ticket vending machines should be located at least at one prominent location on campus where tickets may be purchased in the immediate vicinity of the M Platform and 28/28L stops without necessitating the crossing of any part of 19th Avenue;

iii. The City and University agree to work together in good faith to address rider comfort and platform crowding at the 19th/Holloway M-Oceanview platform, including speed, reliability and frequency improvements on the M between Holloway and Embarcadero, and track reconfigurations that facilitate “short-run” service between Holloway and Embarcadero Station. This project will also include measures to improve pedestrian safety and comfort, accommodating a significant increase in pedestrians accessing transit. The University agrees to contribute $1,825,000 towards a project that meets these goals. Ten percent of these funds will be provided to the City at the completion of the schematic design process, including CEQA certification and expiration of the 30-day statutory appeal period.
Memorandum of Understanding
City & County of San Francisco and California State University/ San Francisco State University

for legal challenges. The remainder will be paid to the City in increments at the
time the following conditions are met:

1) A project to allow Muni to terminate some or all M-Line service at
Holloway, sufficient to achieve the improvements described above, is fully
funded, including the University’s contribution, and a construction contract is
signed; and

2) The project will allow Muni to increase frequency and capacity on the M-
Line between Holloway and Embarcadero.

3) Based on the above conditions, the remaining 90 percent of funds can be
invoiced at the following milestone construction completion percentages:

 a) At 30 percent construction completion, 30 percent of the
 remaining funds.

 b) At 60 percent construction completion, 30 percent of the
 remaining funds.

 c) At filing of the Notice of Completion, 30 percent of the remaining
 funds.

iv. If the track reconfiguration project to improve speed, reliability, frequency, and
capacity of service on the M line is not implemented, and if Muni reports that M
line average peak period, peak direction passenger loading between the campus and
West Portal Station exceeds 85 per cent of combined seating and standing load
capacity for two years in a row throughout the West Portal/ Holloway corridor, and
if the cordon surveys show that peak period transit trips on the M-line between the
campus and West Portal Station are greater than 5 percent above the baseline
throughout the corridor, the University agrees to extend campus shuttle service
between the campus and West Portal Station during the peak period(s). This
additional campus shuttle service will be operated with adequate capacity (i.e., it
will not exceed an 85 percent combined seated/standing passenger capacity target),
but the capacity shall not be greater than 15 percent of the total peak hour net new
transit demand in this corridor associated with campus growth. This additional
campus shuttle service will be operated until the track reconfigurations described
above are implemented, or additional, alternative transit improvements are agreed
upon. If, in advance of implementation of the shuttle service, the University and
the City devise an alternative shuttle configuration or service that would serve the
same goals and ridership at the same or less cost, the parties agree to work toward
the implementation of such alternative.

v. When the track reconfiguration project is implemented, the University’s share shall
be $1,825,000 in 2007 dollars adjusted for escalation according to the California
Construction Cost Index. If the City does not commence construction by January 1,
2015 the University’s share shall be reduced by fifty per cent (50%) of the costs
accrued to the University for operating the West Portal shuttle as described above
Memorandum of Understanding
City & County of San Francisco and California State University/San Francisco State University

in section (1)(d)(iv) and in EIR mitigation TRA-2B, from the time such mitigation is required to the time the M line project is completed.

II. COOPERATIVE PLANNING

A. Transit

1. Transit Pass Program

a. The University and the City agree to work in good faith to establish a universal transit pass program for the University affiliates. These passes would be made available to all members of a campus affiliation group, such as undergraduate students, graduate students, faculty and/or staff, on a monthly, semester and/or annual basis, and shall be designed to support both current fare structures of BART and Muni and the fare coordination and payment programs incorporated in the proposed Translink program.

b. The City agrees to establish a price for these passes such that the entire program is revenue neutral for the City, including the following factors:

i. Program administration;

ii. Lost FastPass and fare box revenue from existing riders;

iii. Increased capital and operating cost for new transit service to meet increase in transit demand that results from the program;

iv. Savings in capital and operating costs from roadway improvements due to mode shift from driving to transit;

v. Complete fare equity between Muni services and the University shuttle system to maximize choices for access to the University from the Transit Hubs served by both the shuttles and Muni; and

vi. Savings in costs for meeting air quality, water quality, CO2 or other requirements that a universal transit pass program would benefit.

c. The University agrees to work in good faith to encourage its affiliate groups to support a universal transit pass program and to coordinate this pass with the design and projected implementation of Translink. Implementing such a program for students would require a student fee to be voted upon by students.

B. Parking

1. In accordance with State law, new parking construction and parking operations on campus will be funded through parking fees imposed on the users of the parking facilities.

2. The City and the University shall, within 90 days of certification of the EIR, meet and confer regarding parking availability on the City-owned streets surrounding the campus with the intent of cooperatively addressing congestion and parking availability. The City shall endeavor to manage parking on City streets surrounding campus in order to improve parking availability.
Memorandum of Understanding
City & County of San Francisco and California State University/ San Francisco State University

3. The City agrees to use its powers to manage commuter parking on residential streets surrounding the campus in accordance with its Residential Parking Permit regulations.

C. Bicycles

1. To the extent permitted by law, the City and the University agree to work together to implement key provisions of the San Francisco Bicycle Plan upon the certification of both the University’s FEIR and FEIR related to the City’s Bicycle Plan to increase connectivity between the University campus and surrounding bicycle routes and network elements, with specific focus on the following:

 a. The University agrees to allow the general public access to its bikeways and pedestrian paths, subject to the same rules as campus affiliates.

 b. The University shall establish a dedicated north-south bike path connecting 20th Avenue at Buckingham to Holloway through campus in order to provide and maintain a direct, lighted, 24-hour bike route across the University. This path shall be completed prior to the enrollment of 1,000 additional students in enrollment by headcount under the Campus Master Plan.

D. Pedestrians

1. The City and the University agree to work together to ensure pedestrian access to the campus is safe, comfortable and convenient from all major entry points, and across such arterials and heavily trafficked roadways bordering the campus such as 19th Avenue and Lake Merced Boulevard, recognizing measures that the University has implemented already, such as its crossing guard program at the intersection of 19th and Holloway Avenues, and the lighting and fencing installations on 19th Avenue between Hensil Hall and Buckingham Way, and on Lake Merced Boulevard between North State Drive and South State Drive.

2. The University agrees to participate in a Task Force to address the serious issue of pedestrian safety and crossing 19th Avenue, along with appropriate government agencies and representatives, and prioritize development of such pedestrian safety improvements.

E. Planning

1. The University shall provide access to a University mitigation monitoring program and reports through a website accessible to the City agencies and members of the public who commented on the DEIR. Posted to the website will be copies of mitigation monitoring reports, required under CEQA, that will identify the campus’s progress in implementing Campus Master Plan EIR and subsequent project-specific mitigation measures.

2. The City and the University agree to work together collaboratively during implementation of Master Plan projects as part of a collaborative planning initiative and shared approach to area improvement. In particular, both parties agree to consult on transportation service planning and right-of-way improvements for optimal design cohesiveness and construction phasing.

3. The City and University agree to provide mutual opportunity for early comment and consultation on significant private, public, and University-initiated planning and building design for the Park Merced area and University campus in accordance with CEQA requirements.
Memorandum of Understanding
City & County of San Francisco and California State University/ San Francisco State University

Included among such projects are those proposals submitted for City review and processing that include or undertake City General Plan and zoning changes, or otherwise contemplate land use changes that may be of concern or interest to the University.

4. The University acknowledges the current survey, in progress, in defining CRHR eligibility criteria of Parkmerced and defining “historical resources” per CEQA 15064.5. If and when the campus pursues development on campus lands formerly part of Parkmerced, the campus shall implement Campus Master Plan EIR Mitigation CULT-2A through-2C, as appropriate.

5. For projects within 200 feet of archaeological site P-38-000025/CA-SFR-25, the University shall conduct subsurface testing in accordance with Campus Master Plan Mitigation CULT-1A. In the event that an archeological resource is encountered during such testing, Mitigation CULT-1B will be implemented, including evaluation of the resource, data recovery, and reporting.

6. The University agrees to pursue historical resource documentation per Campus Master Plan EIR Mitigation CULT-2C. Documentation for significant historic resources shall include still and video photography and a written record of the building to the standards of the Historic American Building Survey (“HABS”) or Historic American Engineering Record (“HAER”). A copy of the record shall be kept with the University Library. The use of media resources of the University could be utilized, as appropriate, for such documentation efforts. The University will make these resource records available for public educational and interpretive multi-media programs and projects.

7. The City and the University agree to work cooperatively on identifying affordable housing opportunities, including housing sites, programs and sources of private and government funding for development.

F. San Francisco Public Utilities Commission (SFPUC)

1. In accordance with the Campus Master Plan EIR, as each future building project is proposed, the University will verify that it can achieve a net zero increase in combined wet weather flow to the City’s combined sewer system. If a net increase in such flows would occur campus wide, the University will consult with the San Francisco Public Utilities Commission ("SFPUC") Department of Planning and Regulatory Compliance to determine whether such an increase will require downstream system capacity improvements. The University agrees to consult with the San Francisco Public Utilities Commission Wastewater Enterprise on all projects prior commencement of design development of new buildings.

2. As acknowledged in the Campus Master Plan and EIR, proposed development in the Lake Merced area (i.e., new creek inlet, pedestrian underpass, and pedestrian trail connection) will require subsequent approvals from the SFPUC Water Enterprise. Towards that end, the University agrees to consult with the SFPUC and the Recreational and Park Department Natural Areas Division on project plans for development leading to or affecting East Lake, Lake Merced, or its recreational trail system. The University agrees to begin this consultation before the commencement of design development on such improvements.

3. The City, through SFPUC, and the University agree to work cooperatively on water conservation programs to be more effective.
Memorandum of Understanding
City & County of San Francisco and California State University/ San Francisco State University

4. The University agrees to negotiate and seek funding for its assessment of capital fees pursuant to Government Code 54999 as its “fair share” of the cost of off-campus SFPUC infrastructure improvements, if such improvements are required.

G. Recreation and Parks

1. The University agrees that all wetland or other sensitive habitat in Lake Merced temporarily disturbed/removed during the construction of the bridge underpass, path connection and/or seasonal creek inlet creek shall be replaced and restored in accordance with the SFPUC in consultation with the Recreation and Park Department Natural Areas Division, as set out in the FEIR.

2. The University agrees that construction phase mitigation measures in the Lake Merced Area for the protection of nesting special-status birds shall be developed in consultation with the SFPUC in consultation with the Recreation and Park Department Natural Areas Division to ensure that substantial effects on nesting birds do not occur, as set out in the FEIR.

H. Fire Department

1. As indicated in the FEIR, while no major upgrades to the campus water system are known to be needed at this time, it is possible that if a proposed building has a substantially larger fire flow requirement than existing development, upsizing of existing campus piping may be required. However, given the pressure and flow provided by the existing turbine meters, improvements to the off-campus system to provide for adequate fire flows are not anticipated by the University. While this is the case, the University agrees to consult with the San Francisco Fire Department on water delivery and water pressure on projects prior to commencement of design development of new buildings, to ensure that any needed off-campus improvements are identified and implemented. If such improvements are required, the University would seek funding for its fair share per Section II. (F)(4) above.

III. General Provisions

1. The parties hereto agree that for purposes of litigation concerning performance of this MOU, venue shall be the City and County of San Francisco, California. The rights and obligations of the parties hereto and all interpretation and performance of this MOU shall be governed by the laws of the state of California.

2. Should any dispute arise with respect to this MOU, the terms therein, or with the implementation thereof, the parties agree to do the following: (1) the parties will meet and confer in person and attempt to resolve any disputed issue; (2) if the parties are unable to resolve any dispute informally, they agree to proceed to mediation. The mediator will be jointly selected by the parties, and each party will bear its own costs associated with mediation.

3. All communications and notices required by or given pursuant to this MOU shall be provided as follows:

To the City:

Gavin Newsom, Mayor
Memorandum of Understanding
City & County of San Francisco and California State University/San Francisco State University

City and County of San Francisco
City Hall
1 Dr. Carlton B. Goodlett Place
San Francisco, CA 94102

To The University:

Dr. Leroy Morishita, Vice President for Administration & Finance
San Francisco State University
1600 Holloway Avenue
San Francisco, CA 94132

4. Each signatory to this MOU represents that s/he is authorized to enter into this MOU and
bind the party to which his or her signature pertains.

IN WITNESS WHEREOF, this Memorandum is executed on this 29th, 30th day of October 2007.

CITY & COUNTY OF SAN FRANCISCO

By: Nathaniel Ford, Sr.
Executive Director & Chief Executive Officer
San Francisco Municipal Transportation Agency

Date: 10.30.07

CITY & COUNTY OF SAN FRANCISCO

By: Bill Wycko
Acting Environmental Review Officer
San Francisco Planning Department

Date: 10/29/07

SAN FRANCISCO STATE UNIVERSITY

By: Leroy Morishita

Date: 10/30/07
Memorandum of Understanding
City & County of San Francisco and California State University/ San Francisco State University

Vice President

Approved as to form:

CITY & COUNTY OF SAN FRANCISCO

By: [Signature] Date: 10-29-07
Andrew Garth
Deputy City Attorney

SAN FRANCISCO STATE UNIVERSITY

By: [Signature] Date: 10-30-07
Patricia Bescoby Bartscher
University Counsel
Changes to Halprin’s Landmark Freeway Park in Seattle

Orignally designed by Lawrence Halprin and Associates, the plantings at Seattle’s Freeway Park are currently being updated by Seattle landscape architect and University of Washington professor Iain Robertson, who aims to “not change the character of the park, but to recharge the design.” Executed by Mr. Halprin’s office under the design direction of Angela Danadjieva, Freeway Park is one of the best preserved masterworks of post-war landscape architecture, yet the horticultural requirements of the plants necessitate renewed attention to the original design intent. However, its fate may also be a bellwether for the future of modernist architecture, landscapes and engineering feats associated with the interstate highway system across the country.

After the publication of Halprin’s book Freeways in 1966 and his work with the Federal Highway Administration’s Urban Advisors group, the Seattle Parks Commission sought his assistance in designing a park along the edge of the new interstate gorge. Rather than confining himself to the proposed plot of land, Halprin pushed the ideas in his book into the cityscape by proposing an extensive landscape that scaled down the impact of the freeway for both driver and pedestrian by building right over it. Rather than balking at this audacious plan, the city bundled the proposal into the county-wide open space bond measure...
Welcome

Welcome and Happy New Year. Continuing with our recent initiative for theme-based newsletters, this winter issue looks at modern plazas and landscapes. Many of these were created in the context of urban renewal projects in the postwar era as an integral part of the design of housing, civic, office or cultural institutions or simply as stand-alone features. Many of these spaces and places have not been maintained and have fallen into disrepair or have been abandoned in their entirety, serving as symbols of urban blight and failed design principles or social views. In recent years, so much has changed and so many alterations have been made to what are important designs and represent work by significant designers of the period that we believe it is important to dedicate a newsletter to this issue. We want to highlight the significance of these landscapes and advocate for their preservation in a meaningful and appreciative way. Too many of these landscapes or spaces have become the victim of unnecessary and insensitive changes, or have been obliterated altogether because of poor or inappropriate maintenance or misbegotten ideas about safety or use.

2007 saw the continued growth of DOCOMOMO US with the addition of Florida as a US chapter and entry of New Orleans and North Carolina for approval. The end of 2007 had its usual array of building preservation challenges. While the emblematic Encounter restaurant at LAX airport was reopened, the Morris A. Mechanic Theater in Baltimore was nominated for designation and the Brutalist Third Church of Christ, Scientist in Washington D.C. was designated. Many others remain uncertain: the fate of Albert Ledner’s O’Toole building in New York City is tied to the expansion plans of St. Vincent’s hospital, and the future of such corporate campuses as Eero Saarinen’s Bell Labs in Holmdel, New Jersey, remains unresolved.

A national competition was held for the re-design of the unpopular and rundown Center Plaza, originally designed by the Baltimore firm of Rogers, Taliaferro, Kostritsky & Lamb as the focal point of Baltimore’s first urban renewal project and inspired by the great urban plazas of the Italian Renaissance. The local architecture and design firm of Brown & Craig won the competition with their design of extensive greencaping, a reflecting pool, movable seating and dynamic lighting effects. Brown & Craig had collaborated with Daniel Biederman, the talent behind the successful revitalization of New York City’s Bryant Park in the early 1990s; however, it is too early to tell whether the team’s design will foster the desired transformation of Center Plaza into a hip and inviting urban space.

As originally designed, Charles Center’s open spaces reflected the principles and ideals of the urban renewal movement that swept through American cities beginning in the 1950s, forever transforming the urban landscape. As consulting architects to the Charles Center urban renewal project, which was launched by a public-private partnership in 1957, RTKL’s goal was to make the plazas and open space a “social center for 24-hour citizens of Baltimore.” The 1958 Charles Center promotional report gushed that “Here, open space will be used, loved and economically successful because it will be full of pleasant things: fountains, sculpture, flowers, umbrellas, flags and trees. The open space will be, in its own way, as concentrated as the city around it.” George Kostritsky of RTKL envisioned an urban landscape along the themes of light, sculpture, and water, for Charles, Center and Hopkins plazas, respectively. The three plazas, located on the interior of the two superblocks comprising the Charles Center urban renewal site, were to be linked through a series of elevated walkways, escalators and skywalks in order to overcome the problem of the site’s steep topography (a 68-foot drop in grade from the northern boundary of the site to the southern boundary) and in order to create a series of “pedestrian islands.” Though futuristic in appearance, this circulation system was a typical component of urban design of the 1950s and 60s and was often promoted as a means of separating pedestrians from the escalating nuisance of auto traffic and congestion. In the case of Charles Center, the exterior circulation system was also intended to provide a venue for extensive retail activity.

Although the Charles Center plan had all the right ingredients for successful place-making, its physical realization made plain many of the shortcomings of modern urban design principles. In the words of Charles Center’s chief urban planner himself, David Wallace, the skywalks at Charles Center were “circuitous and hard to find,” and retail was consistently “lackluster.” City government did not end up retaining ownership of the entire system of open spaces and exterior infrastructure (only the three plazas), and so treatment of its various sections—in terms of services, amenities, ambiance and maintenance—was left up to individual building owners and retail tenants. The first skywalks were dismantled in the 1980s, and by the 1990s only two remained.

The introverted nature of the Charles Center plan was a built-in handicap and prevented the lively, populous atmosphere envisioned by planners. Placement of the two major plazas, Center and Hopkins Plazas, on the interior of the superblocks meant that they were virtually invisible from the street. Fixed seating, copious hard-scaping, and insufficient greenery all contributed to the plazas’ underuse. As early as 1962, a member of Baltimore’s Planning Council predicted that the majority of plaza users would be office tenants on their lunch break, and that a mere quarter would be the visitors, shoppers and tourists envisioned. A distinct obstacle to the plazas’ popularity stemmed not from design, but perhaps from the absence of integrated planning:

Urban Renewal Renewed: A Makeover for Baltimore’s Center Plaza

In the heart of Baltimore, 1960s-style urban renewal has received a facelift with the completion in October 2007 of a $7.5 million renovation of Center Plaza, the urban plaza at the core of downtown’s complex of office, retail and residential buildings known as Charles Center. In 2002,
Welcome

This year, 2008, the Xth International DOCOMOMO conference will take place in the Netherlands where almost twenty years ago DOCOMOMO was formed. The theme of the conference is “The Challenge of Change”, and the conference will mostly take place in Rotterdam in the restored Van Nelle Factory, reinvigorated as a ‘design factory’. The theme reflects the need for DOCOMOMO International and its members to revisit and reassess the role and goals of the organization.

In more practical terms, we continue to use our website to update you with news on DOCOMOMO events and activities as well as our advocacy efforts. Links to the websites of our chapters where most regional news is reported are also provided. Finally, we have upgraded the site to allow for the on-line payment through PayPal of dues and the purchase of past journals and DOCOMOMO publications.

— Theodore Prudon
President, DOCOMOMO US

Boston City Hall Plaza:
A Modern Space for the City Upon a Hill

Hailed by critic Ada Louise Huxtable as “one of the best urban spaces of the 20th century,” Boston’s often reviled City Hall Plaza faces an uncertain fate. Designed by Kallmann, McKinnell and Wood between 1962 and 1968, the last concerted effort to improve this centerpiece of “the New Boston” fell victim to post-9/11 inter-govern-
mental disputes. In 2006, Mayor Tom Menino announced his intention to sell both the plaza and building to the highest bidder. Over recent months, the monumental City Hall itself has received wide spread support. The Boston Landmarks Commission voted to accept a petition for study (although landmarking is subject to mayoral veto), and a Determination of Eligibility by the far sighted Massachusetts Historical Commission surfaced. In 1991 MHC had determined that City Hall is eligible for the National Register of Historic Places, and had commented that “the plaza is a significant component of the building.”

City Hall Plaza is the latest transformation of the slopes of Boston’s colonial city; the succeeding two centuries leveled the hills and filled the coves to form the Boston we know today, including the Plaza’s setting. On the Plaza’s west, tremendous earth-moving shaved 65 feet off a four-acre mount for Pemberton Square, and nearly as much from Beacon Hill just beyond. To the east, Faneuil Hall and Quincy Market were developed on harbor fill in two separate endeavors eight decades apart. Such extraordinary reshaping of the terrain suggests the challenge—and the precedent—for those in the 20th century who planned the new center for the “City Upon a Hill.”

Although it is only a small piece of the 56-acre Government Center, the 9-1/2-acre plaza occupies the key location, identified in Kevin Lynch’s The Image of the City (1960): “Potentially it [the city hall site, historically Scollay Square] could play an even more striking visual role as the central point of the old head of the Boston peninsula, the hub of a whole series of districts...the node of such important paths as Tremont, Cambridge, Court-State, and Sudbury Streets....” The prescriptions for the government center design competition, established by I.M. Pei and Partners’ 1960 master plan, retained these roads and opened unexpected views to major landmarks: Faneuil Hall, Quincy Market, Old North Church and the Old State House.

Pei’s plaza site essentially excised this fragment of the historic city, defined by existing or rebuilt roads and structures and by thin new buildings along two edges. A half-dozen blocks of solid “ground” became an open “figure,” to use the urban design parlance most often applied to...
Chapter News

NEW YORK/TRI-STATE

DOCOMOMO New York/Tri-State is part of a working coalition including Preservation New Jersey, the National Trust for Historic Preservation, DOCOMOMO US, the Recent Past Preservation Network, the Cultural Landscape Foundation, and AIA-New Jersey that is currently exploring ways to preserve Eero Saarinen’s 2,000,000 sq. ft. Bell Laboratories on a 472-acre site in Holmdel, NJ by Donald Albrecht, co-curator of the traveling exhibition “Eero Saarinen: Shaping the Future.”

—Kathleen Randall

New York/Tri-State Chapter Spotlights the O’Toole Building and its Architect, Albert Ledner

In February 2007, New York/Tri-State chapter members learned that St. Vincent Catholic Medical Centers planned to demolish the O’Toole Building, located on 7th Avenue between 12th and 13th Streets in Manhattan. Originally the Joseph Curran Building, the five-story structure was designed

surprisingly and equally unexpectedly a new situation has occurred in Europe regarding the future of disused industrial areas. Starting in the early 1990s the number of preservation projects for the transformation of sections of industrial landscapes, already in decay or abandoned have, by and large increased. These industrial activities had generated polluted landscapes in conditions of full hostility for human beings and nature. The huge industrial machineries have stood empty of users and materials in a desolated land of debris. Most of the new projects resulted in the creation of new open spaces for leisure facilities and collective public activities. The largest and most complex intervention that has become a standard of reference for the transformation of post-industrial landscapes elsewhere, has been achieved in the Ruhr area, located in North Rhine-Westphalia. (Germany). This has been Europe’s heart of industrialization. Remains of the period are the large population (the region, with 18 million people has the highest population density of all Germany) and a totally artificially transformed landscape.

During the middle of the 20th century as the industrial boom stopped, many heavy industries (predominantly coal and steel) moved away, leaving abandoned industrial plants and a large number of post-industrial sites, including many brownfields. In 1989 the regional government of North Rhine-Westphalia started an integrated development strategy for the former industrial region. The major goal was the creation of a new “regional park” with a length of seventy kilometers along the Emscher River. More than 150 years of industrialization have left their mark on the region: mines, coking plants and winding towers are the impressive relics of the past industrial era.

The range of different arrangements has been broad, combining commercial with recreational spaces, as well as providing educational facilities and sites for urban forestry and urban agriculture that will aid in creating a more sustainable and functional future landscape. All of the new functions are based on the deliberate incorporation of the industrial heritage into the new landscape. The industrial plants remain as landmarks and architectural witnesses narrating the history of the region.

One of the fully completed sections of the new preserved landscape is the Landschaftspark in North Duisburg (1993-2001), designed by Peter Latz. An outstanding example of a park area shaped by its industrial history, the heart of the park is the decommissioned Thyssen Steelworks, converted into a site of industrial heritage and a venue for different leisure facilities. Based on the idea of calling for empirical solutions, Latz has interpreted the parts of the huge steel structures as bearer of a spontaneous naturalization process. A new landscape has emerged; the park is the manifesto of the re-appropriation of the obsolete industrial features by nature. A botanical garden, where plants suitable to grow among the ruins of steel industries are cultivated, represents a space for discovery and play at the same time.

Equally successful has been the preservation of the Zollverein coalmine industrial complex in the vicinity of Essen, where the main structure is Shaft XII, a technical and architectural masterpiece designed by the architects Fritz Schupp and Martin Kremmer and built in 1932. The design of the plant is based on pure modern aesthetics, with clear lines, reduced forms and an impressive symmetry.

Site of Landschaftspark in North-Duisburg, Landschaftspark, North-Duisburg, Germany. (photo: Franco Panzini)

View of Latz’s incorporation of thyssen Steelworks into the parks design. Landschaftspark, North-Duisburg, Germany. (photo: Franco Panzini)

Latz. An outstanding example of a park area shaped by its industrial history, the heart of the park is the decommissioned Thyssen Steelworks, converted into a site of industrial heritage and a venue for different leisure facilities. Based on the idea of calling for empirical solutions, Latz has interpreted the parts of the huge steel structures as bearer of a spontaneous naturalization process. A new landscape has emerged; the park is the manifesto of the re-appropriation of the obsolete industrial features by nature. A botanical garden, where plants suitable to grow among the ruins of steel industries are cultivated, represents a space for discovery and play at the same time.

Equally successful has been the preservation of the Zollverein coalmine industrial complex in the vicinity of Essen, where the main structure is Shaft XII, a technical and architectural masterpiece designed by the architects Fritz Schupp and Martin Kremmer and built in 1932. The design of the plant is based on pure modern aesthetics, with clear lines, reduced forms and an impressive symmetry.
Parkmerced, a Modern Landscape Masterpiece Under Assault

A 191-acre, 2,500-unit apartment development situated in the southwestern part of San Francisco, adjacent to the campus of San Francisco State University, Parkmerced is close enough to the Pacific Ocean that it is continually under assault from wind and foggy weather. Unfortunately, current plans by the new owner, Parkmerced Investors, LLP, and the University, are creating an assault that threatens to sweep the development off the map. With its Thomas Church landscape, Parkmerced is one of the most significant modern sites in San Francisco and its loss would be a defeat for the city’s modern heritage.

Thomas Church, considered the father of modern landscape architecture in the United States, exerted an especially strong influence over the look of residential landscape architecture in the post-war years. A figure with an international reputation, his ideas for livable, low-maintenance garden design were published in popular magazines and he worked closely with the leading Bay Region architects of his day; William Wurster, Gardner Dailey, John Funk, and others whose regional modern style was characterized by a seamless integration between building and landscape. During the course of his prolific career, Church designed over 1,000 individual landscape projects. Most of these are private gardens and are off-limits to the public, such as the often-photographed Donnell Pool and Garden in Sonoma, California.

Parkmerced, designed by Leonard Schultz Associates, a New York City architect, was developed by Metropolitan Life Insurance Company starting in 1941 as part of a nationwide venture into real estate development. Three similarly scaled developments were built by MetLife at about the same time: Park Labrea in Los Angeles, Parkchester in the Bronx, New York and Parkfairfax in Alexandria, Virginia. All four planned communities are predominantly low-rise apartments situated on significant amounts of landscaped open space. Parkfairfax is listed on the National Register in recognition of its role in the Post-War housing effort as an early planned community.

At Parkmerced, Schultz laid out a “Garden City” style radiating site plan with interconnecting courtyards, parking courts and service courts, and engaged Church to create designs for the 75 unique internal courtyards and landscape throughout the complex. This was Church’s first large-scale commission and allowed him to put into practice his fundamental concepts for residential landscape design. Each courtyard is different, responding to its particular topography and solar conditions, and each provides semi-private terraces adjoining the apartments living rooms, a shared lawn area, sidewalks, and a limited, wind-tolerant plant palette. Curving walks and biomorphic shapes define the central lawns, while raised planters, wide steps, and low-maintenance planting groups give each courtyard its modern feeling.

For students of Thomas Church, walking through the interconnected courtyards of Parkmerced provides a primer on the Church residential landscape, offering a rare opportunity to experience firsthand the work of one of the country’s founding modernist landscape architects.

In the last few years, San Francisco State University has purchased several blocks of Parkmerced while releasing a plan to replace at least five of these blocks with new student housing. In addition, the current owner of the remainder of Parkmerced has hired the San Francisco office of Skidmore Owings and Merrill to develop a new master plan. Initial concept drawings shown at a recent public meeting indicate that Parkmerced would be demolished in its entirety and replaced with a completely different grid pattern and higher density housing, while commercial uses would be added along its major green spaces. Local preservation organizations, including the Northern California Chapter of DOCOMOMO US and the Western Regional Office of the National Trust for Historic Preservation are concerned about both initiatives. A joint site tour was conducted on November 2, 2007, which included representatives of the California Preservation Foundation, San Francisco Heritage, and the San Francisco Planning Department, as well as the Parkmerced tenants’ advocacy group.

Understanding the importance of Parkmerced, these organizations are wide awake and looking closely at ways to preserve Parkmerced for the future.

—Chandler McCoy
The Temporality of Being: Conservation Through Subtraction

Henry Klumb bought the 5-acre Cody Ranch in Puerto Rico in October 1947, where it had served as a pineapple, cucumber and citrus-growing farm to the previous owners. Of the ranch’s five original structures, Klumb retained only the large wooden house and garden. Built around 1906, the house was a typical hacienda design: a raised cottage with a large corrugated-metal hipped roof and a wrap-around porch. Klumb’s remodeling of the house, even though its original character was preserved, served as a laboratory for radical tropical solutions that he later used in many of his buildings and manifested his idea that “Man’s work that disregards the existence of nature, and ignores man as the measure has no true meaning, no significance of being.”

The remodeling of the house and garden represented this “significance of being” as for Klumb, being is intrinsically encumbered in nature. It was not surprising, then, that when remodeling the hacienda house the surrounding garden was used as the defining structure of what Klumb considered to be his private space. Opening up the main façade in order to make the most out of living in a garden, he allowed the inside to become the outside, eradicating the hard vertical surfaces by adding areca palms surrounding the wrap-around porch. Klumb’s remodeling of the house and garden was also sculpted by the planting of fruit trees that grew into enormous umbrellas and by subtracting existing vegetation which created open lawns or “skylights” that allowed sunshine to penetrate the otherwise dense vegetation. Sunlight became an obsession and Klumb’s design contemplated a structured movement from sun to shade. His wall-less dining room opened to the veranda and to the rear garden. A pivoting table—the room’s centerpiece—was designed to capture the early morning sun, the shade for a noon lunch, or the feeble dusk light for a late dinner.

The construction of a kidney-shaped pond framed by two caimito trees, in front of the main stairs to the house offered a secondary living space within nature: light and ephemeral, this allowed him to view his house from within nature, and inextricably linked the two, making house and garden one. Therefore, Klumb’s house, albeit a romanticized version of life in the tropics, represents an intimate relationship between interior and exterior space that far outdid the Modern Movement’s understanding of architecture as an object in space. In remodeling the Cody Ranch and its gardens, Klumb made space and object inseparable. Moreover, he made one a reflection of the other, each serving to highlight the beauty of its counterpart. Being-in-the-world had for Heidegger both temporal and spatial qualities and Klumb agreed that in that sense, being made reference to a nearness rather than a remoteness. Contrary to many of his contemporaries, Klumb’s vision of space far outdid the Modern Movement’s understanding of architecture as an object in space. In remodeling the Cody Ranch and its gardens, Klumb made space and object inseparable. Moreover, he made one a reflection of the other, each serving to highlight the beauty of its counterpart. Being-in-the-world had for Heidegger both temporal and spatial qualities and Klumb agreed that in that sense, being made reference to a nearness rather than a remoteness. Contrary to many of his contemporaries, Klumb’s vision of space far outdid the Modern Movement’s understanding of architecture as an object in space. In remodeling the Cody Ranch and its gardens, Klumb made space and object inseparable. Moreover, he made one a reflection of the other, each serving to highlight the beauty of its counterpart. Being-in-the-world had for Heidegger both temporal and spatial qualities and Klumb agreed that in that sense, being made reference to a nearness rather than a remoteness.

—Nadya K. Nenadich & Enrique Vivoni-Farage
 Chapter News

between the 1936 Art Moderne collection of Texas Centennial Buildings at Fair Park, and the distinctly modernist 1955 Old Dallas Public Library, located just four blocks away. The Temple is in relatively good shape and is not immediately threatened. It was put up for sale in 2006 at a price of $3.6 million, perhaps reflecting the decline in the fortunes and popularity of the Masonic fraternity. To date, the Temple remains in Freemasonry ownership, but that sector of downtown Dallas is attracting much new development. Concerned preservationists, including DOCOMOMO NTX, will be closely monitoring future developments in and around the Temple.

DOCOMOMO NTX’s next event is a tour of mid-century modern religious churches and temples designed by several of North Texas’ earliest modernists. The tour is planned for late winter or early spring of 2008.

— Robert Meckfessel

WEWA

DOCOMOMO WEWA’s advocacy efforts in late 2007 culminated at an important meeting of the Seattle Landmarks Board on January 2, 2008 with the designation of the Norton Building and the nomination of the Manning’s Cafeteria Building.

In 2007, spurred by a zoning resolution to allow taller buildings in the commercial core, the City of Seattle released the results of a historic inventory of downtown buildings eligible for landmark status. One of the first buildings to be considered was one of the city’s most prominent Modern religious churches and temples designed by several of North Texas’ earliest modernists. The tour is planned for late winter or early spring of 2008.

— Robert Meckfessel

WEWA

DOCOMOMO WEWA’s advocacy efforts in late 2007 culminated at an important meeting of the Seattle Landmarks Board on January 2, 2008 with the designation of the Norton Building and the nomination of the Manning’s Cafeteria Building.

In 2007, spurred by a zoning resolution to allow taller buildings in the commercial core, the City of Seattle released the results of a historic inventory of downtown buildings eligible for landmark status. One of the first buildings to be considered was one of the city’s most prominent Modern religious churches and temples designed by several of North Texas’ earliest modernists. The tour is planned for late winter or early spring of 2008.

— Robert Meckfessel

DOCOMOMO US | WINTER 2008

Boston’s Christian Science Center

In 1964, the First Church of Christ Scientist presented architects I.M. Pei and Araldo Cossutta with the challenge of providing space, amenity and an intangible presence for the expansion of their Mother Church complex, which had occupied a part of this same site since 1898. With the incipient completion of the adjacent Prudential Center complex, a commercial development that featured a 52-story tower and several apartment slab blocks set off from the street on a large raised plaza, the “High Spine” development concept promulgated by planner Kevin Lynch and the Boston Society of Architects seemed to be taking off. The Prudential was to be the first of a series of skyscrapers that would stretch along Boylston and Huntington Streets, defining Boston’s skyline. It became apparent to Pei and Cossutta that the dome of the 1908 Mother Church would no longer be a commanding presence on the Boston skyline. They responded by persuading the Church to do something out of the financial reach of a commercial developer. They would “command the ground plane” and construct the great plaza around which the new Christian Science Center evolved.

This great gesture was described by Cossutta as the “heart and soul” of the project. The quiet, dignified but unabashedly monumental urban complex of the Christian Science Center (CSC) stretches from Copley Square to Symphony Hall. Featuring a long reflecting pool at the center of the space and a planted terrace to the south, it creates a cohesive and dignified identity for the Christian Science Church, mitigates the insensitive urban boundary of the Prudential Center, and knits together older monumental structures such as the Christian Science Mother Church and Publishing House, and the adjacent Horticultural Hall. Through these moves, the CSC establishes a strong sense of place at the intricate complex urban juncture of the Fenway, Back Bay and South End. The buildings themselves are composed in a classic modernist dynamic asymmetry, with the strong vertical slab of the Administration Tower (the Center’s own small contribution to the High Spine) serving as a counterpoint to the Library or Colonnade, inspired by LeCorbusier’s

— David Fixler, AIA

Boston's Christian Science Center, Boston, MA.
(Photo courtesy of Pei Cobb Freed and Partners, Architects)

High Court at Chandigarh, that defines the north side of the plaza. At the southwest corner, the sweeping curve of the Sunday School redirects the thrust of the space of the reflecting pool out to the reconfigured forecourt of the Mother Church, which is presented to the open space along Massachusetts Avenue. There, it is firmly bounded by the long slab of the Church Park Apartments, designed by The Architects Collaborative (TAC), which were also a component of the original Master Plan.

The CSC is one of the most striking and successful modernist urban complexes in the world. As the Church embarks on a new master plan for the adaptive use of some of the buildings and the development of the Plaza, it will be imperative that the character and dignity of this complex be properly maintained. The Church is well aware of the unique quality of this heritage and has come out in support of the proposed landmark designation of the complex. Still, it will be important that the City of Boston, advocacy organizations like DOCOMOMO, and everyone concerned with the future of one of Boston’s most distinguished works of mid-twentieth century urbanism be alert to the unique and delicate qualities of this ensemble. With vigilance we can ensure it that it will remain a treasure for the future.

— David Fixler, AIA
One of William Pereira’s most iconic buildings on the campus of the University of California, Irvine, Steinhaus Hall, is poised to receive a disfiguring facelift that will replace its sculptural concrete sunshades with a bland aluminum curtainwall.

Constructed in 1963 by William Pereira & Associates as part of a larger complex of buildings, Steinhaus was originally designed in 1961 as part of the architects’ master plan. Known for his sculptural brutalist work in concrete, Pereira is most famous for the design of the Los Angeles International Airport with its “Theme” building control tower, and the pyramidal high rise for the Transamerica Corporation in San Francisco.

Steinhaus Hall, along with the other Pereira designs at UC Irvine, created a signature look for the campus with volumetric buildings lifted off the ground on pilotis, open pavilions marking the topmost floor, and the organic quality of precast concrete sunshades that cast strong shadows in the hot southern California sun. These signature Pereira elements are all present at Steinhaus Hall. Working extensively with experimental technologies, William Pereira strove to achieve the thinnest concrete possible in order to give a sharply defined shape to his buildings’ façades. However, Steinhaus hall’s pre-cast concrete technology is approaching the end of its serviceable life with the sunshades exhibiting signs of deterioration. The University is currently starting design work on a major exterior renovation, including plans to remove the sunshades from the building’s middle three stories, while maintaining the sculptural concrete elements at the lowest and uppermost floors of the buildings. The possibility of repairing, restoring in kind, or replacing the sunshades with a compatible and sympathetic replacement shade has been rejected and the University’s current plan is to completely strip the precast sunshades and replace them with an aluminum curtain wall with exterior metal louvers. The resulting design will remove the building’s strongest character-defining features, and futilely mix the new façade with the few original elements that will remain.

Unfortunately, although the Pereira buildings successfully create a strong visual style on the campus, the modification of Steinhaus Hall is likely to be the first of many renovations to the Pereira buildings. This will result in the loss of the best features on a campus not otherwise known for significant architecture.

— Deirdre Gould
The Louisiana Supreme Court Building (currently the State Office Building Annex) in New Orleans, LA—part of the Duncan Plaza Civic Complex—is facing imminent demolition to make way for new construction. The State Office Building and the Annex in question, integral components to the mid-century Civic Complex tout ensemble, are being razed to make way for a single new building of approximately 342,000 sf. The Annex, noted as having elegant, “expensive” finishes and stylized elements, is sheathed in granite panels and placed as a jewel box in the Duncan Plaza plan, which is surrounded by City Hall, the State Office Building and the New Orleans Public Library. The building itself is an architecturally significant example of Modern Movement design as well as a major component of the Duncan Plaza Civic Complex master plan, which at the time of construction was envisioned as the architectural embodiment of New Orleans as a city looking towards a more open and efficient government. It is one of the most important post-WWII initiatives in New Orleans, garnering participation from all of the pre-eminent New Orleans architects and civic leaders of the time in its development.

While some say that the LA Supreme Court Building, along with the adjacent State Office Building, suffered damage from Hurricane Katrina that makes its unfeasible to restore, the main problems cited are basement flooding and damage to the mechanical and electrical systems that service both buildings. The applicant for the building’s demolition stated that retrofitting the building for other uses was found to be “difficult” and that they did not feel that it would be possible to “move back and look at alternatives to demolition. An architect has already been selected for the new construction.

FEMA, along with the SHPO, has determined that the LA Supreme Court Building is eligible for listing on the National Register of Historic Places, and that its demolition “has the potential to affect historic buildings located in the area.” New Orleans is a city with a limited roster of Modernist buildings and the Supreme Court building an important part of the city’s historic fabric, and while it is essential to rebuild and improve the city after Hurricane Katrina, more consideration should be given to rehabilitation when major historically significant built fabric is threatened with irreversible decisions such as demolition.

— Toni DiMaggio
Rehabilitation of Bunshsaft Designed LBJ Library in Austin

The 2007 rehabilitation of the University of Texas-Austin’s Lyndon Baines Johnson Library designed by Gordon Bunshaft aims to balance conservation with material replacement and new landscape design. Completed in 1971, the library’s travertine and terrazzo base has been plagued with material and design performance issues that began shortly after construction. Moisture penetration due to the porous stone and thin building envelope was exacerbated by the intense sun exposure in Austin, which regularly heats the stone to temperatures above 140 degrees. The heavy loads on the plaza also contributed to systematic structural failure which caused the interior spaces of the base to close.

Overland Partners’ rehabilitation includes the completed restoration of the tower and ongoing plaza renovations. The tower’s travertine required cleaning due to staining from the failure of the sealants, crack repairs, and armature replacement. The stone panels were in good condition overall and only a handful were replaced in kind. In conjunction with the rehabilitation of the interior spaces of the base, the plaza is being removed to install new waterproofing and larger drains and to reslope the surface. The proposal has evolved over the last two years from the intrusive introduction of an amphitheater to a design by Hargreaves Associates that replaces the three reflecting pools on the east side of the library with small knolls of native plants and trees. All of the original travertine and green terrazzo pavers will be replaced with granite pavers approved by the Texas Historical Commission. Preservationists in Austin note this as a compromise that generally retains the integrity of the original design despite the loss of original material and the single plane of the plaza. The project is scheduled for completion in the summer of 2008 in time to commemorate the legacy of Lady Bird Johnson as well as the centennial anniversary of former President Johnson’s birth.

— Catherine Gavin

Boston City Hall Plaza (cont’d from page 3)

The Plaza is at its best hosting ice cream and chowder fests, political protests, concerts and sports celebrations. It accommodates tens of thousands, drawn from throughout the region for gatherings that number among the country’s most memorable urban events.

It is at the everyday level that the Plaza falls short. Critics observe its inadequate response to the climate, the absence of mid-scale structures and spaces, too little nature, and an overall lack of activity. While design improvements can address such faults, city and federal policies must be supportive and coordinated, which has not always been the case. For instance, KMW’s proposed rathskeller was rejected. The subway station was kept in a distant corner. Commercial vendors were banned; a new hotel, nixed. The recessed fountain was shut off, then covered over. Maintenance has been insufficiently funded. A City Hall designed to welcome the public is now barricaded for security.

Nevertheless, with improvements such as those proposed by the Trust for City Hall Plaza, the Plaza could find continued validity as a great modern space. It opened a crowded, once failing city with a powerful new symbolic center. It became a grand civic forum. It exposes vistas in a city that was characterized by a lack of visible connections. And it symbolically re-creates Boston’s defining topographic feature, the hillsides that greeted the first settlers and became the raw material forming the “City Upon a Hill.”

— Gary Wolf
Changes to Halprin’s Landmark Freeway Park in Seattle (cont’d from page 1)

called Forward Thrust, and in 1969 approved local funds were combined with state, federal
and private monies to allow the park plan to move forward.

Perched above Interstate 5 in downtown Seattle and using 5.5 acres of interstate air
rights, the linked spaces of the park evocatively and imaginatively engage the three
major preoccupations of post-war landscape design as described by Elizabeth K. Meyer:
the car, the garden and the growing awareness of ecology. The space is defined by a
series of linked plazas that are intertwined and enclosed by rough, board-formed con-
crete planting containers and walls. Major spaces known as the Central Plaza, East
Plaza, and West Plaza develop a consistency and cohesion through a shared materials
palette of concrete, broadleaf evergreen plantings and site furnishings. The spaces are
differentiated through the dynamism of the water features that occupy the spaces and
the attendant differentiation of moods.

A rolling precipice of water dominates the Central Plaza, where 28,000 gallons per
minute of water tumble over 30-foot tall formed concrete blocks. The effect is at once
rugged and decidedly urban, creating a space that is consciously of the city yet inspired by
the lithography of the Cascade and Olympic Mountains. By placing the water feature over
the freeway, the “natural” cascade was able to drown out or at least mitigate the roaring
sound of the artificial, automotive canyon below.

Like an idyllic mountain stream, the fountain was filled with children and parents
when it opened on July 4, 1976 as part of Seattle’s bicentennial celebrations. Though
there were no guardrails protecting visitors from the water, the design intent heightens
an explicit sense of danger so that people are confronted by risk, prima facie and are there-
fore cautious. This place is not soft, safe or “feminine.” Perhaps nowhere is this more
apparent than near the base of the canyon where a heavy-gauge glass window allows
visitors to see cars driving by, creating a dynamic visual dialogue between nature
(water) and the city (the cars of the freeway).

The framework for these original ele-
ments still exists, but the experience of the
canyon today is significantly degraded. A
steel screen now covers the canyon’s win-
dow, obscuring the connection to the free-
way, and the falls themselves are tragically
underserved. While there were three pumps
that originally fed water to the canyon (using
two at a time, cycling through the third),
today only two pumps remain, with only one
pumping water at a time. The capacity of this
one pump has since been reduced by 30 per-
cent such that the 28,000 gallons per minute
of the original design is now reduced to a
relative trickle near 9,500 gallons per minute
when running. Most of the time, however,
the canyon water feature is not even active.
Again, due to increased safety standards and
reduced maintenance budgets, parks officials
are not easily able to access all of the basins
and traps within the fountain to clean out
debris before starting the pumps.

Throughout the park, the role of vegeta-
tion is not limited to aesthetic or architecton-
ic purposes, rather plants were also chosen
for their ability to reduce pollution and baffle
sound coming from the freeway below. As in
Halprin’s open space sequence at Lovejoy
and Ira Keller fountains in Portland, the origi-
nal planting plans reveal a placement strategy
that develops an analog to the larger land-
scape surrounding Seattle. Lower levels are
heavy with azaleas and birch; higher levels
are dominated by dogwood and other upland
tree species. Although the park appeared
sparsely planted at its onset, the vegetation
has grown dense and has required limbing up
for maintenance and security reasons.

Despite its overall integrity, the park has also
seen the continual, creeping erosion of other
original design elements. The jagged paving
pattern has been filled in with small, inconsis-
tent concrete pads that have been poured to
dissuade large gatherings of transients. Many
of the original lighting elements have been
replaced with smaller standards. Entire
planter boxes have been denuded of vegeta-
tion due to drainage problems in some of the
beds. Other plantings have been replaced
with species that tried, with varying success,
to echo the spirit of the original design,
including witch hazel, ornamental raspberry
and snowbell.

Other additions have occurred with the
construction of the Washington State
Convention Center and the intrusion of the
Lester Piggott Memorial Corridor. Though the
Convention Center’s formal vocabularies and
plantings echo the original palette of Freeway Park—which is not surprising since they were
primarily designed by Ms. Danadjieva—the
Convention Center’s landscape necessitated
demolition of some of the walls and plantings
of Halprin’s original design.

In 2004, the City of Seattle allocated
funds to conduct a study on how to revitalize Freeway Park. Working with the New York
City-based Project for Public Spaces (PPS), the City of Seattle staff unveiled draft recom-

plans for demolishing some of the concrete
retaining walls, redesigning or removing at
least two of the original fountains, and
installing a series of exercise stations.

Since that time, most of the radical pro-
posals have been moved off of the table and
a more modest and sensitive revitalization
has occurred. Ms. Danadjieva was commis-
sioned to re-design the original planting
scheme, which is in obvious need of rehabili-
tation. However, the Seattle Parks
Department found the plan unworkable and
commissioned Mr. Robertson to provide

cont’d on next page
Changes to Halprin’s Freeway Park
(cont’d from previous page)

another vision for the park. Mr. Robertson understands the gravity of his position as a link between the past and future of the park, and it was his appreciation for this responsibility that sent him to Marin County in the early fall to speak with Mr. Halprin.

In addition to speaking with Mr. Halprin, Mr. Robertson discussed his ideas with himself and two of Halprin’s previous collaborators and employees: Stephen Koch and Dai Williams. Together, the four men discussed the various design and horticultural constraints of the current state of Freeway Park. Mr. Halprin confirmed that the plants were subservient to the other elements of the design, like the water features in the foreground and the city in the background, and also talked about how the revised planting palette—including larch, pine, oxydendron, japanese maple and hemlock—should be, as Robertson phrased it, “robust and masculine,” to reflect the original design intent.

While the future of Halprin and Danadjieva’s design legacy continues to improve with increased awareness of the import of this design and urban planning landmark, permanent protections remain elusive. A Seattle landmarks nomination submitted in 2005 continues to remain in limbo despite the desire of the Landmarks Preservation Board to formally embrace this unique legacy. The central sticking point is also what makes Freeway Park so unique. The Washington State Department of Transportation and the City of Seattle have been trying to establish who has jurisdiction over landmarking property that is within the leased air rights over Interstate 5. With so may historic properties associated with the Interstate Highway system, the resolution of this cross-boundary dispute may prove fateful for the modernist objects, landscapes and buildings across the country.

—Brice Maryman

Portions of this article were previously published on The Cultural Landscape Foundation’s website written by Brice Maryman and Liz Birkholz.

Urban Renewal Renewed
(cont’d from page 2)

several of the Charles Center office buildings offered subsidized cafeterias, thus keeping office workers inside for lunch. Ultimately, the sheer scale of Charles Center, the fact of separate building ownership, and the overall decline in downtown retail activity were major factors working against the visual and spatial cohesion of the entire site, and likely prevented the plazas from assuming the status of clearly defined destinations within the city, regardless of the aesthetic merit of their individual design schemes.

In many ways, the emphasis on movement and variety as a visual theme has stayed the same from the original design to the new one; it is perhaps only in the execution of this theme that Brown & Craig’s design seeks to differentiate itself from the original and announce Center Plaza as a 21st century urban destination. Bryce Turner of Brown & Craig describes Center Plaza’s intended transformation, saying that “As [designers] developed their version of plazas in the 1950s and 1960s, there was a ‘Jetsonian’ view that incorporated lots of hardscape. Now we have found it is important to have more soft spaces’. Their design incorporates the ten key principles that made Bryant Park a resounding success, most notably monumental sculpture as a focal point, movable seating and outdoor cafes, greenscaping (as opposed to hardscaping), and ambient nighttime lighting.

There is undoubtedly increased attention to the urban spaces of Charles Center, with the opening in 2001 of Johns Hopkins University’s Downtown Center at the southeast corner of the site, and with the imminent redevelopment of the 1967 Morris Mechanic Theater, located on Hopkins Plaza. With enough retail investment—an important prescription in Brown & Craig’s plan and the focus of the Mechanic’s redevelopment—Center Plaza will benefit from the most important ingredient of any public space: people.

—Olivia Klose

Landscapes of Industrial Archeology
(cont’d from page 4)

In 2001 UNESCO had inscribed the whole colliery and coking plant ensemble of Zollverein into the World Heritage List, because” it constitutes remarkable material evidence of the evolution and decline of the coal industry over the past 150 years.” The whole area has been converted into an anchor point along the European route of industrial heritage. The last completed conversion of an industrial plant is the transformation of the coal refinery building into a museum and visitors center, designed by the joint venture OMA/Heinrich Böll. The project was awarded the Deutscher Architekturpreis 2007.

Utilization of recreational space. Landschaftspark, North-Duisburg, Germany. (photo: Franco Panzini)

After the German results of creative conversion of decommissioned plants, brownfields and mine sites in order to establish new post-industrial landscapes, similar experiments have found a certain diffusion all around Europe. One of the most amazing new proposals comes from France. In 2003, the Louvre announced a competition to create a regional branch of the museum in Lens (northern region of Pas de Calais), on a site of over twenty hectares that was a former mine yard. The decision to build the new museum in the former mine yard is highly symbolic for a region that has suffered much in the past, from both war and from intensive coal-mining followed by the closing of the last pit in 1986. The international architecture competition to design the future Musée du Louvre-Lens was launched in early 2005. The winning team was the Japanese architectural practice SANAA (Kazuyo Sejima and Ryue Nishizawa), together with the American museum architects Celia Imrey and Tim Culbert, and the French landscape designer Catherine Mosbach. The design of the museum and the new public spaces that will be opened in 2010 consists of nine pavilions in glass and steel, partly set into the ground with roof glazing. The group of buildings blends in with the surrounding post-industrial environment, creating a totally new perspective for a future based on the binomial culture-open spaces, without losing sight of the glorious industrial heritage.

—Maristella Casciato
Announcements

D.C.’s Only Brutalist Church Designated

The main façade of the octagonal Third Church of Christ, Scientist. Third Church of Christ, Scientist, Washington, D.C. 2006. (photo: Claudine Klose)

In December, Washington D.C.’s Historic Preservation Office unanimously conferred landmark status on the Third Church of Christ Scientist at 16th and I Streets, NW, along with its accompanying Christian Science Reading Room and office tower. Completed in 1971, the church was designed by Araldo Cossutta of the firm I.M. Pei & Partners. The Third Church complex—a Brutalist ensemble in poured concrete comprising an octagonal sanctuary building and seven-story office tower facing each other across a brick plaza—had been embroiled in controversy as the church’s congregation fought the city’s landmark proposal.

Representatives of the church contended that the building no longer served the needs of the shrinking congregation because it is too large (at 400 seats) and the open plan makes group activities difficult. Maintenance costs have also been cited as burdensome, for example the claim made by opponents of the complex that changing a light bulb in the sanctuary requires the erection of scaffolding. The congregation had planned to demolish the sanctuary and plaza to make way for a smaller sanctuary building and some form of commercial property that could generate income for the congregation.

Preservationists and architects defended the complex as an example of I.M. Pei’s religious architecture and, more importantly, the only Brutalist church in the city. DOCOMOMO US strongly supported the designation as the complex is of exceptional historic significance and internationally recognized architectural merit. From a historical perspective (notwithstanding the relative youth of the complex), it is interesting to note that the Third Church of Christ Scientist chose to establish such a strong architectural and institutional presence in downtown D.C. during the early 1970s, an era of severe urban disinvestment.

As controversy over the proposed designation developed over the last few months, preservationists and architects defended the church as a stellar example of the city’s modern architecture. D.C.’s Historic Preservation Review Board has begun to pay more attention to the city’s modernist landmarks, including the recently designated Martin Luther King, Jr. Memorial Library (Ludwig Mies van der Rohe, 1972) and the Watergate residential and retail complex (Luigi Moretti, Principal Architect; Coming, Moore, Emler & Fischer, Associate Architects; Boris Timchenko, Landscape Architect 1964-1971) overlooking the Potomac and next door to the John F. Kennedy Center for the Performing Arts (Edward Durrell Stone, completed 1971).

The Board wrote in its designation statement that the Third Church of Christ Scientist is “one of the best examples of Brutalism in the Washington area and one of the most important Modernist churches.” The Third Church of Christ Scientist is currently considering whether to challenge the landmark designation under the First Amendment.

—Olivia Klose

Saarinen Bell Labs Update

Thanks to the termination in November 2007 of the sales agreement between Preferred Real Estate Investments (PREI), a private developer, and Alcatel-Lucent, the present owner of Eero Saarinen’s Bell Laboratories complex (1959 to 1962, expanded 1966 and 1985) and its 472-acre site in Holmdel, New Jersey, this landmark in the history of modern architecture, landscape design and technology is no longer under immediate threat of development. PREI had announced several options for the Saarinen building, from total to partial demolition, of which all options projected the construction of expensive housing.

Bell Labs is an important early example of a corporate campus; the site of the first use of mirror glass, a material developed for the building; a historic modernist landscape designed by Sasaki Walker and Associates; and one of Saarinen’s masterworks. Holmdel was also home to many scientific innovations and technological inventions, from the creation of radio astronomy in 1932 to the invention of the transistor and the cell phone.

The importance of the threatened site was never in doubt, however, Bell Labs’ future preservation is not assured. A coalition consisting of DOCOMOMO US (represented by Hélène Lipstadt), its NY TriState chapter (represented by Nina Rappaport), the American Institute of Architect’s New Jersey Chapter, Preservation New Jersey, the National Trust for Historic Preservation, the Recent Past Preservation Network and the Cultural Landscape Foundation formed to work toward that goal and will therefore continue to advocate for the site. Among the many important recent events for which the Coalition or its members were responsible are the successful request for designation of the complex’s eligibility for the National Register of Historic Places, its listing as one of Preservation New Jersey’s 10 Endangered Historic Sites, the issuance of a support letter by the National Trust, and the organization of an extremely well attended lecture in Holmdel by Saarinen scholar and curator, Donald Albrecht. The Coalition is cooperating with Citizens for Informed Land Use, a non-partisan, not-for-profit organization that promotes informed and thoughtful land use decisions in Holmdel. CILU is working toward a reuse of the Bell Labs site that is appropriate not only for the site and the town, but also for the surrounding watershed.

The Coalition campaign will continue in the next months, with several significant events planned. Announcements of its efforts will appear on the DOCOMOMO US website, www.docomomo-us.org.

—Hélène Lipstadt

Modern Talk: Northwest Mid-Century Architects Oral History Project

DOCOMOMO WEWA is embarking on an ambitious oral history project that documents the work and lives of those who created a Northwest Regional Modern aesthetic in the mid-twentieth century. The architects who designed in the Modern vein in Western Washington state were on the cutting edge of architectural design during the 1950s. Many of them received national acclaim for designing some of the finest modern buildings in the country. During the height of the Modern Movement (1950s and 1960s), many of the designers were either beginning their careers or were at the apex of their profession. Some continued to practice well into the 1970s, 1980s, or 1990s.

We are thrilled to have the following architects participate in this project: Ralph Anderson, Fred Bassetti, Wendell Lovett, and Gene Zema. These men have left their mark on the Puget Sound region’s built environment. Their work and design philosophy have greatly influenced subsequent generations of architects.

Jack Straw Productions and architectural photographer John Starnes are important partners in this project. Audio interviews will be streamed onto our website. Photo essays of each architect will include a portrait and examples of their finest work. Project

cont’d on next page

127
Modern Talk (cont’d from previous page)

products will be donated to the University of Washington Special Collections where they will be publicly accessible.

The project is funded by the generosity of individual and corporate donors and grants. DOCOMOMO WEWA is the recipient of a $5,000 Heritage Special Projects grant from 4Culture and a $4,000 Preservation Fund grant from the National Trust for Historic Preservation, Western Office.

— Eugenia Woo

Maintaining the Modern:
Glass House
Window Replacement

On Wednesday November 7, the Philip Johnson Glass House saw the replacement of its last original glass panel. Damaged during a storm in October, a small vertical crack was found in the pane. At 1/4 inch thick, the original glass was thinner than the current and recently replaced glass panels. The replacement process, which lasted about five hours, was fully documented by the Glass House staff and hopefully will be useful to future conservation projects of this and other Modern Movement houses. The removed panel will be stored in the archives of the museum and is part of the museum’s mission to be a center of information for the conservation of modern architecture.

— Deirdre Gould

Albert Ledner House Tour

Modern preservation activists in the New Orleans area were treated to a tour of Albert Ledner’s Galatoire House, guided by Ledner himself, as part of an ongoing series planned by the chapter of DOCOMOMO NOLA in formation. Located on Park Island, a small man-made island on Bayou St. John where two more Ledner residences are located, the Galatoire House blends a strong, elegant formal parti with Ledner’s unique detailing innovations.

Current owner Greg DiLeo graciously opened the house for the tour, giving visitors the rare opportunity to view the residence sans furniture (due to renovations starting at the end of December 2007). During the tour, Ledner discussed the design process, relayed stories from the construction phase, and fielded questions from the group. Ledner and DiLeo discussed the renovation strategy (which will be completed by architect John Crestia) as well as the positive and negative alterations and additions that the house has experienced over the decades. The chapter in formation plans to continue the series of modern movement building tours led by original architects throughout 2008.

— Toni DiMaggio

Protecting Beijing’s Modern Architecture

In December 2007, the Beijing Municipal Commission of Urban Planning and the Beijing Administration of Cultural Heritage released a joint list of structures that designated 188 sites in the city of Beijing as worthy of protection from demolition and inappropriate renovations. All the listed architectural structures were built from the 1950’s to the late 1970’s, and most are located in the city’s Haidian District. The designation guarantees a further level of protection for these structures as the city increases its urbanization and prepares for the 2008 Olympics. The designation also ensures that if they are renovated, their historical authenticity will be preserved.

— Deirdre Gould

Exterior, Bayou side, Galatoire House by Albert Ledner, Park Island, LA. (photo: Francine Stock)
Announcements

Book Review: Louis I. Kahn: Beyond Time and Style, A Life in Architecture

By Carter Wiseman
(New York: W.W. Norton & Company, 2007)

Carter Wiseman’s biography of Louis I. Kahn (1901-1974), published in March of 2007, presents a comprehensive and engaging narrative of the life and works of one of the 20th century’s most revered architects. Arranged in loose chronological order, the book begins by providing a substantive history of Kahn’s childhood as the son of poor Eastern European immigrants who settled in Philadelphia, of his early interest in drawing and painting, and his fledgling career as an architect trained in the Beaux-Arts classicism of the University of Pennsylvania’s School of Fine Arts.

Wiseman’s interest in uncovering the personality behind Kahn’s architectural genius is apparent in the illustrative titles he has chosen for the chapters devoted to Kahn’s major works, beginning with the Yale University Art Gallery (“Academia and Emergence”), and closing with the Yale Center for British Art (“The Moth and the Butterfly”). In the intervening chapters, Wiseman takes the reader through Kahn’s personal struggles and professional achievements as they evolved through his work on the Richards Medical Research Building at Yale (1957-64); the Salk Institute for Biological Studies in La Jolla, California (1959-65); the Indian Institute of Management in Ahmedabad, India (1962-1974) and the government center at Dhaka, East Pakistan (1962-83); the Phillips Exeter Academy Library in Exeter, New Hampshire (1965-72); and the Kimbell Art Museum in Fort Worth, Texas (1966-72).

Wiseman participates in the familiar dialogue about Kahn’s personal flaws—notably his ongoing relationships with several women and his “unorthodox approach to design” that resulted in severe delays to many of his projects—but only to the extent that the evidence, solidly based on archival documents and interviews with those who knew and worked with the architect, brings out deeper themes in the examination of Kahn’s projects. Wiseman is understandably reticent to draw conclusions based on the historical record about what emotions and ideas ultimately motivated Kahn’s architectural vocation, but there are a few instances where the author offers what feel like flimsy suppositions based on circumstantial information. For example, his interpretation of the unified spiritual vision characterizing Kahn’s successful collaboration with the scientist Jonas Salk on the conception and execution of the Salk Institute for Biological Studies feels somewhat contrived.

Louis I. Kahn: Beyond Time and Style is lavishly illustrated (with many more photographs than plans), and contributes the most comprehensive analysis of the architect’s life and works to date. Carter Wiseman teaches a seminar on Kahn at Yale University, and is also the author of I.M. Pei: A Profile in American Architecture (New York: H.N. Abrams, 1990) and Twentieth-Century American Architecture (New York: W.W. Norton & Company, 1998).

—Olivia Klose

New Resources at the Environmental Design Archives

Founded by William W. Wurster in 1953, The Environmental Design Archives (EDA) at the University of California has become Northern California’s premiere collection of historic architecture and landscape architecture records and is one of the world’s largest collections of landscape architecture documents. These include the drawings and papers of Thomas Church, Garrett Eckbo, and Robert Royston, in addition to those of pre-Modernists such as Gertrude Jekyll and Beatrix Farrand. As such it is a valuable resource for the preservation and restoration of modern landscapes. Although centered on California in general, and northern California in particular, the nature of landscape architectural practice in the past half-century has fostered a distribution of projects across the nation and even internationally.

Continuing their commitment to documenting architecture and landscape history and design, The College of Environmental Design has recently published three volumes of the Berkeley/Design/Books series in collaboration with William Stout Publishers of San Francisco. The first volume of this series (which draws on the holdings of the EDA), Maybeck’s Landscapes: Designing in Nature, was written by Dianne Harris of The University of Illinois. The Donnell and Eckbo Gardens: Modern Californian Masterworks, authored by Marc Treib, is a more detailed investigation of subjects introduced in his earlier Thomas Church Landscape Architect: Designing a Modern Californian Landscape, Noguchi in Paris: Isamu Noguchi and The Unesco Garden (both also published by William Stout) and Garrett Eckbo: Modern Landscapes for Living, co-authored with Dorothee Imbert and published by the University of California Press. University of Virginia landscape professor Reuben Rainey and San Francisco landscape architect J.C. Miller authored Modern Public Gardens: Robert Royston and the Suburban Park, which appeared at the end of 2006. The next volume, Marc Treib’s Appropriate: The Houses of Joseph Esherick, is due out in early 2008, while Greenwood Common: A Biography of Modern Living, written by Environmental Design Archives Curator Waverly Lowell, will be published in late 2008.

All the books are available from William Stout Publishers: www.stoutpublishers.com

The Environmental Design Archives website can be found at: http://www.ced.berkeley.edu/cedarchives/

—Marc Treib
MEMBERSHIP FORM

Join the growing worldwide effort to identify, record and preserve architecture and urban design of the modern movement.

DOCOMOMO-US (only)

Individual: $55/year
Student: $25/year

DOCOMOMO-US & DOCOMOMO International

Individual: $140/year
Student: $55/year

Benefits include:
- Receipt of DOCOMOMO newsletters, discounts on tours and events, and membership in a local chapter.
- Membership in DOCOMOMO International.
- Receipt of DOCOMOMO International Journal (published twice a year).
- Discounts on all DOCOMOMO publications and international working party for documentation and conservation of building sites and neighborhoods of the modern movement.

NAME
AFFILIATION / ORGANIZATION
ADDRESS
CITY / STATE / ZIP
TELEPHONE FAX
EMAIL

ADD ME TO THE DOCOMOMO EMAIL LIST

Please send this form with a check payable to DOCOMOMO-US, to:
DOCOMOMO-US, P.O. Box 230977, New York, NY 10023

To pay by credit card, please go to www.docomomo-us.org/contact/join

INFORMATION

Midwest
Midwest

New England
New England

Western Washington
Western Washington

Georgia
Georgia

California
California

Florida
Florida

New Orleans
New Orleans

North Carolina
North Carolina

New York/Tri-State (NY, CT, NJ)
New York/Tri-State (NY, CT, NJ)

North Texas
North Texas

IN FORMATION

International working party for
documentation and conservation
of building sites and neighborhoods of the
modern movement

P.O. Box 230977
New York, NY 10023

NATIONAL NEWS

winter 2008

The shadows of the liriodendron trees overhead play against the high relief of the board formed concrete.

Freeway Park, Seattle, WA.
(photo: Brice Maryman)
NOTICE OF PREPARATION

TIERED ENVIRONMENTAL IMPACT REPORT FOR THE
SAN FRANCISCO STATE UNIVERSITY
CREATIVE ARTS & HOLLOWAY MIXED-USE PROJECT

DATE: July 6, 2016

TO: Agencies, Organizations, and Interested Parties

PROJECT TITLE: Creative Arts & Holloway Mixed-Use Project

LEAD AGENCY: The Board of Trustees of the California State University
401 Golden Shore
Long Beach, California 90802-4210

San Francisco State University
1600 Holloway Avenue
San Francisco, California 94132

SUBJECT: Notice of Preparation of a Tiered Environmental Impact Report for the San Francisco State University Creative Arts & Holloway Mixed-Use Project

The Board of Trustees of the California State University (Trustees) is the lead agency for the preparation of a focused and tiered environmental impact report (EIR) in accordance with the California Environmental Quality Act (CEQA) (California Public Resources Code, Section 21000 et seq.), and the CEQA Guidelines (14 CCR 15000 et seq.). The EIR will be tiered to the Campus Master Plan (CMP) EIR (SCH #2006102050), certified as a Program EIR under CEQA Guidelines Section 15168, by the California State University Board of Trustees in November 2007. Under CEQA Guidelines Section 15152, tiering refers to using the analysis of general matters contained in a broader EIR, such as the CMP EIR, with later EIRs and negative declarations on later, site-specific projects, such as the proposed Project.

The Trustees have prepared this Notice of Preparation (NOP) in accordance with CEQA Guidelines Sections 15082(a) and 15375. The EIR will address the environmental effects of the proposed Creative Arts & Holloway Mixed-Use Project (Project) at San Francisco State University (SF State). The Project would include construction of the Creative Arts replacement building; an associated 800-seat concert hall; and a mixed-use development to include student housing, neighborhood-serving retail, and student support services.
The CMP, adopted by the Trustees in 2007, addresses all aspects of future physical development and land use on the campus to accommodate the enrollment ceiling of 25,000 full-time equivalent (FTE) students. The adopted CMP accommodates a building program of 0.9 million gross square feet of new and replacement non-residential building space, and development or conversion of approximately 1,198 additional units of housing for faculty, staff, and students. The proposed Project is consistent with the CMP building program; however, a revision to the Master Plan map is required to allow for the proposed uses on the identified sites.

Agencies: The Trustees request agencies’ views on the scope and content of the environmental information that is germane to an agency’s statutory responsibilities in connection with the Project, in accordance with CEQA Guidelines Sections 15082(b) and 15103. Agencies may need to use the EIR to consider permits or other approvals.

Organizations and Interested Parties: The Trustees request comments and concerns regarding the scope and evaluation of potential environmental issues associated with the proposed Project.

Project Location: The approximately 3.6-acre Project site is located in the southern part of the SF State campus, with one parcel (Block 6) on the south side of Holloway Avenue between Cardenas and Varela Avenues, and one parcel (Block 1), referred to as the Tapia Triangle, bounded by Tapia Drive, Holloway Avenue, and Font Boulevard. The Project site is part of University Park South, which was purchased by SF State between 2000 and 2005 and includes a portion of the original Parkmerced development, which extends beyond the campus boundaries to the south. Most of the existing units are occupied by SF State students and affiliates. See attached figures for the regional and project site location and setting.

Project Description: The Project would include demolition of existing housing and construction of new student housing, neighborhood-serving retail, and student support services on Block 6 on the south side of Holloway Avenue. The proposed residences would include apartment-style student housing. Redevelopment of the block would allow for a more compact configuration to increase the supply of on-campus housing in conformance with the CMP’s objectives. This development pattern is also in alignment with Parkmerced’s redevelopment plans. The retail and support services space would include uses such as neighborhood-serving retail, student support services, bike storage, study rooms, a copy center, and retail dining, and a modest amount of underground parking to replace parking being removed elsewhere on campus in the vicinity of the Project site. The retail and student support services space would be intended to serve SF State and neighbors in the immediate vicinity of the campus. Proposed retail would not have a regional draw that would attract people from outside of the Project vicinity.

The Project would also include demolition of existing housing and construction of the Creative Arts replacement building and concert hall on Block 1 on the north side of Font Boulevard and Holloway Avenue. This development assumes relocation of the existing Department of Broadcast & Electronic Communication Arts (BECA) program from the existing Creative Arts building, but does not include an increase in enrollment or full-time employees beyond the total campus enrollment cap of 25,000 FTE students analyzed in the 2007 CMP EIR. A concert hall would be located adjacent to the Creative Arts replacement building. The concert hall would
have recording and broadcast capabilities that would provide hands-on learning for BECA students and would serve as a performance venue and state-of-the-art recording studio for chamber orchestras, choral/vocal music, instrumental ensembles, and music groups. It also could host and simulcast lecture series, film festivals, and debates. Events may be open to the campus community only or to the neighborhood and larger community, similar to SF State’s current program of performing arts and lectures housed in the McKenna and Knuth Theaters.

Parking would be provided in the basement of the new residential building on Holloway Avenue to serve neighborhood retail, concert hall events, and visitors to campus. Student residential parking would be limited to accessible spaces. Consistent with the 2007 CMP, parking on Holloway Avenue would relocate a portion of the campus parking supply to the perimeter of campus, removing existing parking along Tapia Drive, and would constitute no net increase in the overall campus parking supply. Table 1 provides a summary of the key elements of the Project.

TABLE 1. PROJECT SUMMARY

<table>
<thead>
<tr>
<th>Project Element</th>
<th>Existing Site Conditions</th>
<th>Proposed Site Conditions</th>
<th>Net Change with Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student housing (Block 6)</td>
<td>168 beds (Blocks 1 & 6) 8 units (Block 1)¹</td>
<td>550 beds</td>
<td>360 beds</td>
</tr>
<tr>
<td>Neighborhood-serving retail/student support services (Block 6)</td>
<td>None</td>
<td>25,000 gross square feet (GSF)</td>
<td>25,000 GSF</td>
</tr>
<tr>
<td>Parking facilities</td>
<td>53 auto spaces²</td>
<td>70 parking spaces</td>
<td>0 parking spaces³</td>
</tr>
<tr>
<td>Creative Arts replacement building (Block 1)</td>
<td>None</td>
<td>75,000 GSF</td>
<td>75,000 GSF</td>
</tr>
<tr>
<td>Concert hall seats (Block 1)</td>
<td>None</td>
<td>60,000 GSF 800 seats</td>
<td>60,000 GSF 800 seats</td>
</tr>
</tbody>
</table>

Source: Data compiled by SF State 2016.

1. The eight units are occupied by approximately 2.75 people per unit, which is equivalent to 22 beds.
2. Parking located on Tapia Drive.
3. Parking would be removed elsewhere on campus to provide for no net increase in parking with the Project.

The Project would also include preparation and implementation of urban design and sustainability guidelines, and the target of Leadership in Energy and Environmental Design (LEED) Platinum and Net Zero Energy in support of the campus’ Climate Action Plan and core value of resiliency. Transportation improvements would include secured bicycle parking, loading and emergency access, streetscape improvements to benefit pedestrians, and vacating (removing) Tapia Drive to integrate Tapia Triangle into the campus academic core. The Project would connect to existing water and combined sewer services adjacent the site. Stormwater measures would be implemented such that the post-Project site would reduce by 25% the storm flow discharge for a 2-year, 24-hour event compared to pre-Project conditions.

Potential Environmental Effects: Based on the preliminary scope of the Project and the attached Initial Study (IS), the Trustees have determined that the Project could have a potentially significant environmental effect in the following areas: Aesthetics, Air Quality, Greenhouse Gas Emissions, Historic Resources, and Transportation/Traffic. A focused tiered
EIR will be prepared to evaluate the Project’s potential impacts on the environment related to these environmental issues, present feasible mitigation, and analyze potential alternatives.

Public Review Period: The Trustees have issued this NOP for public review and comment pursuant to CEQA Guidelines Sections 15082(a) and 15375. The Trustees have established a 30-day public review and scoping period from **July 7, 2016 to August 8, 2016**, in accordance with the CEQA Guidelines (14 CCR 15082). During this period, the NOP/IS will be available for review online at the following website: http://cpdc.sfsu.edu/plan

The NOP/IS will also be available for review at the following locations during regular business hours for the locations:

- **J. Paul Leonard Library at SFSU**
 1600 Holloway Avenue
 San Francisco, California 94132

- **Merced Branch Library**
 155 Winston Drive
 San Francisco, California 94132

- **Ocean View Branch Library**
 345 Randolph Street
 San Francisco, California 94132

Scoping Comments: At this time, the Trustees are soliciting comments on the scope and content of the EIR. Comments may be submitted by mail, email, or fax, or by attending the Public Scoping Meeting (see details below) and submitting a written comment. All comments should indicate a contact person for your agency or organization, if applicable. All comments should be sent to the following address, to arrive no later than 5 p.m. on **August 8, 2016**:

```
Wendy Bloom
Campus Planner
Capital Planning, Design & Construction
San Francisco State University
1600 Holloway Avenue
San Francisco, California 94132
T: 415.338.3838
F: 415.338.2960
wbloom@sfsu.edu
```
Public Scoping Meeting: The Trustees will hold a scoping meeting to give the public an opportunity to receive more information on the proposed Creative Arts & Holloway Mixed-Use Project, and to provide comments and suggestions on the scope of the EIR. All members of the public and interested persons are welcome to attend and provide comments. The details of this meeting are as follows:

Date: July 27, 2016
Time: 6:00pm to 8:00pm
Place: J Paul Leonard Library, Events Room (LIB 121)
Visitor & Travel Information: http://parking.sfsu.edu/visitor-information
Campus Map: http://www.sfsu.edu/~sfsuemap/

FURTHER INFORMATION: For environmental review information or questions about the Project, please contact Wendy Bloom by phone at 415.338.3838 or by email at wbloom@sfsu.edu.

Thomas E. Lollini, FAIA
Senior Associate Vice President
Physical Planning & Development
San Francisco State University

July 6, 2016
Date
FIGURE 2
Project Location
FIGURE 3
Project Setting
Tiered Initial Study

Creative Arts & Holloway Mixed-Use Project

San Francisco State University

July 6, 2016
Tiered Initial Study

Creative Arts & Holloway Mixed-Use Project

San Francisco State University

July 6, 2016

Lead Agency:
California State University Board of Trustees
401 Golden Shore
Long Beach, California 90802-4210

San Francisco State University
1600 Holloway Avenue
San Francisco, California 94131

Prepared by:
Dudek
725 Front Street, Suite 400
Santa Cruz, California 95060
Creative Arts & Holloway Mixed-Use Project

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRONYMS AND ABBREVIATIONS</td>
<td>III</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Project Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 California Environmental Quality Act Compliance</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Public Review Process</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Project Location and Setting</td>
<td>2</td>
</tr>
<tr>
<td>2 PROJECT DESCRIPTION</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Project Background</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Project Objectives</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1 Campus Master Plan Objectives</td>
<td>6</td>
</tr>
<tr>
<td>2.2.2 Project-Specific Objectives</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Project Components</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1 Housing</td>
<td>9</td>
</tr>
<tr>
<td>2.3.2 Retail and Student Support Services</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3 Creative Arts Replacement Building and Concert Hall</td>
<td>11</td>
</tr>
<tr>
<td>2.3.4 Design and Design Guidelines</td>
<td>12</td>
</tr>
<tr>
<td>2.3.5 Transportation Improvements</td>
<td>14</td>
</tr>
<tr>
<td>2.3.6 Utilities and Energy Use</td>
<td>15</td>
</tr>
<tr>
<td>2.3.7 Landscaping</td>
<td>17</td>
</tr>
<tr>
<td>2.4 Demolition and Construction</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Project Approvals</td>
<td>18</td>
</tr>
<tr>
<td>3 FINDINGS & ENVIRONMENTAL DETERMINATION</td>
<td>19</td>
</tr>
<tr>
<td>4 INITIAL STUDY CHECKLIST</td>
<td>21</td>
</tr>
<tr>
<td>4.1 Aesthetics</td>
<td>25</td>
</tr>
<tr>
<td>4.2 Agriculture and Forestry Resources</td>
<td>26</td>
</tr>
<tr>
<td>4.3 Air Quality</td>
<td>27</td>
</tr>
<tr>
<td>4.4 Biological Resources</td>
<td>28</td>
</tr>
<tr>
<td>4.5 Cultural Resources</td>
<td>31</td>
</tr>
<tr>
<td>4.6 Geology and Soils</td>
<td>33</td>
</tr>
<tr>
<td>4.7 Greenhouse Gas Emissions</td>
<td>36</td>
</tr>
<tr>
<td>4.8 Hazards and Hazardous Materials</td>
<td>37</td>
</tr>
<tr>
<td>4.9 Hydrology and Water Quality</td>
<td>42</td>
</tr>
<tr>
<td>4.10 Land Use and Planning</td>
<td>46</td>
</tr>
<tr>
<td>4.11 Mineral Resources</td>
<td>47</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12 Noise</td>
<td>48</td>
</tr>
<tr>
<td>4.13 Population and Housing</td>
<td>50</td>
</tr>
<tr>
<td>4.14 Public Services</td>
<td>52</td>
</tr>
<tr>
<td>4.15 Recreation</td>
<td>53</td>
</tr>
<tr>
<td>4.16 Transportation and Traffic</td>
<td>54</td>
</tr>
<tr>
<td>4.17 Utilities and Service Systems</td>
<td>56</td>
</tr>
<tr>
<td>4.18 Mandatory Findings of Significance</td>
<td>58</td>
</tr>
<tr>
<td>5 REFERENCES AND PREPARERS</td>
<td>61</td>
</tr>
<tr>
<td>5.1 References Cited</td>
<td>61</td>
</tr>
<tr>
<td>5.2 List of Preparers</td>
<td>62</td>
</tr>
<tr>
<td>5.2.1 Lead Agency</td>
<td>62</td>
</tr>
<tr>
<td>5.2.2 San Francisco State University</td>
<td>62</td>
</tr>
<tr>
<td>5.2.3 Dudek – CEQA Consultant Team</td>
<td>63</td>
</tr>
</tbody>
</table>

APPENDIX

A 2007 Campus Master Plan EIR Mitigation Measures That Apply to the Project

FIGURES

1 Regional Map | 65 |
2 Project Location | 67 |
3 Project Setting | 69 |

TABLES

1 Project Summary | 9 |
2 Project Approvals | 18 |
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym/Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAAQMD</td>
<td>Bay Area Air Quality Management District</td>
</tr>
<tr>
<td>BECA</td>
<td>Department of Broadcast & Electronic Communication Arts</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>City</td>
<td>City and County of San Francisco</td>
</tr>
<tr>
<td>CMP</td>
<td>Campus Master Plan</td>
</tr>
<tr>
<td>CSU</td>
<td>California State University</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>FTE</td>
<td>full-time equivalent</td>
</tr>
<tr>
<td>gpd</td>
<td>gallons per day</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GSF</td>
<td>gross square feet</td>
</tr>
<tr>
<td>IS</td>
<td>Initial Study</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>LUST</td>
<td>leaking underground storage tank</td>
</tr>
<tr>
<td>NOP</td>
<td>Notice of Preparation</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>coarse particulate matter</td>
</tr>
<tr>
<td>PM₂·₅</td>
<td>fine particulate matter</td>
</tr>
<tr>
<td>Project</td>
<td>Creative Arts and Holloway Mixed-Use Project</td>
</tr>
<tr>
<td>SF State</td>
<td>San Francisco State University</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>TDM</td>
<td>transportation demand management</td>
</tr>
<tr>
<td>Trustees</td>
<td>California State University Board of Trustees</td>
</tr>
</tbody>
</table>
INTRODUCTION

1.1 Project Overview

San Francisco State University (SF State) proposes to develop the Creative Arts and Holloway Mixed-Use Project (Project) in the southern portion of the SF State campus. The Project would include construction of the Creative Arts replacement building; an associated concert hall; and a mixed-use development including student housing, neighborhood-serving retail, student support services, transportation and parking improvements, utility connections, stormwater improvements, landscaping, and lighting.

1.2 California Environmental Quality Act Compliance

The California Environmental Quality Act (CEQA) serves as the main framework of environmental law and policy in California. CEQA emphasizes the need for public disclosure and identifying and preventing environmental damage associated with proposed projects. Unless the project is deemed categorically exempt, CEQA is applicable to any project that must be approved by a public agency in order to be processed and established. This Project does not fall under any of the statutory or categorical exemptions listed in the 2013 CEQA Statute and Guidelines (California Public Resources Code, Section 21000 et seq.; 14 California Code of Regulations (CCR) 15000 et seq.), and, therefore, must meet CEQA requirements.

The California State University Board of Trustees (Trustees) certified the SF State Campus Master Plan Environmental Impact Report (CMP EIR) (SCH No. 2006102050) in 2007. The Project conforms to the CMP building program and, therefore, the CEQA analysis for the Project will be tiered to the 2007 CMP EIR. Tiering refers to using the analysis of general matters contained in a broader EIR, such as the CMP EIR, with later EIRs or Negative Declarations on narrower projects, incorporating by reference the general discussions from the broader EIR, and concentrating the later EIR or Negative Declaration solely on the issues specific to the project (14 CCR 15152(a)). A later EIR is required when the Initial Study (IS) or other analysis finds that the later project may cause a significant effect on the environment that was not adequately addressed in the prior EIR (14 CCR 15152(f)). As indicated in Section 2, a focused, tiered EIR will be prepared for the Project, based on the results of this tiered Initial Study.

The 2007 CMP EIR is hereby incorporated by reference and referred to throughout this tiered Initial Study. The CMP EIR and related documents (e.g., Board of Trustees Approval, Mitigation Monitoring and Reporting Program, Findings of Fact, Notice of Determination) are available to the general public at http://cpdc.sfsu.edu/plan.
1.3 Public Review Process

Scoping

The intent of this IS is to provide an overview of the environmental impacts associated with the Project and to identify those issues that will be further evaluated in the pending EIR. This IS is attached to the Notice of Preparation (NOP) for the Project, which provides notice to involved agencies and the public that an EIR will be prepared for the Project. The NOP/IS is being distributed directly to numerous agencies, organizations, and interested groups and persons during the scoping period. During the 30-day scoping period, the Trustees are soliciting comments on the scope and content of the EIR. The NOP provides the web and library locations where the NOP/IS can be downloaded and/or reviewed, the SF State contact where comments can be submitted, and the dates of the scoping period. Once the scoping period closes, SF State will consider the comments received in the scope and contents of the Draft EIR that will be prepared.

Public Review of Draft EIR

The Draft EIR will be distributed for a 45-day public review period. During the public review period, written comments on the adequacy of the Draft EIR can be submitted. Following the close of the public review period on the Draft EIR, written responses will be prepared for all significant environmental issues raised in the comments received. The comments, responses, and changes to the Draft EIR document as a result of comments and responses will be published in the Final EIR. The Draft EIR and Final EIR volumes will constitute the Final EIR. As required by CEQA, written response to comments submitted by public agencies will be provided to those agencies for review at least 10 days prior to the Trustees’ consideration of certification of the Final EIR. The Final EIR will also be available to the public in advance of the Trustees’ consideration of EIR certification.

1.4 Project Location and Setting

The Project is on the existing 144-acre SF State campus located in the southwestern corner of the City and County of San Francisco, in California (see Figure 1, Regional Map). The SF State campus is generally bounded by Lake Merced Boulevard and the lake and its associated open spaces, including Harding Park, public and private golf courses, Fort Funston, and the San Francisco Zoo, on the west; 19th Avenue (State Route 1) and residential development in the Ingleside neighborhood on the east; the Stonestown Galleria shopping center, Lowell High School, and Lakeshore Alternative Elementary School to the north; and Parkmerced and other residential development to the south (see Figure 2, Project Location). The Pacific Ocean lies to the west of the campus, beyond Lake Merced.
The approximately 3.6-acre Project site is located in the south campus, with one parcel (Block 6) on the south side of Holloway Avenue between Cardenas and Varela Avenues, and one parcel (Block 1), referred to as the Tapia Triangle, bounded by Tapia Drive, Holloway Avenue, and Font Boulevard (see Figure 3, Project Setting). The Project site is part of University Park South, which was purchased by SF State between 2000 and 2005 and includes a portion of the original Parkmerced development, which extends beyond the campus boundaries to the south. Block 1 and Block 6 are composed primarily of two-story housing around the perimeter of the block, with an interior courtyard. Of the 46 housing units in Block 1 and Block 6, most are occupied by SF State students and are licensed by the bed space.
2 PROJECT DESCRIPTION

2.1 Project Background

The CMP, adopted by the Trustees in 2007, addresses all aspects of future physical development and land use on the campus to accommodate the enrollment ceiling of 25,000 full-time equivalent (FTE) students (SF State 2007). The CMP provides a comprehensive framework for the physical development of the SF State campus through 2020. It addresses the acquisition of property, older facilities, changing student demographics, and the need for additional academic building space and other support space to accommodate the anticipated growth in enrollment. To accommodate the projected growth in enrollment and academic activities, the adopted CMP accommodates a building program that envisions development of 0.9 million gross square feet (GSF) of new and replacement non-residential building space on campus, and development or conversion of approximately 1,198 additional units of housing on campus for faculty, staff, and students.

The existing adopted CMP includes a land use map and urban design plan map that locate major uses and buildings to guide the siting of future campus facilities. The land use map maintains the current general configuration of land uses on the campus, which consist of a concentrated academic core surrounded by residential and other campus uses. Most of the growth in facilities would occur through demolition and replacement of existing buildings, as a number of existing buildings are at or beyond their useful life.

The 2007 CMP included a new Creative Arts complex located on Lot 41, at the intersection of Font and Lake Merced Boulevards. The current Master Plan map was recently revised and approved in May 2014 to allow for relocation of the planned Mashouf Wellness Center on Lot 41 and relocation of the planned Creative Arts replacement buildings from Lot 41 to two adjacent sites located closer to the academic core. Based on the May 2014 approved map, the Creative Arts complex would consist of four replacement buildings, with an 800-seat auditorium and a building housing the Theatre Arts program located on the West Campus Green, and two buildings to house the Department of Broadcast & Electronic Communication Arts (BECA) and Music & Dance programs located on the Tapia Triangle. Since approval of the Master Plan map revision in 2014, the programs have reorganized into the School of Theatre and Dance and the School of Music.

The 2007 CMP proposed redeveloping the University Park South block on the south side of Holloway Avenue between Cardenas and Arellano Avenues with denser housing and ground-floor retail, and assumed that Block 6 to the east would remain in its current use through the CMP development window (2020).
The proposed Project is consistent with the 2007 CMP building program; however, a Master Plan map revision is required to allow for the proposed uses on the identified sites, as described below. The map revision is required to (1) repurpose the planned auditorium as an 800-seat concert hall, (2) co-locate the 800-seat concert hall on the Tapia Triangle with the building that would house BECA, (3) rename and co-locate the Music building on the West Campus Green with the renamed building for Theatre and Dance, and (4) relocate planned future housing from its current location to Block 6 and re-designate the site for housing/mixed-use development.

2.2 Project Objectives

CEQA indicates that the statement of project objectives should be clearly written to define the underlying purpose of a project in order to permit development of a reasonable range of alternatives and aid the lead agency in making findings when considering the project for approval. The objectives of the adopted 2007 CMP originate in the obligation SF State has to meet its educational mission as defined by the California Education Code. The Project objectives that are drawn from the CMP are based on the physical planning principles derived from the long-term vision for the SF State campus, consistent with SF State’s strategic plan. The CMP objectives and Project-specific objectives are provided below.

2.2.1 Campus Master Plan Objectives

1. Provide facilities for expansion of academic programs and administrative functions to support the proposed [now adopted] enrollment ceiling increase to 25,000 FTEs, required by the CSU [California State University] and California Education Code.

2. Provide student, faculty, and staff housing to aid in recruitment and retention.

3. Implement the planning principles provided in the proposed Campus Master Plan, as follows:
 - A vibrant on-campus community:
 - Reinforce the academic core and extend it westward.
 - Integrate residential properties to create a unified campus.
 - Provide more close-in, affordable housing that enables faculty, staff, and students to walk to school and work.
 - Redefine Holloway and Buckingham as “college main streets” offering neighborhood retail and services.
Creative Arts & Holloway Mixed-Use Project

- Strong connections to the surrounding city:
 - Strengthen the University’s connections to Lake Merced and the surrounding neighborhoods.
 - Work with neighbors, the City of San Francisco, and other entities to improve public transportation and other services that benefit the entire district.

- Emphasis on the pedestrian and alternative transportation:
 - Cluster development around high-frequency transit connections to encourage transit use.
 - Establish bicycle and pedestrian networks that provide safe, direct and attractive connections to work and school.
 - Develop the 19th Avenue edge as a transit-, bicycle-, and pedestrian-friendly parkway.
 - Implement Transportation Demand Management strategies to reduce parking demand.
 - Decentralize campus parking over time from the current central garage to a series of smaller perimeter parking facilities to disperse traffic and parking impacts, claim the campus core for pedestrians and bicycles, and allow for the eventual removal of the central parking garage from the valley.

- Recognition in the city and region:
 - Position semi-public uses at the corners of campus, creating icons that redefine the University's external identity and engage the larger community.
 - Create an identifiable and inviting campus perimeter.

- A continuous greenbelt between 19th Avenue and Lake Merced:
 - Establish the valley as the central open space of campus.
 - Provide expanded recreational fields.
 - Restore ecological landscapes in the valley.

- Universal design and access:
 - Ensure that all aspects of the campus physical environment—notably primary circulation routes and main building entrances—are comfortably usable by and inviting to the widest group of people possible.
 - Organize and design primary pathways and graphic signage to facilitate wayfinding, using a combination of visual, tactile, and auditory cues.
Creative Arts & Holloway Mixed-Use Project

- Establish strong north/south connections across the valley and Buckingham Way and Holloway Avenue that link the University to its residential districts and to the surrounding neighborhoods.
- Establish clear east/west functional and visual connections across campus and to the surrounding district.

- A campus that models sustainability:
 - Develop transportation and land use patterns that encourage greater use of transit, walking, and bicycle commuting and reduce dependence on automobiles.
 - Make efficient use of redevelopment sites.
 - Promote sustainability through green building and site design, native landscape, natural stormwater management, alternative transportation, higher-density housing, and walkable neighborhood retail.

2.2.2 Project-Specific Objectives

1. Replace significant portions of the existing Creative Arts building, which has various deficiencies and no longer supports the academic program, and construct a new concert hall with recording and broadcast capability to provide hands-on learning for BECA students and support University and community programs.

2. Reinforce the academic core and extend it westward to create a contiguous, uninterrupted academic core. The Creative Arts replacement building and concert hall would be located at a pivotal location at Holloway Avenue and Font Boulevard, in proximity to residential mixed-use development and adjacent to College of Liberal and Creative Arts facilities to provide for programmatic collaboration.

3. Position semi-public uses, such as the concert hall, at the corners or edges of campus, creating icons that redefine the University's external identity and engage the larger community.

4. Provide new on-campus student housing to aid in recruitment and retention of students and to provide close-in housing that enables students to walk to school, thereby reducing commute trips to campus and associated greenhouse gas (GHG) emissions.

5. Begin to integrate and make efficient use of more recently acquired residential properties located along the southern edge of the campus.

6. Locate new student housing in proximity to the existing Muni “M” line and bus lines and to the future planned underground Muni M line and station and to planned 19th Avenue bicycle and pedestrian facilities.
7. Locate higher-density student housing with ground-floor neighborhood retail and services along Holloway to redefine Holloway as “college main street.”

8. Ensure that new construction achieves at least Leadership in Energy and Environmental Design (LEED) Gold or equivalent performance and energy efficiency beyond Title 24 requirements. LEED Platinum and zero net energy should be targeted, and the Project should meet other CMP and Climate Action Plan (SF State 2010) sustainability objectives.

2.3 Project Components

The Project would include construction of new housing, neighborhood-serving retail, and student support services on the south side of Holloway Avenue, and construction of the Creative Arts replacement building and concert hall on the north side of the Holloway Avenue/Font Boulevard intersection. The Project would also include preparation and implementation of design guidelines, transportation and parking improvements, utility connections, storm drainage improvements, landscaping, and lighting. As described in Section 2.1, a revision to the existing Master Plan map would be required to allow for the proposed uses on the identified sites. All elements of the Project are further described below and summarized in Table 1.

TABLE 1. PROJECT SUMMARY

<table>
<thead>
<tr>
<th>Project Element</th>
<th>Existing Site Conditions</th>
<th>Proposed Site Conditions</th>
<th>Net Change with Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student housing (Block 6)</td>
<td>168 beds (Blocks 1 & 6)</td>
<td>550 beds</td>
<td>360 beds</td>
</tr>
<tr>
<td></td>
<td>8 units (Block 1)¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood-serving retail/student support services (Block 6)</td>
<td>None</td>
<td>25,000 gross square feet (GSF)</td>
<td>25,000 GSF</td>
</tr>
<tr>
<td>Parking facilities</td>
<td>53 auto spaces²</td>
<td>70 parking spaces</td>
<td>0 parking spaces³</td>
</tr>
<tr>
<td></td>
<td>9 motorcycle spaces²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative Arts replacement building (Block 1)</td>
<td>None</td>
<td>75,000 GSF</td>
<td>75,000 GSF</td>
</tr>
<tr>
<td>Concert hall seats (Block 1)</td>
<td>None</td>
<td>60,000 GSF</td>
<td>60,000 GSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 seats</td>
<td>800 seats</td>
</tr>
</tbody>
</table>

Source: Data compiled by SF State in 2016.

¹ The eight units are occupied by approximately 2.75 people per unit, which is equivalent to 22 beds.
² Parking located on Tapia Drive.
³ Parking would be removed elsewhere on campus to provide for no net increase in parking with the Project.

2.3.1 Housing

The existing residential block on the south side of Holloway Avenue between Varela and Cardenas Avenues (Block 6) contains 27 residential units, which would be demolished and
replaced with a multiple-story, mixed-use building with a maximum height of 90 feet. The proposed building would include apartment-style student housing. Redevelopment of the block would allow for a more compact configuration to increase the supply of on-campus housing in conformance with the 2007 CMP’s objectives. This development pattern is also in alignment with the Parkmerced redevelopment plan.

The existing residential block at Tapia Triangle (Block 1) contains 27 residential units, which would be demolished and replaced with the Creative Arts replacement building and the concert hall (see Section 2.3.3). As listed in Table 1, accounting for the loss of existing housing units on the two parcels, the net increase in housing would be 360 beds. Most of the 54 units in Block 1 and Block 6 are currently occupied by students and licensed as bed space; however, approximately eight units are currently licensed as apartments to SF State affiliates and non-affiliates.

Given that the Project would involve demolition of existing housing, SF State will comply with the California Relocation Assistance Act (California Government Code 7260 et seq.), which applies to state entities that may displace residents and businesses. This act generally requires that public entities provide relocation assistance to persons who are displaced as the result of the acquisition of property for a public use. Since the acquisition of University Park South by SF State, the number of legacy tenants has declined substantially. Any remaining legacy tenants would be offered relocation assistance, as required by law. SF State would provide displaced non-University affiliates with the option to relocate to units in other campus housing.

2.3.2 Retail and Student Support Services

Up to 25,000 square feet of neighborhood-serving retail and student support services space would be provided with the Project. The area of retail would be primarily confined to building frontages accessible from the Holloway Avenue and Varela Avenue and linked to the future retail corridor along Crespi Drive, described in the future Parkmerced vision (Maximus Real Estate Partners 2016). This space would provide for uses such as neighborhood-serving retail, student support services, bike storage, study rooms, a copy center, and retail dining. The retail and student support services would be intended to serve SF State and neighbors in the immediate vicinity. Proposed retail would not have a regional draw that would attract people from outside the Project vicinity.

The 2007 CMP envisioned Holloway Avenue as a campus main street; the proposed Project would be designed to contribute to main street character. Project design would include a gateway presence, including a street that prioritizes pedestrians and bicycles. Where possible, “green” infrastructure would be incorporated in the streetscape design to manage stormwater.
runoff. The new campus main street character would be reinforced by including retail and/or student support services along Holloway and Varela Avenues.

2.3.3 Creative Arts Replacement Building and Concert Hall

The 2007 CMP included a new Creative Arts complex located on Lot 41, at the intersection of Font and Lake Merced Boulevards. A Master Plan revision approved by the Trustees in 2014 relocated the Creative Arts complex, consisting of four replacement buildings housing academic and performance space, to the West Campus Green on Font Boulevard and the Tapia Triangle. This 1.7-acre site, located on the north side of Font Boulevard and Holloway Avenue, currently contains 27 residential units. This development assumes relocation of the existing BECA program from the existing Creative Arts building, but does not include an increase in enrollment or full-time employees beyond the total campus enrollment increase to 25,000 FTE students analyzed in the 2007 CMP EIR. A concert hall would be located adjacent to the Creative Arts replacement building. These two buildings are further described below.

Creative Arts Replacement Building

The Creative Arts replacement building would be approximately 51,000 assignable square feet/75,000 GSF, and would include instructional and support space and faculty office space. It would be located on the north side of the Tapia Triangle site, across from the existing Humanities Building. The new Creative Arts replacement building would be two to three stories over a basement, with a maximum height of 90 feet. The building would house two full-height television studios; a television newsroom; a radio station; video post-production space; audio recording, production, and post-production space; and related classroom space for the BECA program. The building would also house interdisciplinary lecture classrooms.

The building would likely be steel-frame construction with concrete, glass, and exterior cladding. Exterior circulation located on the north side of the building would reinforce east/west circulation between the academic core and the new Mashouf Wellness Center at Font Boulevard and Lake Merced Boulevard, and future academic buildings planned to the west.

Concert Hall

An 800-seat concert hall would be located adjacent to the Creative Arts replacement building on the southeast portion of the Tapia Triangle. The concert hall would have recording and broadcast capabilities that would provide hands-on learning for BECA students, and would serve as a performance venue and state-of-the-art recording studio for chamber orchestras, choral/vocal music, instrumental ensembles, and music groups. It also could host and simulcast lecture series, film festivals, and debates. Events may be open only to the campus community or
to the neighborhood and larger community, similar to SF State’s current program of performing arts and lectures housed in McKenna and Knuth Theaters.

The concert hall would be approximately 40,000 assignable square feet/60,000 GSF, and would have a maximum height of 90 feet. The building would be steel-frame construction with concrete, glass, and exterior cladding, using materials complementary to the Creative Arts replacement building. Glass would provide views into the building’s lobby and gathering spaces. Located at the intersection of Holloway Avenue and Font Boulevard, the concert hall with its south-facing glass lobby would clearly identify an important entry into the campus from these two major streets.

2.3.4 Design and Design Guidelines

The Project includes design standards and guidelines that would apply to development on Block 6 to ensure compatibility with the adjacent Parkmerced complex, as specified in CMP EIR Mitigation AES-3 (SF State 2007). These guidelines were prepared for consistency, where relevant, to the Parkmerced Design Standards and Guidelines (SOM 2010), and include building massing, design, exterior treatments and design details, and building heights as specified by CMP EIR Mitigation AES-3.

The student housing (Block 6) site is the first in a series of mixed-use development projects along the Holloway Avenue corridor that would define the southern edge of the campus, as envisioned in the 2007 CMP. As the farthest east site, it would also provide a gateway presence at the southern end of the campus near the busy 19th Avenue and Holloway San Francisco Municipal Transportation Agency Metro stop.

Height Limits

After adoption of the 2007 CMP, Parkmerced’s development plan received City and County of San Francisco (City) approval. The Parkmerced plan includes significantly higher density and height limits than the conditions that existed when SF State’s CMP and EIR were approved. Given the anticipated changes at Parkmerced and SF State’s interest in providing student housing responsive to demand, the proposed building heights would be greater than the 50-foot height limit referenced in the 2007 CMP, but would not exceed 90 feet. This additional height would also allow for the possibility of a rooftop-mounted solar array to support the goals of zero net energy.

Building Design

Building placement and orientation is critical to enhancing a development’s character and promoting pedestrian activity. Adherence to build-to lines creates a consistent but permeable
edge that defines and shapes the streets. The build-to lines should determine each new building’s configuration and major frontages. As envisioned in the 2007 CMP, the intention is to develop Holloway Avenue as a mixed-use corridor with sufficient frontage to form the street space. Thus, at a minimum, the building would abut the property line along at least half of the length of the block on Holloway Avenue. Recessed plazas may mark points of entry or activity. Bay windows may project above and beyond this street wall in classic San Francisco patterns to take advantage of views up and down the street. Arcades may be employed to hold the street wall but expand the public realm to create opportunities for outdoor seating or merchandise displays, or protection from the elements. Along side streets and Serrano Drive, the building line may vary.

Arcades, porches, balconies, portals, and courtyards would be used to encourage pedestrian activity and to provide shade, natural ventilation, and day-lighting to interior spaces. Building entrances would be bright, glazed, and easy to find.

Roof spaces would be usable roof terraces, providing additional open space; planted as green roofs, allowing the roof to reduce heating and cooling loads and reduce stormwater runoff; and/or used for the placement of solar arrays, which would also reduce heating and cooling loads. These strategies can be used in combination.

Lighting and Ventilation

Natural ventilation would be used for all spaces wherever possible. Where code requires mechanical ventilation, it would be provided. Because of SF State's benign ocean-side climate and wind patterns, natural ventilation is easily achieved through operable windows, louvers, and the use of skylights and clerestories.

Interior corridors would be naturally lit and could provide exterior views or vistas at changes in direction. “Racetrack” corridors are strongly discouraged. Vertical circulation would be near the edges of the floor plates to allow long-term flexibility in use, reduce the amount of conditioned space, and provide legibility to the building plan. Common areas would be located adjacent to amenities or along primary vertical circulation paths, and be naturally lit and ventilated.

Daylight would be used as the primary means of lighting the interiors of new buildings. Because of the ambient light and frequent occasions when the campus is shrouded in fog, the majority of building elevations may be transparent. Exterior lighting would adhere to LEED–New Construction (NC) guidelines for light pollution reduction and energy efficiency, per CMP EIR Mitigation AES-4 (SF State 2007).
Building Materials

Concrete paving, including poured-in-place and unit pavers, would be used, reserving distinctive visual and tactile effects to highlight areas of importance and help with wayfinding. Permeable paving options would be explored and used, if effective.

Construction of the Project would use locally sourced materials with recycled content when possible, whether raw materials or manufactured items, and maximize their use as a means of limiting the environmental impacts of transporting goods. Construction of the Project would explore the possibility of reused construction and demolition materials and maximize their use as a means of limiting the environmental impacts of extracting and manufacturing new materials.

2.3.5 Transportation Improvements

Closure of Tapia Drive

SF State is applying to the City to “vacate” Tapia Drive. This would allow SF State to incorporate the street right-of-way into the Project site and to integrate the site into the campus, specifically the academic core. SF State owns the property on both sides of Tapia Drive, and closing the street is consistent with the 2007 CMP, which envisioned a major east/west walkway connecting the central academic core with sites to the west, including the Mashouf Wellness Center. Some vehicular access would be required for loading at the existing Creative Arts and Humanities buildings, but the area currently occupied by the street right-of-way would be developed as part of the site for the proposed Creative Arts replacement building and concert hall, and would be used primarily by pedestrians.

Automobile Parking

The addition of housing and neighborhood retail services supports SF State’s goal to minimize drive-alone auto trips to reduce traffic congestion and GHG emissions. Consistent with the SF State transportation demand management (TDM) plan (Nelson/Nygaard 2009), new residential and retail development should use strategies that minimize the need for parking, such as car sharing, bike facilities, and access to transit.

Parking would be provided in the basement of the proposed student housing/mixed-use building on Block 6 to serve neighborhood retail, concert hall events, and visitors to campus. Student residential parking would be limited to accessible spaces. Consistent with the 2007 CMP, parking in the new student housing/mixed-use building on Holloway Avenue would relocate a portion of the campus parking supply to the perimeter of campus, removing existing parking along Tapia Drive and from elsewhere on campus, such that the Project would result in no net increase in the overall campus parking supply, as shown in Table 1.
The absence of available parking spaces, the available alternatives to vehicular travel (transit, bicycling, and walking), and the dense pattern of urban development would induce many drivers to seek other modes of travel or change their overall travel behavior. Any such resulting shifts to transit service in particular would be in keeping with the City’s “Transit First” policy. The City’s Transit First Policy (CCSF 2007) provides that parking policies for areas well-served by public transit, such as the SF State campus, be designed to encourage travel by public transportation and alternative transportation.

Bicycle Parking

The new student housing building at the southeast corner of Holloway Avenue and Varela Avenue would include secure, covered bicycle storage on the first floor of the building. Bicycle parking would also be provided in the vicinity of the Creative Arts replacement building and concert hall.

Loading Facilities

The loading and service area for the Creative Arts replacement building and concert hall would likely be accessed from the vacated Tapia Drive adjacent to the existing Creative Arts building, and would be located internal to the Project site, where possible, to avoid conflicts with perimeter pedestrian circulation. The loading and service area for the student housing building would be along Cardenas Avenue, preserving continuous, ground-level retail frontage along Holloway and Varela Avenues.

Emergency and Accessible Access

Emergency and accessible access would be provided via the main building entrances at street level. Emergency access could also be provided via the loading and service areas identified above.

2.3.6 Utilities and Energy Use

Water

The Project would include installation of new potable water infrastructure to support the new buildings. Several 2-inch-diameter lateral pipes would be installed to connect to the existing 8-inch-diameter line north of Holloway Avenue and Font Boulevard; 3- to 4-inch-diameter fire service lateral pipes would also be installed to provide fire water services to the buildings. The Project would include installation of recycled water infrastructure and other water reuse strategies. Targeted strategies could include ultra-water-efficient bathroom fixtures, dual
plumbing to allow use of recycled water for toilet and urinal flushing, and recycled water infrastructure for irrigation.

Wastewater

The Project would involve installation of new 8-inch-diameter wastewater infrastructure to support the new buildings. A connection to the existing wastewater pipeline located on the north side of Holloway Avenue and Font Boulevard would be installed.

Stormwater

The Project would be located in a City combined sewer area. To minimize impacts of the Project on the combined sewer system, SF State would implement a stormwater management approach compatible with the City’s Stormwater Management Requirements and Design Guidelines (CCSF 2016). The Project site has an impervious area greater than 50%. Accordingly, the Project would implement a stormwater management approach that reduces the existing stormwater runoff flow rate and volume by 25% for a 2-year, 24-hour design storm. The Project would minimize disruption of natural hydrology by implementing low-impact design approaches such as reduced impervious cover, reuse of stormwater, or increased infiltration. The actual design of the stormwater management system would be developed as the design process proceeds, but it is expected that the following types of features would be incorporated into the design to achieve the above criteria: infiltration zones/dry wells, use of permeable materials for walking surfaces, and bio-retention zones.

By implementing these design criteria, the Project would exceed the requirements of the 2007 CMP, calling for no net increase in storm flow discharge from the campus to the combined sewer system. The stormwater management plan for the Project would be designed consistent with LEED credit SS 6.1 (as described by the U.S. Green Building Council) and would be compatible with the City’s Stormwater Management Requirements and Design Guidelines (CCSF 2016).

Energy

Project buildings would be connected to the existing electrical and natural gas system on campus. New buildings would be designed to achieve at least LEED Gold or equivalent performance, and energy efficiency beyond Title 24 requirements. LEED Platinum and zero net energy would be targeted using a combination of advanced green building and energy efficiency measures, on-site renewable energy, district energy strategies, and/or renewable energy credits. On-site renewable energy could include roof-mounted solar arrays. The efficiency measures to
be incorporated could include above-code enclosures and heating, ventilation, and air-conditioning equipment; daylighting; and similar strategies.

The only emergency generator planned is required by the California Building Code to power the elevators and emergency lighting in the case of a power outage. No optional standby power is planned for the Project.

Solid Waste

All proposed buildings would be provided with traditional trash and recycling services and associated receptacles.

2.3.7 **Landscaping**

The Project would incorporate water-efficient landscape. The selected plant species would require zero or minimal irrigation after plants are established, and would reflect the ecological zones outlined in the 2007 CMP and the specific function and character of adjacent uses and landscapes. In low areas and natural collection points, stormwater management zones would capture, convey, and detain stormwater runoff within vegetated bio-detention “meadow” landscape elements.

2.4 **Demolition and Construction**

Demolition of the existing housing on the Tapia Triangle would be anticipated to occur in late summer 2017. Demolition of existing housing at the southeast corner of Holloway Avenue and Varela Avenue would likely occur somewhat later than the demolition on the Tapia Triangle.

Construction staging would occur on the Project site in areas not proposed to support the new buildings. Construction workers would access the construction site primarily via Holloway Avenue and Font Boulevard.

Construction of the Creative Arts replacement building and concert hall would take approximately 24 months to complete, beginning in fall 2017, with completion in fall 2019. Construction of the student housing building would take approximately 24 months, beginning somewhat later than the Creative Arts buildings, with completion in 2019/2020. There could be up to a 24-month overlap in the construction schedules for the Creative Arts buildings and the student housing building.

Construction would be performed by qualified contractors. Plans and specifications would incorporate stipulations regarding standard California State University (CSU) requirements and acceptable construction practices, including grading and demolition, safety measures, vehicle operation and maintenance, excavation stability, erosion control, drainage alteration, groundwater disposal, traffic circulation, public safety, dust control, and noise generation.
2.5 Project Approvals

This section describes actions required for Project approval by state and regional agencies. Discretionary approvals include certification of the EIR under CEQA; approval and adoption of the proposed revision to the Master Plan map; and approval of schematic plans for the Creative Arts replacement building, concert hall, and student housing/mixed-use building by the Trustees, as summarized in Table 2. Other approvals would also be necessary.

TABLE 2. PROJECT APPROVALS

<table>
<thead>
<tr>
<th>Authorizing Jurisdiction or Agency</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>California State University Board of Trustees</td>
<td>Final EIR Certification</td>
</tr>
<tr>
<td>San Francisco State University Master Plan Map Revision</td>
<td>Approval and Adoption</td>
</tr>
<tr>
<td>Amendment to the Self-Support Capital Outlay Program</td>
<td>Approval and Adoption</td>
</tr>
<tr>
<td>Schematic Plans for the Creative Arts Replacement Building, Concert Hall, and Student Housing/Mixed-Use Building</td>
<td>Approval</td>
</tr>
<tr>
<td>Division of the State Architect</td>
<td>Accessibility Compliance Approval</td>
</tr>
<tr>
<td>State Fire Marshal</td>
<td>Facility Fire and Life Safety Compliance Approval</td>
</tr>
<tr>
<td>Regional Water Quality Control Board</td>
<td>National Pollutant Discharge Elimination System Permit (NPDES) – Storm Water Pollution Prevention Plan (SWPPP) and Notice of Intent to Comply with NPDES Construction Permit Approval/Enforcement</td>
</tr>
<tr>
<td>Bay Area Air Quality Management District</td>
<td>Authority to Construct and/or Permits to Operate Approval</td>
</tr>
<tr>
<td></td>
<td>Hazardous Materials Removal and Asbestos Demolition Rule Compliance</td>
</tr>
<tr>
<td>City and County of San Francisco</td>
<td>Fire Flow and Hydrants – San Francisco Fire Department Review/Verification</td>
</tr>
<tr>
<td></td>
<td>Tapia Drive Vacation and Street/Sidewalk Improvements – Department of Public Works Bureau of Street-Use and Mapping in coordination with other City departments, including San Francisco Metropolitan Transportation Agency (SFMTA), Bureau of Urban Forestry, and others Approval</td>
</tr>
<tr>
<td></td>
<td>Water and Sewer Connections/Services/Encroachment – Department of Public Works and San Francisco Public Utilities Commission Approval</td>
</tr>
<tr>
<td></td>
<td>Stormwater Management Compatibility with Stormwater Management Requirements and Design Guidelines – San Francisco Public Utilities Commission Review</td>
</tr>
</tbody>
</table>
3 FINDINGS & ENVIRONMENTAL DETERMINATION

The Trustees find that the Project could have a “potentially significant impact” or “potentially significant unless mitigated” impact on the environment, but most effects (1) were adequately analyzed in the 2007 CMP EIR pursuant to applicable legal standards and (2) were addressed by mitigation measures based on that earlier analysis, as described on Section 4, Initial Study Checklist. An EIR is required to analyze only the effects that remain to be addressed. The Project could result in a potentially significant new or increased impact over and above those identified in the 2007 CMP EIR based on the results of the Initial Study Checklist. The Trustees have decided to prepare a focused, tiered EIR to address the following potential impacts:

1. **Aesthetics:** The 2007 CMP EIR determined that the impacts of CMP buildout on scenic vistas and scenic resources would be less than significant. The impacts related to visual character and light and glare were determined to be less than significant with identified mitigation measures. The tiered focused EIR will evaluate potential aesthetic impacts to determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR. See Section 4.1, Aesthetics, for additional information.

2. **Air Quality:** The 2007 CMP EIR determined that the impacts of CMP buildout related to potential conflicts with the applicable air plan and construction emissions of coarse particulate matter (PM$_{10}$) and fine particulate matter (PM$_{2.5}$) would be less than significant with identified mitigation measures. Impacts related to the exposure of sensitive receptors to substantial pollutant concentrations and objectionable odors were determined to be less than significant. The focused tiered EIR will evaluate potential air quality impacts to determine whether there may be new or increased impacts compared to those identified in the 2007 CMP EIR. See Section 4.3, Air Quality, for additional information.

3. **Greenhouse Gas Emissions:** The CMP EIR approved in 2007 did not analyze potential campus-wide impacts related to GHG emissions, as Appendix G of the CEQA Guidelines at that time did not address GHG emissions and there were no established thresholds. The tiered EIR will quantify the net increase in GHG emissions with the Project; determine whether those emissions could have a significant impact on the environment; and determine whether the Project would conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing GHG emissions.

4. **Historic Resources:** The 2007 CMP EIR determined that the impacts of CMP buildout related to historic resources could be significant and unavoidable if CMP EIR Mitigation CULT-2C, requiring documentation of historical resources, would not fully mitigate the effects of demolition of those resources to less than significant. Since the certification of
the CMP EIR in 2007, more is now known about the eligibility of the Parkmerced area as a Historic District. The existing housing on the Project site, which consists of former Parkmerced properties, is proposed to be demolished as part of the Project. The tiered EIR will evaluate potential historic resource impacts of the Project on the former Parkmerced properties to determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR.

5. **Transportation and Traffic:** The 2007 CMP EIR indicated that the combined effect of the TDM, parking, transit, and housing programs of the CMP would likely be to maintain campus-related auto traffic levels at their then-current (2006) rates through 2020. The 2007 CMP EIR considered this no-net-increase in vehicle trips scenario in a traffic analysis that also provided a more conservative traffic scenario that estimated trip generation from proposed campus growth more traditionally. The more conservative analysis indicated that campus growth would potentially result in significant traffic-related impacts on vicinity roadways. The tiered EIR will estimate trip generation associated with Project vehicle and transit trips, and evaluate transportation hazards, emergency access, and conflicts with adopted transportation policies to determine whether the Project could result in new or increased impacts over and above those identified in the 2007 CMP EIR.

6. **Mandatory Findings of Significance/Cumulative Impacts:** The 2007 CMP EIR evaluated the cumulative effects associated with growth and development contemplated under the CMP. In general, the cumulative effects associated with the Project have already been analyzed and assessed as part of the 2007 CMP EIR, and no new or increased impacts are anticipated with the Project in most impact categories. However, cumulative impacts associated with reasonably foreseeable cumulative development will be updated and reassessed, as relevant and necessary, for the topics that will be carried into the forthcoming EIR, including for the topics listed above, to determine whether new or increased cumulative impacts would result with the Project.
INITIAL STUDY CHECKLIST

The evaluation of potential environmental impacts provided in Section 4 of this IS determined that the Project would not result in new or increased environmental impacts over and above those identified in the 2007 CMP EIR for the topics that are not checked below. Topics with a check mark below warrant further analysis and will be examined in an EIR to determine whether the Project would have a significant new or increased impact that was not previously addressed in the 2007 CMP EIR.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

☑️ Aesthetics	☐ Agriculture and Forestry Resources	☑️ Air Quality
☐ Biological Resources	☑️ Cultural Resources	☐ Geology and Soils
☑️ Greenhouse Gas Emissions	☐ Hazards and Hazardous Materials	☐ Hydrology and Water Quality
☐ Land Use and Planning	☐ Mineral Resources	☐ Noise
☐ Population and Housing	☐ Public Services	☐ Recreation
☑️ Transportation and Traffic	☐ Utilities and Service Systems	☑️ Mandatory Findings of Significance
Creative Arts & Holloway Mixed-Use Project

DETERMINATION: (To be completed by the Lead Agency)

On the basis of this initial evaluation:

☐ I find that the proposed Project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☐ I find that although the proposed Project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the Project have been made by or agreed to by the Project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

☐ I find that the proposed Project could have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

☒ I find that the proposed Project could have a “potentially significant impact” or “potentially significant unless mitigated” impact on the environment, but at least one effect (1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and (2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

☐ I find that although the proposed Project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier ENVIRONMENTAL IMPACT REPORT or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier ENVIRONMENTAL IMPACT REPORT or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed Project, nothing further is required.

Thomas E. Lollini, FAIA
Senior Associate Vice President
Physical Planning & Development
San Francisco State University

July 6, 2016
TIERED EVALUATION OF ENVIRONMENTAL IMPACTS:

1) The purpose of evaluating the Project’s potential environmental impacts is to determine whether the Project could result in new significant impacts not identified in the 2007 CMP EIR (SCH No. 2006102050), or a substantial increase in the impacts identified in the EIR. If the Project would result in a significant unavoidable impact that was already identified in the EIR, no additional environmental evaluation is required and the “No New Impact” box is checked in the following Environmental Checklist. Where the Project would result in a significant impact that was already identified in the prior EIR and where mitigation identified in the EIR will still be implemented as part of the Project to reduce the impact to less than significant, no additional environmental evaluation is needed or required, and the “No New Impact” box is checked in the Environmental Checklist. However, some explanation is provided so that it is clear to the reader why “No New Impacts” would be anticipated for the Project. The Checklist issues not evaluated in the prior EIR, such as GHG emissions, are evaluated herein.

2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.

3) Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant new or increased impact, less than significant new or increased impact with mitigation, less than significant new or increased impact, or no new or increased impact. “Potentially Significant New or Increased Impact” is appropriate if there is substantial evidence that an effect may be significant. If there are one or more “Potentially Significant New or Increased Impact” entries when the determination is made, a tiered EIR is required to address those impacts.

4) “Negative Declaration: Less Than Significant New or Increased Impact With Mitigation Incorporated” applies where the incorporation of mitigation measures has reduced an effect from “Potentially Significant New or Increased Impact” to a “Less Than Significant New or Increased Impact.” The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less-than-significant level (mitigation measures from “Earlier Analyses,” as described in (5) below, may be cross-referenced).

5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration (see Item 1 above). Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:

a) Earlier Analysis Used. Identify and state where they are available for review.
b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.

c) Mitigation Measures. Describe the mitigation measures, which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the Project.

6) Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.

7) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.

8) This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.

9) The explanation of each issue should identify:
 a) The significance criteria or threshold, if any, used to evaluate each question; and
 b) The mitigation measure identified, if any, to reduce the impact to less than significance.
4.1 Aesthetics

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. AESTHETICS – Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION

The evaluation below reflects the aesthetics analysis provided in the 2007 CMP EIR. See Section 4.1 of the CMP Draft EIR for the analysis of aesthetic impacts associated with the CMP.

a–d) Potentially significant new or increased impact. The 2007 CMP EIR determined that the impacts of CMP buildout on scenic vistas and scenic resources would be less than significant. The impacts related to visual character and light and glare were determined to be less than significant with identified mitigation measures.

The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus: the Creative Arts replacement building and the concert hall on Block 1, also referred to as the Tapia Triangle, and the student housing/mixed use building on Block 6, located on the south side of Holloway Avenue. Although the proposed uses are included in the CMP building program, the buildings would be substantially taller than contemplated in the 2007 CMP and CMP EIR. Additionally, there is information in the Parkmerced Project EIR (SCH No. 2009052073) (CCSF 2010) about the scenic characteristics of Parkmerced buildings that was not previously available during preparation of the 2007 CMP EIR. Given the above, the pending EIR will evaluate potential aesthetic impacts related to scenic vistas, scenic resources, visual character, and light and glare to determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR.
4.2 Agriculture and Forestry Resources

<table>
<thead>
<tr>
<th>II. AGRICULTURE AND FORESTRY RESOURCES</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Result in the loss of forest land or conversion of forest land to non-forest use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The evaluation below reflects the agricultural analysis provided in the 2007 CMP EIR. See Section 4.13 of the CMP Draft EIR for the analysis of agricultural impacts associated with the CMP.

a–e) No new or increased impact. The campus, which includes the Project site, is in a highly developed urban setting. There are no Williamson Act contracts or land zoned for agricultural purposes on the SF State campus. Additionally, there is no prime farmland or other agricultural land of importance on the SF State campus.
agricultural land, forest, or timber lands are present in the vicinity of the SF State campus. Therefore, no impacts were identified in the 2007 CMP EIR and no new or increased impacts are anticipated with the Project.

4.3 Air Quality

<table>
<thead>
<tr>
<th>III. AIR QUALITY – Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Conflict with or obstruct implementation of the applicable air quality plan?</td>
</tr>
<tr>
<td>b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?</td>
</tr>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?</td>
</tr>
<tr>
<td>d) Expose sensitive receptors to substantial pollutant concentrations?</td>
</tr>
<tr>
<td>e) Create objectionable odors affecting a substantial number of people?</td>
</tr>
</tbody>
</table>

DISCUSSION

The evaluation below reflects the air quality analysis provided in the 2007 CMP EIR. See Section 4.2 of the CMP Draft EIR and Section 3.6 of the CMP Final EIR for the analysis of air quality impacts associated with the CMP.

a–e) Potentially significant new or increased impact. The 2007 CMP EIR determined that the impacts of CMP buildout related to potential conflicts with the applicable air plan and construction emissions of PM$_{10}$ and PM$_{2.5}$ would be less than significant with identified mitigation measures. The impacts related to the exposure of sensitive receptors to substantial pollutant concentrations and objectionable odors were determined to be less than significant.
The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus: the Creative Arts replacement building and the concert hall on Block 1, also referred to as the Tapia Triangle, and the student housing/mixed use building on Block 6, located on the south side of Holloway Avenue. Since the certification of the CMP EIR in 2007, the Bay Area Air Quality Management District (BAAQMD) has updated its Clean Air Plan and CEQA Guidelines and associated emissions-based thresholds (BAAQMD 2010, 2012). Additionally, the California Emissions Estimator Model is the land use and air quality model now in use to estimate construction and operational emissions of proposed projects. Given the above, the pending EIR will evaluate potential air quality impacts of the Project related to conflicts with the current Clean Air Plan, contributions to air quality violations, exposure of sensitive receptors to substantial pollutant concentrations, and creation of objectionable odors to determine whether there may be new or increased impacts compared to those identified in the 2007 CMP EIR.

4.4 Biological Resources

<table>
<thead>
<tr>
<th>IV. BIOLOGICAL RESOURCES – Would the project:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The following project-level evaluation of biological resources impacts of the Project reflects the campus-wide biological resources analysis provided in the 2007 CMP EIR. See Section 4.3 of the CMP Draft EIR and Section 3.7 of the Final EIR for the analysis of biological impacts associated with the CMP. At the time the 2007 CMP EIR was prepared, potential impacts to biological resources on the SF State campus were evaluated based on a review of the available literature regarding the status and known distribution of the special-status species or their habitats on the campus and in the surrounding areas. Additionally, a qualified biologist conducted a survey of the entire campus in 2006 and no special-status species or sensitive habitats were identified.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in biological resource impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) **No new or increased impact.** Based on the results of the literature review and biological survey of the campus conducted in 2006, development anticipated under the 2007 CMP EIR was not expected to result in impacts to special-status plants. No special-status plant species or their habitats were present on the SF State campus in 2006. The Project site is developed with existing housing. Landscaping includes street trees and lawn around the periphery of the site, and landscaped trees, shrubs, and lawn in interior courtyards. No native vegetation or habitats exist on the Project site. Given its developed nature, no special-status plant species or their habitats exist on the Project site. Therefore, no impacts to special-status plant species would occur as a...
result of the Project, as was concluded in the 2007 CMP EIR. No new or increased impacts on special-status plants would occur.

Based on the results of the literature review and biological survey of the campus conducted in 2006, there were no known occurrences of special-status birds or wildlife species, and no evidence of bird nests or nesting activities were observed on the campus. However, Impact BIO-2 in the 2007 CMP EIR indicated that there is low potential that the landscaped habitats on campus provide suitable nesting habitat for special-status birds, and, therefore, such nesting may be occurring on the campus, or may occur in the future. Accordingly, development under the CMP could potentially result in the loss or abandonment of active nests of special-status birds as a result of tree removal or construction-related noise and disturbance, a potentially significant impact. CMP EIR Mitigation BIO-2A would be implemented in conjunction with the Project, which requires preconstruction nesting bird surveys and other measures, if construction occurs during the typical avian nesting season.

Implementation of this mitigation measure would reduce this potentially significant impact related to construction activities to less than significant, as was concluded in the 2007 CMP EIR. Therefore, no new or increased impacts on special-status wildlife would result with implementation of the Project.

b–d) **No new or increased impact.** As indicated in Impact BIO-1 of the 2007 CMP EIR, there were no sensitive habitats or wetlands present on the campus, based on the 2006 biological survey done in support of that EIR. Therefore, development on campus under the CMP would not result in any impacts on wetlands or other sensitive habitats. The Project site is developed, and the only vegetation consists of landscape trees and shrubs. Further, there is no evidence of any wetland features on the Project site, including wetland hydrology or other vegetation typical of wetland features. Therefore, the Project site does not contain wetlands or other sensitive habitats under federal or state regulations, as was concluded in the 2007 CMP EIR. No new or increased impacts to sensitive habitats or wetlands would result with implementation of the Project.

e) **No new or increased impact.** There are no local ordinances or policies of the City that would apply to projects on the SF State campus, as the City does not have jurisdiction over campus lands. The City does have tree protection legislation (CCSF 2012), but it would not apply to the state-owned property on the SF State campus. If the Project would result in tree removal in the City’s right-of-way, SF State would comply with the permitting requirements of the tree protection legislation. Therefore, the Project would not conflict with policies contained in that legislation. Construction of the Project would likely include the removal of all existing on-site trees, but the Project
would replace some trees and provide other planting on the site using native and drought-tolerant species. Therefore, no new or increased impacts related to policies for the protection of biological resources would result with implementation of the Project.

f) **No new or increased impact.** According to the 2007 CMP EIR Impact BIO-3, implementation of the CMP would not conflict with the provisions of an adopted Habitat Conservation Plan, National Community Conservation Plan, or other applicable Habitat Conservation Plan. The campus does not fall within the boundaries of a Habitat Conservation Plan or Natural Communities Conservation Plan, nor is it adjacent to any properties that have an adopted plan. Therefore, no new or increased impact related to conflicts with an adopted plan would result with implementation of the Project.

4.5 Cultural Resources

<table>
<thead>
<tr>
<th>V. CULTURAL RESOURCES – Would the project:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Disturb any human remains, including those interred outside of formal cemeteries?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The project-level evaluation of cultural resource impacts of the Project reflects the campus-wide cultural resources analysis provided in the 2007 CMP EIR. See Section 4.4 of the Campus Master Plan Draft EIR and Section 3.8 of the Final EIR for the analysis of cultural resources impacts associated with the CMP. A historic resources evaluation is underway for the former Parkmerced buildings located on the Project site, and the results will be included in the forthcoming EIR.
The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in cultural resource impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) Potentially significant new or increased impact. The 2007 CMP EIR determined that the impacts of CMP buildout related to historic resources could be significant and unavoidable if CMP EIR Mitigation CULT-2C, requiring documentation of historical resources, would not fully mitigate the effects of demolition of those resources to less than significant. In such cases, CMP EIR Mitigation CULT-2C would reduce the impact to the extent feasible; however, the impact would remain significant and unavoidable.

The Project would involve construction of three buildings on Block 1 and Block 6 in the southern portion of the SF State campus. The existing housing on the two sites, which are former Parkmerced properties, are proposed to be demolished as part of the Project. Since the certification of the CMP EIR in 2007, more is now known about the eligibility of the Parkmerced area as a Historic District. The Parkmerced area is eligible as a Historic District, based on a Historical Resource Evaluation prepared for the Parkmerced area (Page & Turnbull 2009), which included the former Parkmerced properties located on the SF State campus.

Given the above, the pending EIR will evaluate potential historic resource impacts of the Project on the former Parkmerced properties on the campus to determine whether there may be new or increased impacts over and above those identified in the 2007 CMP EIR.

b, d) No new or increased impact. The Project would include demolition of existing residential buildings on Block 1 and Block 6 in the southern portion of the SF State campus. Demolition and construction activities would occur on land that has been previously disturbed in some fashion. Although the Project site is primarily disturbed, portions of the site (e.g., the courtyards) may have received only surficial disturbance. Impacts of the Project include demolition of buildings on these blocks and construction of three new buildings and related facilities. Impacts to archaeological resources and human remains most often occur as a result of excavating or grading on undisturbed land and native soils. Traffic, erosion, vibration, and other activities can also affect the physical integrity of archaeological deposits. Demolition and construction activities would be located mostly on previously disturbed land; however, grading and excavating has some potential for extending into undisturbed native soils. Therefore, there is some potential that such activities could result in the inadvertent
discovery of archaeological resources and human remains. CMP EIR Mitigation CULT-1A, CULT-1B, and CULT-3A through CULT-3D will be implemented to ensure that impacts related to inadvertent discovery of archaeological resources and human remains would be reduced to less than significant (see CMP EIR Impacts CULT-1 and CULT-3), as was concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would result with implementation of the Project.

c) **No new or increased impact.** The Project would result in demolition of existing residential buildings on Block 1 and Block 6, and the excavation of potentially undisturbed sediments during construction of the buildings and related facilities. As a result, the Project could result in adverse impacts to paleontological resources (see 2007 CMP EIR Impact CULT-4). Potential paleontological resources could exist in the Colma Formation that underlies the SF State campus. The Colma Formation underlies the Project site, according to the geotechnical investigation for the Project (Langan Treadwell Rollo 2016).

Implementation of 2007 CMP EIR Mitigation CULT-4A through CULT-4C will ensure that any excavation in undisturbed sediments of the Colma Formation is adequately monitored, and that any discovery of fossils is appropriately evaluated, documented, and curated. Incorporation of these measures would reduce potential impacts to less than significant, as was concluded in the 2007 CMP EIR. Therefore, there would be no new or increased impacts related to paleontological resources with the Project.

The campus does not contain unique geologic resources, according to 2007 CMP EIR, and the Project would not impact such resources. Therefore, there would be no new or increased impacts related to unique geologic resources.

4.6 **Geology and Soils**

<table>
<thead>
<tr>
<th>VI. GEOLOGY AND SOILS – Would the project:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporate</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Potential Impacts and Mitigation

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>ii) Strong seismic ground shaking?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>iii) Seismic-related ground failure, including liquefaction?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>iv) Landslides?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Result in substantial soil erosion or the loss of topsoil?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Discussion

The 2007 CMP EIR considered constructing buildings and related facilities on or adjacent the Project site. The project-level evaluation of geology and soils impacts of the Project reflects the campus-wide geology and soils analysis provided in the 2007 CMP EIR. See Section 4.5 of the CMP Draft EIR for the analysis of geology and soils impacts. Additionally, a Preliminary Geotechnical Evaluation was prepared for Block 1 (Langan Treadwell Rollo 2016).

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in geology and soils impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.
a.i) **No new or increased impact.** Based on the analysis presented in the 2007 CMP EIR (Impact GEO-1) and in the Preliminary Geotechnical Report for Block 1, there are no active or potentially active faults identified on or near the SF State campus. The potential for fault rupture on the campus and Project site is very low. There is no potential for adverse effects related to fault rupture on the campus or Project site, as was concluded in the 2007 CMP EIR. Therefore, no new or increased impacts related to fault rupture would result with the Project.

a.ii–a.iv, c) **No new or increased impact.** According to the 2007 CMP EIR (Impact GEO-1), severe seismic ground shaking and related ground failure is a possibility on the campus and on the Project site. Proximity to the San Andreas, San Gregorio, and Hayward Faults could subject the Project site to strong ground shaking from moderate to large earthquakes. Therefore, the potential for strong ground shaking is high. Strong ground shaking during an earthquake can result in ground failure such as that associated with soil liquefaction, lateral spreading, or differential compaction.

To address these concerns, the SF State campus routinely performs geotechnical investigations to evaluate the potential for liquefaction, settlement, and other types of ground failure at each building site. These reports include recommendations applicable to foundation design, earthwork, and site preparation to minimize or avoid the potential for building damage and injury. The preparation of site-specific geotechnical investigations is in accordance with 2007 CMP EIR Mitigation GEO-1. Implementation of this measure has already been initiated with preparation of a Preliminary Geotechnical Investigation for Block 1. A similar investigation will be prepared for Block 6. The recommendations of these investigations would be implemented during design and construction of the Project. Moreover, design of the Project and all future projects would comply with the California Building Code, which includes specific provisions for structural seismic safety. The Project and all projects on CSU campuses would also be subject to review by the CSU Seismic Review Board. With the continued implementation of Mitigation GEO-1, impacts related to seismic hazards would be less than significant, as was concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur.

b) **No new or increased impact.** Based on the 2007 CMP EIR (Impact GEO-2), development under the CMP would not result in substantial erosion of soils during construction. Activities that would increase erosion include cut and fill, grading, trenching, boring, and removing trees and other vegetation. Demolition of the existing structures on site would include grading and removing trees and other vegetation. Construction of the Project would result in short-term soil-disturbing activities that
could lead to increased erosion due to cut and fill, grading, trenching, boring, and removing trees and other vegetation. However, because the Project is greater than 1 acre, it would be subject to the National Pollutant Discharge Elimination System (NPDES) permit requirements for construction site stormwater discharges, and would comply with those requirements. A Storm Water Pollution Prevention Plan (SWPPP) is required to be prepared and implemented under these requirements, which includes appropriate erosion-control and water-quality-control measures during site preparation, grading, construction, and post-construction. Implementation of the SWPPP for the Project would minimize short-term erosion impacts. Long-term impacts of the Project would not result in substantial erosion, as the soils would be covered by buildings, pavement, vegetation, and landscaping. Overall, the Project would result in less-than-significant impacts related to soil erosion, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would result with implementation of the Project.

d) **No new or increased impact.** Expansive soils are those that possess “shrink/swell” characteristics, and are usually fine-grained clay sediments that expand and contract due to moisture and desiccation. As indicated in the 2007 CMP EIR, the soils beneath the SF State campus are well-drained loams and sandy loams formed on soft sandstone. These types of soils are typically not expansive. As expansive soils have not been identified on the SF State campus in previous geotechnical investigations, no impacts related to expansive soils were identified in the 2007 CMP EIR. Similarly, the Preliminary Geotechnical Investigation for Block 1 revealed no evidence of expansive soils on that site (Langan Treadwell Rollo 2016). Therefore, no new or increased impacts related to expansive soils would result with implementation of the Project.

e) **No new or increased impact.** The Project would not include installation of septic tanks, as the buildings would connect to sewer services. Therefore, the capability of the soils to support the operation of such tanks does not need to be evaluated.

4.7 **Greenhouse Gas Emissions**

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII. GREENHOUSE GAS EMISSIONS – Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>✗</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
DISCUSSION

The CMP EIR, certified in 2007, did not analyze potential campus-wide impacts related to GHG emissions, as Appendix G of the CEQA Guidelines at that time did not address GHG emissions and there were no established thresholds.

a–b) Potentially significant new or increased impact. The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus. The Project would likely result in a net increase in GHG emissions. Therefore, the pending EIR will quantify the net increase in GHG emissions with the Project and determine whether those emissions could have a significant impact on the environment and whether the Project would conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing GHG emissions. The pending EIR will determine whether there may be new impacts related to GHG emissions that were not identified in the 2007 CMP EIR.

4.8 Hazards and Hazardous Materials

<table>
<thead>
<tr>
<th>b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

VIII. HAZARDS AND HAZARDOUS MATERIALS – Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
</tbody>
</table>

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potentially Significant New or Increased Impact</td>
<td>Less Than Significant New or Increased Impact with Mitigation Incorporated</td>
<td>Less Than Significant New or Increased Impact</td>
<td>No New or Increased Impact</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>c) Elicit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The project-level evaluation below reflects the campus-wide hazards and hazardous materials analysis provided in the 2007 CMP EIR. See Section 4.6 of the CMP Draft EIR and Section 3.9 of the CMP Final EIR for the analysis of hazards and hazardous materials impacts associated with the CMP. The evaluation below reflects updated 2016 conditions on the campus and Project site, based on the following:

- A new Environmental Data Resources Radius Map Report prepared for the Project site.
- Review of the list of Hazardous Waste and Substances sites from Department of Toxic Substances Control Envirostor database.
- Review of the list of leaking underground storage tank (LUST) sites by county and fiscal year from the State Water Resources Control Board GeoTracker database.

- Review of the list of solid waste disposal sites identified by the State Water Resources Control Board with waste constituents above hazardous waste levels outside the waste management unit.

- Review of the list of “active” Cease and Desist Orders and Cleanup and Abatement Orders from the State Water Resources Control Board.

- Review of the list of hazardous waste facilities subject to corrective action pursuant to Section 25187.5 of the Health and Safety Code, identified by the Department of Toxic Substances Control.

Dudek reviewed the sites identified in these databases to determine whether the Project site is included on the California Environmental Protection Agency’s hazardous waste and substances sites list (Cortese List). Per question VIII(d), above, sites identified in one of the regulatory databases compiled pursuant to California Government Code Section 65962.5 could potentially present a significant impact. California Government Code Section 65962.5 requires the California Environmental Protection Agency to compile and update the Cortese List. The results of this updated review are presented below.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in hazards and hazardous materials impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a–d) No new or increased impact. Based on the 2007 CMP EIR, the Project would not increase the routine use of hazardous materials, generation of hazardous wastes, or transport of such materials. This impact would be less than significant, as was concluded in the 2007 CMP EIR. Therefore, the Project would not create any new or increased hazards to the public, adjacent schools, or the environment (see CMP EIR Impact HAZ-2).

Based on the information reviewed from the above sources, there were several closed LUST cases on the SF State property. It does not appear that the releases were located within the Project area; however, two of the LUST case tanks could not be specifically

1 Closed files are those that have been determined to be remediated to the satisfaction of the lead public agency. Satisfactory remediation usually involves removal of the underground tanks and any contaminated soil.
located with available information. Although it is unlikely that a diesel underground storage tank was located on the Project site since it has been developed with housing since the 1950s, this cannot be confirmed without additional information.

Although it is possible that the Project site is included on the Cortese List compiled pursuant to California Government Code Section 65962.5, the LUST cases potentially located within the Project area were closed by the lead regulatory agency and are, therefore, unlikely to impact the environmental conditions of the Project area. The site is also not identified on the “Expanded Maher Area” map dated October 2013, which is prepared and updated under Article 22A of the San Francisco Health Code, the Maher Ordinance\(^2\) (CCSF 2014). As a result of the above, the Project would not expose construction workers or campus occupants to contaminated soil or groundwater, and the impact would be less than significant, as was concluded in the 2007 CMP EIR. Therefore, the Project would not create any new or increased hazards related to soil or groundwater contamination (see CMP EIR Impact HAZ-3).

The Project would involve demolition of two-story residential buildings on Block 1 and Block 6, none of which are or have been used as a laboratory (see CMP EIR Impact HAZ-4). However, buildings may contain asbestos building materials, lead-based paint, and/or other regulated materials such as fluorescent lights and electrical ballasts. As indicated in the 2007 CMP EIR, the removal of asbestos-containing building materials is subject to the limitations of the BAAQMD Regulation 11, Rule 2: Hazardous Materials; Asbestos Demolition, Renovation and Manufacturing. Additionally, Section 2.5, Project Approvals, of this document acknowledges the requirements under this Rule.

As indicated in the 2007 CMP EIR, the California OSHA lead standard for construction activities is implemented under Title 8 of the California Code of Regulations. The standard applies to any construction activity that may release lead dust or fumes, including manual scraping, manual sanding, heat gun applications, power tool cleaning, rivet busting, abrasive blasting, welding, cutting, or torch burning of lead-based coatings. Additionally, under California law, fluorescent lamps cannot be disposed of as municipal waste. Fluorescent tubes and bulbs may be managed as universal wastes under Title 22, Chapter 23 of the California Code of Regulations and are typically recycled. The campus would be required to conform

\(^2\) The Maher Ordinance covers areas with current or historical industrial use or zoning, areas within 100 feet of current or historical underground tanks or filled former San Francisco Bay or creek areas, and areas within 150 feet of a current or former elevated highway. Sites and areas covered per the Maher Ordinance are shown as shaded areas on the map at this location: http://www.sfplanning.org/ftp/files/publications_reports/library_of_cartography/Maher%20Map.pdf.
with all applicable regulations related to the removal of asbestos-containing building materials, lead-based paint, and fluorescent lamps. With implementation of these regulations, impacts would be less than significant, as was concluded in the 2007 CMP EIR. Therefore, no new or increased impacts related to the removal and disposal of these materials would result with implementation of the Project.

e-f) No new or increased impact. The campus, which includes the Project site, is not located within 2 miles or within the vicinity of an airport. Therefore, the Project would not result in safety hazards for people residing or working in the Project area.

g) No new or increased impact. According to the 2007 CMP EIR, the Project could impact implementation of the campus’s Emergency Operations Plan (SF State 2014). The Emergency Operations Plan provides guidance for campus activities in case of an emergency. Under current campus policy, contractors must complete work with the least possible obstruction to traffic, and must keep fire hydrants accessible at all times. To ensure that the demolition of buildings on Block 1 and Block 6 and Project construction would not interfere physically with the campus’ Emergency Operations Plan, the Project would be required to implement CMP EIR Mitigation HAZ-5A. Additionally, to ensure that new Project buildings have an adequate Emergency Operations Plan, the Project would be required to implement CMP EIR Mitigation HAZ-5B. Implementation of these mitigation measures would reduce impacts related to interference with emergency response plans to less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would result with implementation of the Project.

h) No new or increased impact. The SF State campus, including the Project site, is not on or adjacent to wildlands. Therefore, no impacts would result related to exposure to wildland fire hazards.
4.9 Hydrology and Water Quality

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX. HYDROLOGY AND WATER QUALITY – Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>f) Otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>j) Inundation by seiche, tsunami, or mudflow?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>
DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The project-level evaluation below reflects the campus-wide hydrology and water quality analysis provided in the 2007 CMP EIR. See Section 4.7 of the CMP Draft EIR and Section 3.10 of the CMP Final EIR for the analysis of hydrology and water quality impacts associated with the CMP. The evaluation below also reflects site-specific conditions on the Project site.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in hydrology or water quality impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) **No new or increased impact.** The Project would result in an increase in the discharge of wastewater from on-site restrooms and showers, but would not have an effect on wastewater quality. Therefore, Project-related wastewater flows would not have an adverse effect on the City’s Wastewater Treatment Facility or the waste discharge requirements under which the City’s Wastewater Treatment Facility currently operates, as was concluded in the 2007 CMP EIR (Impact HYDRO-3). Therefore, no new or increased impacts would result with the Project.

b) **No new or increased impact.** According to 2007 CMP EIR Impact HYDRO-2, development under the CMP would not adversely affect groundwater. There are no operating or abandoned groundwater wells on campus. The campus does not directly draw groundwater from the Westside Groundwater Basin and does not plan to in the future. Therefore, the Project would not affect the groundwater basin through withdrawal of groundwater.

The San Francisco Public Utilities Commission is proposing the San Francisco Groundwater Supply Project to provide an average of up to 4 million gallons per day of groundwater to augment San Francisco’s municipal water supply. The Groundwater Supply Project, which involves construction of six groundwater production wells and related facilities in two phases, is expected to be completed in fall 2017. One of the proposed well sites is at the Lake Merced Pump Station, which is on Lake Merced Boulevard near Higuera Avenue, less than 0.25 mile from the Project site.

The Project would connect to existing water and combined sewer services adjacent the site. Compatibility with the City’s Stormwater Management Requirements and Design
Guidelines (CCSF 2016) would result in implementation of stormwater measures such that the post-Project site would reduce the existing stormwater runoff flow rate and volume by 25% for a 2-year, 24-hour event, as compared to pre-Project conditions. To achieve this design standard, the Project would implement and install appropriate stormwater management systems that retain runoff on site, promote stormwater reuse, and limit site discharges. Using these design standards and implementing such measures would provide for continued infiltration of stormwater into the groundwater basin. Therefore, no new or increased impacts related to groundwater would result with implementation of the Project.

c-f) **No new or increased impact.** As the campus contains no surface water bodies, the CMP, including the Project, would not have the potential to directly alter or otherwise affect any surface water features in the Project area; therefore, the Project would not result in erosion, siltation, flooding, or exceedance of storm drainage capacity associated with such alterations (Impacts HYDRO-1 and HYDRO-3).

Construction. Construction of the Project would result in short-term soil-disturbing activities that could lead to increased erosion and sedimentation. However, the Project would comply with the NPDES requirements for construction site stormwater discharges because the Project site is greater than 1 acre. A SWPPP is required to be prepared and implemented under these requirements, which includes appropriate erosion-control and water-quality-control measures during site preparation, grading, construction, and post-construction. Implementation of the SWPPP for the Project would minimize erosion and related impacts on water quality to less than significant, as was concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with implementation of the Project.

Operation. The San Francisco Public Utilities Commission wastewater collection system collects both sewage and stormwater runoff in a combined system. At the time that the 2007 CMP EIR was prepared, the City indicated that, although sewer lines adjacent to the campus may be able to accommodate the CMP’s increase in dry-weather flows, these sewer lines may not be able to accommodate potential increases in wet-weather flows, which could cause flooding of the combined system on campus or in nearby neighborhoods (URS 2007). To assess the potential for impacts on the combined system due to the Project, site-specific stormwater and sewer discharge were evaluated, as further described below.

The Project would be located in a City combined stormwater and sewer area. To minimize impacts of the Project on the combined sewer system, SF State would implement a stormwater management approach compatible with the City’s Stormwater

Creative Arts & Holloway Mixed-Use Project
Management Requirements and Design Guidelines (CCSF 2016). The Project site has an impervious area greater than 50%. Accordingly, the Project would implement a stormwater management approach that reduces the existing stormwater runoff flow rate and volume by 25% for a 2-year, 24-hour design storm. To achieve this design standard, the Project would implement and install appropriate stormwater management systems that retain runoff on site, promote stormwater reuse, and limit site discharges entering the combined sewer collection system. This, in turn, would limit the incremental demand on the collection system and wastewater facilities resulting from stormwater discharges, and minimize the need for upsizing or constructing new facilities.

By using these design criteria, the Project would exceed the requirements of the 2007 CMP, which called for no-net-increase in storm flow discharge from the campus to the combined sewer system. The stormwater management plan for the Project would be designed consistent with LEED credit SS 6.1 (as described by the U.S. Green Building Council), and would be compatible with the City’s Stormwater Management Requirements and Design Guidelines (CCSF 2016), as noted above.

In general, the City’s combined sewer lines are sized based on stormwater runoff because these flows greatly exceed sanitary waste flows. Based on Project stormwater discharges being reduced by 25% compared to existing conditions, and the minimal increase in Project sanitary sewer discharge, the Project would not have a significant impact on the capacity of the City’s combined sewer system. The impact is, therefore, less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with the Project. The Parkmerced Project EIR also concluded that, with all the cumulative projects considered in that document, including the SF State 2007 CMP, impacts related to wastewater conveyance and treatment would be less than significant (CCSF 2010).

Additionally, given the use of low-impact-design approaches for the stormwater management system, and the anticipated increased infiltration, operation of the proposed Project would not substantially degrade water quality.

g–j) No new or increased impact. The Project site is located in an area that is not within a 100-year flood zone or in an area that would be inundated in the event of a dam failure. The campus is also located outside the area that is projected to experience inundation during a tsunami event (see CMP EIR Impact HYDRO-3). No impacts are anticipated, as concluded in the 2007 CMP EIR.
4.10 Land Use and Planning

<table>
<thead>
<tr>
<th>LAND USE AND PLANNING – Would the project:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Physically divide an established community?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The Project-level evaluation below reflects the campus-wide land use and planning analysis provided in the 2007 CMP EIR. See Section 4.8 of the CMP Draft EIR and Section 3.11 of the CMP Final EIR for the analysis of land use impacts associated with the CMP. The evaluation below also reflects site-specific conditions on the Project site.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in land use impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) **No new or increased impact.** Based on the 2007 CMP EIR Impact LU-1, implementation of the CMP would not physically divide an established community, as planned growth and development would occur on the existing campus, which is already developed. The Project, located on existing campus lands, would not physically divide an established community, and the impact would be less than significant, as concluded in the 2007 CMP EIR. No new or increased impact would occur with the Project.

b–c) **No new or increased impact.** The CSU system is the only agency with land use jurisdiction over campus projects and campus development. The adopted CMP is the applicable campus land use plan. Thus, campus development that is consistent with the
adopted CMP would not have land use impacts (see CMP EIR Impact LU-2). The Project, including the Master Plan revision, contributes to the CMP vision to create a prominent gateway and main street atmosphere for the campus on Holloway Avenue. Moreover, it combines several similar academic uses to achieve the objectives of the campus. Upon consideration and approval of the Project by the Trustees and the approval of revisions to the Master Plan map by the Trustees, the Project would fully conform with the adopted CMP. Additionally, there are no habitat conservation plans that apply to the campus or the Project site. Therefore, no new or increased impacts related to conflicts with adopted plans or policies would occur.

4.11 Mineral Resources

| XI. MINERAL RESOURCES – Would the project: |
|---|---|---|---|---|
| a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state? | Potentially Significant New or Increased Impact | Less Than Significant New or Increased Impact with Mitigation Incorporated | Less Than Significant New or Increased Impact | No New or Increased Impact |
| b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan? | Potentially Significant New or Increased Impact | Less Than Significant New or Increased Impact with Mitigation Incorporated | Less Than Significant New or Increased Impact | No New or Increased Impact |

DISCUSSION

The evaluation below reflects the mineral resources analysis provided in the 2007 CMP EIR. See Section 4.13 of the CMP Draft EIR for the analysis of mineral resources impacts associated with the CMP.

a–b) **No new or increased impact.** The Project would not result in the loss of availability of mineral resources, because CMP development, including the Project, would occur within a developed urban area. There are no available mineral resources in the Project area. Therefore, no new or increased impacts would result from the Project.
4.12 Noise

<table>
<thead>
<tr>
<th>XII. NOISE – Would the project result in:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on the Project site. The evaluation below reflects the campus-wide noise analysis provided in the 2007 CMP EIR. See Section 4.9 of the CMP Draft EIR for the analysis of noise impacts associated with the CMP. The evaluation below also reflects site-specific conditions on and adjacent to Project site.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in noise impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.
a, c) **No new or increased impact.** The 2007 CMP EIR concluded that the increase in vehicular traffic due to campus growth would not result in a noticeable increase in permanent ambient noise levels (Impact NOIS-2). Operation of the concert hall, Creative Arts replacement building, and student housing/mixed-use building would not be expected to substantially increase campus-related traffic, and, therefore, would not result in a substantial permanent increase in ambient noise along vicinity roadways.

Operation of the Creative Arts replacement building, concert hall, and student housing/mixed-use building would result in typical noise levels associated with routine activities such as use of landscape maintenance equipment, mechanical equipment, vehicle and bicycle parking activities, and pedestrian activity. Most of these activities currently exist on and adjacent to the Project site associated with current site uses. The new concert hall may result in an increase in event activity, but the activities would be similar to those existing elsewhere on campus at other theater venues. Events involving indoor public address systems would be temporary and short-term, and would be held inside buildings. This type of indoor noise is anticipated to be attenuated within the buildings. No outdoor public address systems would be installed with the Project. Overall, permanent operational noise would not result in a substantial permanent increase in ambient noise levels in the Project vicinity. The impact is less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with implementation of the Project.

b) **No new or increased impact.** According to 2007 CMP EIR Impact NOIS-1, typical construction activities using conventional construction techniques and equipment would not generate excessive ground vibration or groundborne noise. Pile driving, blasting, and other special construction techniques, which typically cause ground vibration and groundborne noise, would not be used for demolition or construction of facilities identified under the CMP. Impacts related to ground vibration and groundborne noise during construction are anticipated to be less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur.

d) **No new or increased impact.** According to CMP EIR Impact NOIS-1, construction of campus facilities under the CMP could expose nearby sensitive receptors to substantial noise. At distances of 100 feet or more from the construction activity, noise from on-campus construction is predicted to be below the identified significance criterion of 80 A-weighted decibels maximum measured sound level during daytime hours (between 7 a.m. and 8 p.m.). However, if a construction site were less than 100 feet from a nearby receptor, the noise levels from certain construction activities could exceed the identified significance criterion.
There are sensitive receptors located within 100 feet of both Block 1 and Block 6, the distance at which construction noise could be potentially significant. These receptors include on-campus academic buildings north and east of Block 1 and north of Block 6, and on- and off-campus residential uses in University Park South and in the adjacent Parkmerced.

Implementation of CMP EIR Mitigation NOIS-1 would control construction noise and reduce the potential impacts to less than significant at most locations and under most conditions. Mitigation NOIS-1 would be implemented in conjunction with Project construction and would control construction noise at sensitive receptor locations surrounding the Project site to the extent practicable and feasible, and would reduce the potential impact at most locations to less than significant. However, there could potentially be some Project construction activities where the noise levels would not be reduced to levels below the thresholds, even with the recommended mitigation. Therefore, conservatively, the impact would be significant and unavoidable, as concluded in the 2007 CMP EIR, and no new or increased impacts would occur. As part of the Trustees’ certification of the CMP EIR in November 2007, Findings of Fact were adopted that provide a statement of overriding considerations for this impact, as required under CEQA.

e–f) No new or increased impact. The SF State campus is not located within an airport land use plan or within 2 miles of a public airport or private airstrip. No impact would occur.

4.13 Population and Housing

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIII. POPULATION AND HOUSING – Would the project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>
DISCUSSION

The evaluation below reflects the population analysis provided in the 2007 CMP EIR. See Section 4.10 of the CMP Draft EIR and Section 3.12 of the CMP Final EIR for the analysis of population and housing impacts associated with the CMP.

a) **No new or increased impact.** The Project would not directly or indirectly induce substantial population growth. Although the Project would include new academic space, SF State is at or near the adopted enrollment cap of 25,000 FTE for the campus and, therefore, cannot add new students with the Project (SF State 2015). The Project also would not result in the hiring of substantial new employees (see CMP EIR Impact POP-1). The impact is less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with the Project.

b–c) **No new or increased impact.** The existing residential block on the south side of Holloway Avenue between Varela and Cardenas Avenues (Block 6) contains 27 residential units that would be demolished and replaced with a multi-story building. The existing residential block at Tapia Triangle (Block 1) contains 27 residential units that would be demolished and replaced with the Creative Arts replacement building and the concert hall. As illustrated in Table 1, accounting for the loss of existing housing units on the two parcels, the net increase in housing would be 360 beds.

All 27 units in Block 6 are currently occupied by students and licensed as bed space during the academic year. Of the 27 apartments in Block 1, 19 are currently licensed to students as bed space during the academic year. Approximately eight units are currently licensed as apartments to SF State affiliates and non-affiliates. Because the number of displaced units occupied by non-University affiliates is small compared to the projected increase in housing in San Francisco and the Bay Area, this displacement would not necessitate construction of replacement housing elsewhere, and the impact would be less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur with the Project.

Additionally, given that the Project would demolish existing housing, SF State would comply with the California Relocation Assistance Act (California Government Code 7260 et seq.), which applies to state entities that may displace residents and businesses. This act generally requires that public entities provide relocation assistance to people who are displaced as the result of the acquisition of property for a public use. Since the acquisition of University Park South by SF State, the number of legacy tenants has declined substantially. Any remaining legacy tenants would be offered relocation assistance, as required by law. SF State would provide displaced non-University affiliates...
with the option to relocate to units in other campus housing. Given the option to relocate to housing elsewhere on campus, the proposed demolition of existing housing with the Project would not result in the displacement of substantial numbers of people.

4.14 Public Services

<table>
<thead>
<tr>
<th>XIV. PUBLIC SERVICES</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>Police protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>Schools?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>Parks?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>Other public facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on or adjacent to the Project site. The evaluation below reflects the public services analysis provided in the 2007 CMP EIR. See Section 4.12 of the CMP Draft EIR for the analysis of public services impacts associated with the CMP. The evaluation also reflects site-specific conditions on and adjacent to the Project site, as relevant.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in public services impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a) **No new or increased impact.** The 2007 CMP EIR did not identify any significant impacts related to public services associated with growth and development of the campus. According to CMP EIR Impact UTL-4, construction of new or physically altered fire protection facilities would not be required to serve buildout under the CMP. Although a new, expanded SF State Police Station may be required with buildout under the CMP, the
impacts of construction of the new facility would be reduced to less than significant with implementation of mitigation measures identified in the 2007 CMP EIR. The Project would not result in substantial school, park, or other public facilities impacts (see CMP EIR Impact UTL-5). There are no Project-specific conditions that would modify these conclusions. Therefore, no new or increased impacts would result with implementation of the Project.

4.15 Recreation

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XV. RECREATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on and adjacent to the Project site. The evaluation below reflects the recreation analysis provided in the 2007 CMP EIR. See Section 4.12 of the CMP Draft EIR for the analysis of recreational services impacts associated with the CMP. The evaluation below also reflects site-specific conditions on and adjacent to the Project site, as relevant.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in recreation impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.

a–b) **No new or increased impact.** Implementation of the CMP would not result in a significant use of off-campus parks or recreational facilities, given the presence of existing and planned recreational facilities on campus (see CMP EIR Impact UTL-5).
Thus, no new or increased impacts on off-campus parks and recreational facilities would result with the Project.

4.16 Transportation and Traffic

<table>
<thead>
<tr>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XVI. TRANSPORTATION/TRAFFIC – Would the project:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Result in inadequate emergency access?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on and adjacent to the Project site. The evaluation below reflects the campus-wide transportation analysis provided in the 2007 CMP EIR. See Section 4.11 of the CMP Draft EIR and Section 3.13 of the CMP Final EIR for the analysis of traffic, circulation, and parking impacts associated with the CMP.
transportation analysis is being prepared for the Project, and the results of this analysis will be included in the forthcoming EIR.

a–e) Potentially new or increased impact. The 2007 CMP and the subsequent adopted TDM Program (Nelson/Nygaard 2009) indicates that it is the campus's objective to continue to grow and develop, as proposed under the CMP, while minimizing the transportation impacts of the increase in enrolled students and employees. More specifically, the TDM plan outlines a program that would minimize the daily AM and PM peak-period vehicle trips to the campus. The 2007 CMP EIR indicated that the combined effect of the baseline TDM, parking, transit, and housing programs of the CMP would likely be to maintain campus-related auto traffic levels at their then-current (2006) rates through 2020. The 2007 CMP EIR considered this no-net-increase in vehicle trips scenario in a traffic analysis that also provided a more conservative traffic scenario that estimated trip generation from proposed campus growth more traditionally. The more conservative analysis indicated that campus growth could potentially result in significant traffic-related impacts on vicinity roadways. To address these potential impacts, the campus is implementing CMP EIR Mitigation TRA-1, which required the campus to conduct a new baseline cordon survey, completed in 2008. Subsequent cordon surveys are required every 3 years and no later than the addition of each 1,000 students in head count enrollment. If vehicle trips increase over the base year, various measures, including increasing the frequency of cordon surveys and increasing TDM programs, are called for. The most recent cordon survey, conducted in 2016, revealed that daily and peak-hour campus-related vehicle trips have decreased since the 2008 base year (Nelson/Nygaard 2016).

The Project would involve construction of three buildings on two sites in the southern portion of the SF State campus: the Creative Arts replacement building and the concert hall on Block 1, also referred to as the Tapia Triangle, and the student housing/mixed-use building on Block 6, located on the south side of Holloway Avenue. The forthcoming EIR will estimate trip generation associated with Project vehicle and transit trips, and evaluate transportation hazards, emergency access, and conflicts with adopted transportation policies to determine whether the Project could result in new or increased impacts over and above those identified in the 2007 CMP EIR.
Utilities and Service Systems

<table>
<thead>
<tr>
<th>XVII. UTILITIES AND SERVICE SYSTEMS – Would the project:</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>e) Result in a determination by the wastewater treatment provider, which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>f) Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>g) Comply with federal, state, and local statutes and regulations related to solid waste?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

DISCUSSION

The 2007 CMP EIR considered building and related facility construction on and adjacent to the Project site. The evaluation below reflects the campus-wide utilities analysis provided in the 2007 CMP EIR. See Section 4.12 of the CMP Draft EIR for the analysis of utilities and impacts associated with the CMP. The evaluation below also reflects site-specific conditions where relevant.

The Master Plan revision described in Section 2, resulting in the renaming and/or relocation of Project elements, would not result in utilities impacts over those previously described in the 2007 CMP EIR. Project-level analysis of future projects on the adjacent West Campus Green, which are considered in the Master Plan map revision, would be conducted at the time that future projects on that site are proposed for development.
Creative Arts & Holloway Mixed-Use Project

a) **No new or increased impact.** Refer to Section 4.9, Hydrology and Water Quality.

b–e) **No new or increased impact.** The Project would not result in any new significant utility impacts (see CMP EIR Impact UTL-1 and CMP EIR Impact UTL-2). The uses proposed on the Project site would incrementally increase the campus’s demand for water and generation of wastewater. The use of bathrooms and other fixtures would require water and would generate wastewater. The Project would result in a net increase in potable water demand and wastewater generation over current residential uses on the Project site. The Project would result in an increase in potable water use of approximately 32,100 gallons per day (gpd) on typical days, and up to approximately 44,100 gpd on performance days when the concert hall would be in use. The Project would generate approximately 30,500 gpd of wastewater on typical days and up to approximately 41,900 gpd on performance days. The Project’s water use would not result in the need for off-campus water supply distribution system improvements or new water entitlements. The Project wastewater generation would not require off-campus improvements to the combined sewer system (see Section 4.9, Hydrology and Water Quality, for additional information). The impacts would be less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur.

d–g) **No new or increased impact.** The 2007 CMP EIR evaluated construction of the Project and demolition of existing buildings that are at or beyond their useful life. CMP EIR Impact UTL-5 concluded that the demolition of existing structures would not result in solid waste impacts. According to Impact UTL-5, solid waste from the campus would be directed to a landfill that has remaining capacity beyond the planning horizon for the CMP, and the impact was identified as less than significant. Therefore, as the Project would comply with applicable regulations related to solid waste and would be served by a landfill with sufficient remaining capacity, the Project would result in less-than-significant impacts related to solid waste, as concluded in the 2007 CMP EIR. Further, the residual concrete from the demolition would be recycled to minimize solid waste directed to the landfill. Therefore, no new or increased impacts would result with implementation of the Project.
4.18 Mandatory Findings of Significance

<table>
<thead>
<tr>
<th>XVIII. MANDATORY FINDINGS OF SIGNIFICANCE</th>
<th>Potentially Significant New or Increased Impact</th>
<th>Less Than Significant New or Increased Impact with Mitigation Incorporated</th>
<th>Less Than Significant New or Increased Impact</th>
<th>No New or Increased Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION

a) Potentially significant new or increased impact. The Project would not substantially reduce habitat of fish or wildlife species or other special-status species, as the SF State campus constitutes a built environment. There are no sensitive habitats or wetlands located on campus, and no special-status species are known to occupy the campus. However, special-status birds could potentially nest in trees on campus. Because some or all of the landscape trees on the Project site would be removed, the Project would implement CMP EIR Mitigation BIO-2A, which requires preconstruction nesting bird surveys and other measures if demolition or construction occurs during the typical avian nesting season (see CMP EIR Impact BIO-2). Implementation of this mitigation measure would reduce the potential impact on nesting habitats of special-status birds to less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts would occur.
Although it is not anticipated that new archaeological resources or human remains would be encountered, CMP EIR Mitigation CULT-1A, CULT-1B, and CULT-3A through CULT-3D would be implemented to ensure that impacts related to inadvertent discovery of archaeological resources and human remains would be reduced to less than significant, as concluded in the 2007 CMP EIR. Therefore, no new or increased impacts related to archaeological resources would occur.

The 2007 CMP EIR determined that the impacts of CMP buildout related to historic resources could be significant and unavoidable if CMP EIR Mitigation CULT-2C, requiring documentation of historical resources, would not fully mitigate the effects of demolition of those resources to less than significant. In such cases, CMP EIR Mitigation CULT-2C would reduce the impact to the extent feasible; however, the impact would remain significant and unavoidable. Since the certification of the CMP EIR in 2007, more is now known about the eligibility of the Parkmerced area as a Historic District, which included the former Parkmerced properties located on the SF State campus. The forthcoming EIR will evaluate potential historic resource impacts of the Project and reasonably foreseeable cumulative development on the former Parkmerced properties on and adjacent to the campus to determine whether there may be new or increased historic resource impacts over and above those identified in the 2007 CMP EIR.

b) Potentially significant new or increased impact. The 2007 CMP EIR evaluated the cumulative effects associated with growth and development under the CMP. See Chapter 4, Environmental Setting, Impacts, and Mitigation Measures, of the 2007 CMP EIR for the evaluation of cumulative impacts. In general, the cumulative effects associated with the Project have already been analyzed and assessed as part of the 2007 CMP EIR, and no new or increased impacts are anticipated with the Project in most impact categories. However, cumulative impacts associated with reasonably foreseeable cumulative development will be updated and reassessed, as relevant and necessary, for the topics that will be carried into the forthcoming EIR, including aesthetics, air quality, GHG emissions, historical resources, and transportation/traffic, to determine whether new or increased cumulative impacts would result with the Project.

c) Potentially significant new or increased impact. The Project would not result in new or increased hazards to humans related to exposure to contaminated soils or groundwater, emergency response, or proximity to airport activities. The forthcoming EIR will determine whether new or increased impacts to humans would result with the Project as a result of construction emissions and/or transportation hazards.
INTENTIONALLY LEFT BLANK
5 REFERENCES AND PREPARERS

5.1 References Cited

California Government Code, Sections 65962.5. Cortese List.

Nelson/Nygaard. 2016. San Francisco State University 2016 Transportation Survey Results.

Creative Arts & Holloway Mixed-Use Project

5.2 List of Preparers

5.2.1 Lead Agency

California State University Board of Trustees

5.2.2 San Francisco State University

Ronald Cortez
Vice President for Administration and Finance

Thomas E. Lollini
Senior Associate Vice President, Physical Planning and Development

Simon Y. Lam
Associate Vice President, Capital Planning, Design and Construction

Wendy Bloom
Director of Campus Planning, Capital Planning, Design, and Construction

Jill Anthes
Interim Executive Director, Community Planning and Design, Physical Planning and Development

Brad Samuelson
Provost & Pritchard Consulting Group
5.2.3 Dudek – CEQA Consultant Team

Dudek – CEQA Consultant

Ann Sansevero, AICP
Principal and Project Manager

Anais Schenk
Environmental and Transportation Planner

Matthew Morales
Technical Resource Specialist

Rachel Strobridge
GIS Technician

Fehr & Peers – Traffic Subconsultant

Matt Goyne, PE
Associate, Fehr & Peers

Ingrid Ballus Armet
Transportation Engineer/Planner, Fehr & Peers

Page & Turnbull – Historic Resources Subconsultant

Christina Dikas
Associate/Senior Architectural Historian, Page & Turnbull
Project Location

Creative Arts & Holloway-Mixed Use Project

FIGURE 2
Project Location

SOURCE: USGS 7.5-Minute Series San Francisco South Quadrangle
Project Setting
Creative Arts & Holloway-Mixed Use Project

FIGURE 3
Project Setting
INTENTIONALLY LEFT BLANK
APPENDIX A

2007 Campus Master Plan EIR Mitigation Measures that Apply to the Project
3.1 Biological Resources

| BIO-2A | If Project construction on campus is scheduled during the typical avian nesting season (February 15 to July 31), each work site (including access routes) and the areas within 150 feet of the work site shall be surveyed by a qualified biologist for the presence of migratory and/or special-status nesting birds. Surveys shall be conducted at each work site within two weeks prior to the commencement of ground disturbing activities. Work sites include tree-removal areas and/or any construction sites on campus. If nesting birds were found to be present, a 150-foot buffer zone shall be established around the perimeter of the nest substrate (tree, shrub, herb, etc.) and clearly marked with “environmentally sensitive area” fencing. Construction or any related activities shall not be conducted within those areas until all observed nesting activities are completed. A qualified biologist shall determine nesting status. Pre-construction surveys would not be required if Project construction is scheduled outside the typical avian nesting season (August 1–February 15). |

3.5 Cultural Resources

| CULT-1A: | During the planning and environmental review of specific development projects under the proposed Campus Master Plan, the campus shall follow the following protocol: |
| - If the project site is within 200 feet of archaeological site P-38-000025/CA-SFR-25, the campus shall conduct subsurface testing in order to determine whether buried archaeological materials are present and if so the extent of the deposit relative to the project’s area of disturbance. In the event that an archaeological resource is encountered during subsurface testing, the campus shall implement Mitigation CULT-1B. No surveys or subsurface testing is necessary at project sites in the rest of the campus. |
| - The campus shall include a standard inadvertent discovery clause in every construction contract, which requires that in the event that an archaeological resource is discovered during construction (whether or not an archaeologist is present), all soil disturbing work within 100 feet of the find shall cease, and the campus shall implement Mitigation CULT-1B below. |
APPENDIX A (Continued)

CULT-1B: For an archaeological site that is encountered during the subsurface testing or during construction, the campus shall:

- Retain a qualified archaeologist to determine whether the resource qualifies as a historical resource or a unique archaeological resource.
- If the resource is determined to be a historical resource or a unique archaeological resource, the qualified archaeologist, in consultation with the campus, shall prepare a research design and archaeological data recovery plan for the recovery that will capture those categories of data for which the site is significant, and implement the data recovery plan prior to or during development of the site. The archaeologist shall also perform appropriate technical analyses, prepare a full written report and file it with the appropriate information center, and provide for the permanent curation of recovered materials.

CULT-2C: For a structure or building that has been determined by a qualified architectural historian to qualify as a historical resource, and where avoidance is not feasible, documentation and treatment shall be carried out as described below:

- If the building or structure can be preserved on site, but remodeling, renovation or other alterations are required, this work shall be conducted in compliance with the “Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings” (Weeks and Grimmer 1995).
- If a significant historic building or structure is proposed for major alteration or renovation, or to be moved and/or demolished, the campus shall ensure that a qualified architectural historian thoroughly documents the building and associated landscaping and setting. Documentation shall include still and video photography and a written documentary record of the building to the standards of the Historic American Building Survey (HABS) or Historic American Engineering Record (HAER), including accurate scaled mapping, architectural descriptions, and scaled architectural plans, if available. A copy of the record shall be deposited with the SF State Library. The record shall be accompanied by a report containing site-specific history and appropriate contextual information. This information shall be gathered through site specific and comparative archival research, and oral history collection as appropriate.
- If preservation and reuse at the site are not feasible, the historical building shall be documented as described in item (ii) and, when physically and financially feasible, be moved and preserved or reused.
If, in the opinion of the qualified architectural historian, the nature and significance of the building is such that its demolition or destruction cannot be fully mitigated through documentation, the campus shall reconsider project plans in light of the high value of the resource, and implement more substantial modifications to the proposed project that would allow the structure to be preserved intact. These could include project redesign, relocation or abandonment.

CULT-3A: The campus shall implement Mitigation CULT-1 to minimize the potential for disturbance or destruction of human remains in an archaeological context and to preserve them in place, if feasible.

CULT-3B: The campus shall provide a representative of the local Native American community an opportunity to monitor any excavation (including archaeological excavation) within the boundaries of a known Native American archaeological site.

CULT-3C: In the event of a discovery on campus of human bone, suspected human bone, or a burial, all excavation in the vicinity will halt immediately and the area of the find will be protected until a qualified archaeologist determines whether the bone is human. If the qualified archaeologist determines the bone is human, or if a qualified archaeologist is not present, the campus will notify the County of San Francisco Medical Examiner of the find before additional disturbance occurs. Consistent with California Health and Safety Code § 7050.5(b), which prohibits disturbance of human remains uncovered by excavation until the Coroner has made a finding relative to PRC 5097 procedures, the campus will ensure that the remains and vicinity of the find are protected against further disturbance. If it is determined that the find is of Native American origin, the campus will comply with the provisions of PRC § 5097.98 regarding identification and involvement of the Native American Most Likely Descendant (MLD).

CULT-3D: If human remains cannot be left in place, the campus shall ensure that the qualified archaeologist and the MLD are provided an opportunity to confer on archaeological treatment of human remains, and that appropriate studies, as identified through this consultation, are carried out prior to reinternment. The campus shall provide results of all such studies to the local Native American community, and shall provide an opportunity of local Native American involvement in any interpretative reporting. As stipulated by the provisions of the California Native American Graves Protection and Repatriation Act, the campus shall ensure that human remains and associated artifacts recovered from campus projects on state lands are repatriated to the appropriate local tribal group if requested.
CULT-4A: Prior to construction, a qualified paleontologist shall be consulted regarding the likelihood of encountering significant fossils on a given construction site. If the paleontologist determines fossils may be present, a paleontologic monitor shall be present at each excavation that penetrates potentially fossiliferous undisturbed native soil of the Colma Formation that has been identified by the paleontologist as moderately to highly sensitive.

CULT-4B: If a monitor is not required, contractors shall be notified that they are required to watch for potential paleontological resources and must notify the campus if paleontological resources are found.

CULT-4C: If paleontological resources are discovered, all soil disturbing work shall cease within 100 feet of the location. The resources shall be evaluated by a qualified paleontologist who will determine the resource’s potential scientific significance. If the find is determined to be significant, or potentially significant, a qualified paleontologist shall design and carry out data recovery consistent with the Standards of the Society of Vertebrate Paleontologists. Adequate recordation and recovery would include, at a minimum, the following:

- Development of site-specific environment and contextual information regarding the particular resource.
- Archival research and review of other studies in the area.
- Accurate recordation and excavation of the noted resources.
- In the event that a major significant find is uncovered, prior to excavating the significant resource, the campus shall ensure that an appropriate museum or scientific repository is selected for curation of the recovered materials.

3.6 Geological Resources

GEO-1: Where existing geotechnical information is not adequate, detailed geotechnical investigations shall be performed for areas that will support buildings or foundations. Such investigations for building or foundation projects located in the valley portion of the SF State campus will comply with the California Geological Survey’s Guidelines for Evaluating and Mitigating Seismic Hazards in California (Special Publication 117), which specifically address the mitigation of liquefaction and landslide hazards in designated Seismic Hazard Zones (CGS, 1997). All recommendations of the geotechnical investigations will be incorporated into Project designs.

3.8 Hazards and Hazardous Materials

HAZ-5B: New building and/or department-specific Emergency Operations Plans shall be developed for any new development project.
3.12 Noise

NOIS-1: The campus shall include the following noise control measures in all construction contracts for construction projects that are within 100 feet of a sensitive receptor:

- Construction equipment used on campus is properly maintained and has been outfitted with feasible noise-reduction devices to minimize construction-generated noise.
- Stationary noise sources such as generators or pumps are located at least 100 feet away from noise-sensitive land uses as feasible.
- Laydown and construction vehicle staging areas are located at least 100 feet away from noise-sensitive land uses.
- Whenever possible, academic, administrative, and residential areas that will be subject to construction noise will be informed in writing at least a week before the start of each construction project.
- Loud construction activity (i.e., construction activity such as jackhammering, concrete sawing, asphalt removal, and large-scale grading operations) within 100 feet of a residential or academic building shall not be scheduled during finals week.
- Loud construction activity as described above within 100 feet of an academic use shall, to the extent feasible, be scheduled during weekends, holidays, Thanksgiving break, Christmas break, Spring break, or Summer break.
- Loud construction activity within 500 feet of a residential building shall be restricted to the hours between 7:30 AM and 7:30 PM, Monday through Saturday.
January 28, 2011

Mr. Ron Miguel, President
San Francisco Planning Commission
Attn: Jonas Ionin, Acting Commission Secretary
1650 Mission Street, Suite 400
San Francisco, CA 94103

Submitted via email: jonas.ionin@sfgov.org

Re: Parkmerced Project (SFPD File No. 2008.0021E)

Dear Commissioner Miguel,

As the San Francisco Planning Commission meets to consider the environmental and planning impacts of the proposed Parkmerced Project, the historic preservation community remains deeply concerned about the destructive impact of the Project on the Parkmerced Historic District.

Parkmerced was determined eligible for the National Register of Historic Places and the California Register of Historical Resources as a significant example of planned residential development in San Francisco and the work of master landscape architect Thomas Dollier Church and his celebrated colleague Robert Royston. According to the Cultural Landscape Foundation, Parkmerced is one of only four remaining examples of large-scale, pre- and post-World War II residential developments in the country and is without question of national significance. The Foundation has identified Parkmerced as a potential National Historic Landmark candidate—an elite group of less than 2,600 such properties in America. As one of Thomas Church’s largest and most publicly accessible works, Parkmerced is also an important community resource.

The six undersigned local, state, regional, and national historic preservation organizations urge the City of San Francisco to adopt Project alternatives or components of alternatives that maximize preservation of the Parkmerced Historic District and retain its eligibility for the California Register of Historical Resources and the National Register of Historic Places. We question the consistency of the proposed Project with San Francisco’s Planning Code Priority Policies and urge the City to require additional, more substantive mitigation measures for the severe impact to historic resources that could result from the Parkmerced Project.

Requirements of the California Environmental Quality Act

CEQA reflects the statewide policy that projects with significant environmental impacts, including impacts to the State’s historic environment, should not be approved “if there are
feasible alternatives ... available which would substantially lessen the significant environmental effects ...” (Pub. Resources Code § 21002.) CEQA thus requires that alternatives be analyzed that would “feasibly obtain most of the basic objectives of the project.” (Guideline § 15126.6 subd.(a).)¹ Findings supporting the infeasibility of an alternative must be supported by “substantial evidence” based on an independent analysis by the lead agency. (Pub. Resources Code § 21081.5; Preservation Action Council v. City of San Jose (2001) 141 Cal. App.4th 1336.) An alternative need not accomplish every project objective, or maximize profitability, to be considered feasible under CEQA.²

Any project that would demolish a historic resource necessarily has a significant effect on the environment, requiring a lead agency to study and adopt feasible alternatives such as rehabilitation, if available and practical. (See Pub. Resources Code § 21081; 21084.1.) CEQA’s requirements to identify and analyze feasible alternatives in an EIR are manifest when a project threatens historic resources, as is its substantive mandate that the lead agency not approve a project if a feasible alternative exists.

The Project Alternative Analysis Indicates that an Environmentally Superior Alternative is Feasible

As noted in the DEIR, Project alternatives proposing retention of portions of the Parkmerced Historic District result in substantially fewer impacts to historic resources and a range of other environmental qualities. Under Alternative C, Retention of the Historic District Central Core Alternative, the Parkmerced Historic District would retain eligibility for the California and National Registers while allowing for new development and densification on other parts of the Project site. The DEIR further identifies Alternative C as the environmentally superior option. This alternative is preferable not only because it would preserve an important part of San Francisco’s history, but because the reuse of existing infrastructure would result in substantially fewer emissions of greenhouse gases, making Alternative C the truly sustainable alternative (see DEIR VII.32). Finally, Alternative C would provide cost savings by maintaining the existing stream of rental revenue and significantly reducing the scope of new construction.

To date, the City has provided no information to justify the rejection of environmentally superior alternatives based on “economic, environmental, social, and technological factors.” (Guideline § 15126.6(b).) The City acknowledges that all of the proposed alternatives are “potentially feasible in that they would attain most of the basic objectives identified in Chapter III, Project Description, all are within boundaries of the property under the control of the Project sponsor and all are capable of being constructed on the Project Site.” (Comments and Responses, Master Response A.4, emphasis added.)

¹ “Feasible” is defined as “capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, social, and technological factors.” (Pub. Resources Code § 21061.1.)
CEQA requires that the EIR provide sufficient information about each alternative “to allow meaningful evaluation, analysis, and comparison with the proposed project.” (Guideline at § 15126.6(d).) The reasons and facts for which the sponsor or City has rejected alternatives is essential information that must be provided to the public in the EIR.3 In contrast, the DEIR and Comments and Responses documents for the Project contain no discussion of why various alternatives may be considered infeasible. Contrary to the public disclosure function of the EIR, the City maintains that this information need not be presented in the EIR documents, but can be held back until the CEQA findings are released just prior to project approval.4

The Proposed Project is Inconsistent with the City’s Planning Priority Policies

The undersigned organizations take exception to the statements in the DEIR and the Comments and Responses document that the Parkmerced Project is consistent with the City’s Planning Priority Policies, particularly Priority Policy 7, which states “that landmarks and historic buildings be preserved” (Planning Code at § 101(b)(7).). The DEIR stated that the Parkmerced Historic District does not qualify for such protection, because it “is not currently included in any federal, state or local register.” (DEIR IV.1 fn1). Nothing in the Planning Code, however, indicates that protection of the City’s landmarks and historic structures is limited to formally listed sites on a register. This narrow interpretation of City policy also runs counter to CEQA, which makes no distinction between eligible and listed resources in determining what is historic.5

In the Comments and Responses volume of the Project EIR, the City again posits that the project is consistent with Priority Policy 7 because the policy specifically references “historic buildings,” and the buildings at Parkmerced are not individually significant. (Response TR.34.1). Parkmerced is a historic district composed of individual elements that lack individual distinction, however, the contributing elements of the district—both buildings and landscape elements—have historic value. There is also a clear distinction between demolishing individual contributing resources in a historic district and demolition of nearly the entirety of a historic district. The conclusion that this degree of destruction is consistent with the City’s policy to protect its architectural and cultural heritage is nonsensical. We maintain that the Parkmerced Project is not consistent with Priority Policy 7.

3 See Laurel Heights Improvement Assn. v. Regents of the University of California (1988) 47 Cal.3d. 376, requiring preparation of a new EIR because the lead agency had failed to “explain in meaningful detail...a range of alternatives to the proposed project and, if [it] finds them to be infeasible, the reasons and facts that [it] claims support its conclusion.” Id. at 406.
4 Comments and Responses, Master Response A.5.
5 Cal. Pub. Res. Code § 21084.1; “For purposes of this section, an historical resource is a resource listed in, or determined to be eligible for listing in, the California Register of Historical Resources” (emphasis added.)
Proposed Mitigation Measures Remain Grossly Inadequate

While the undersigned are opposed to any demolition of the existing resource, in the event it occurs, the mitigation measures must be much stronger than those proposed in the EIR. Although it is undisputed that the Parkmerced Project would cause significant and unavoidable impacts to historic resources, the Project sponsors continue to offer insufficient mitigation or compensation for this potential loss. The proposed project would result in the near total destruction of a historic district spanning over 192 acres, including demolition of 170 contributing resources and the majority of Thomas Church’s designed landscape. The proposed mitigation measures outlined in the DEIR and the Comments and Responses document, consisting of HABS, HAER, and HALS documentation, donation of archival materials, and permanent public interpretation, are tokenisms of little benefit to preservation of historic resources in San Francisco. Given the sheer enormity of the loss at stake, we believe much more should be required.

In its review of the Project DEIR, the California Office of Historic Preservation (OHP) stated that the mitigation measures proposed in the DEIR, specifically HABS/HAER documentation, “does not... in any way mitigate such a devastating alteration to a historic district.” The OHP further stated that “the proposed demolition of the Parkmerced resources is indeed a circumstance in which HABS/HAER documentation is clearly insufficient mitigation in relation to the significant adverse effect that wholesale demolition would have on Parkmerced’s historic resources...” (Comments and Responses, Letter 3, page 2.)

Indeed, it is a well-established precedent under CEQA that documentation and interpretation do not meaningfully compensate for the destruction of historic resources. As recognized by the court in League for Protection of Oakland’s Architectural and Historic Resources v. City of Oakland (1997) 52 Cal.App.4th 896: “Documentation of the historical features of the building and exhibition of a plaque do not reasonably begin to alleviate the impacts of its destruction. A large historical structure, once demolished, normally cannot be adequately replaced by reports and commemorative markers.” (Id. at 909.)

Echoing this point, the court in Architectural Heritage Association v. County of Monterey (2004) 122 Cal.App.4th 1095 proclaimed: "As drawing a chalk mark around a dead body is not mitigation, so archival documentation cannot normally reduce destruction of an historic resource to an insignificant level." (Id. at 1119.)

The severity of the historic resource impacts at Parkmerced demands proportional mitigation measures with an appropriate nexus to the project impacts. Alternative or additional mitigation measures may include:
• Funding to complete a cultural resource survey of historic landscape resources in San Francisco, including development of landscape-specific survey methods and tools;
• Funding to complete a comprehensive, professional cultural resource survey of the southwest quadrant of the City of San Francisco; and/or
• Funding to complete a context study and survey of Modern and post-World War II historic and architectural resources in the City of San Francisco.

Certainly, Planning Department staff with expertise and experience in conducting and managing historic resource survey projects in San Francisco can advise the Commission and sponsor on the likely costs associated with these mitigation measures.

Mitigation could also include funding for the established San Francisco Historic Preservation Fund, administered by the Historic Preservation Fund Committee and the Mayor’s Office of Economic and Workforce Development. Contributing to publicly administered funds supporting historic preservation activities as a form of mitigation has several precedents in California, including the Long Beach Navy Memorial Heritage Fund established in association with demolition of the Long Beach Naval Complex in Long Beach, CA; the Historic Schools Investment Fund established in connection with demolition of the Ambassador Hotel in Los Angeles; and the San Francisco Historic Preservation Fund itself, established following illegal demolition work on the Emporium Department Store.

In addition to the mitigation measures proposed here, the undersigned organizations request that the City adopt protections in the Project Development Agreement and CEQA findings prohibiting preemptive demolition of any contributing elements or alteration of character-defining features of the Parkmerced Historic District, including spatial organization, circulation, topography, buildings and structures, vegetation, landscape features, and views. Specifically, the City should impose a mitigation measure barring issuance of demolition permits until a permanent replacement project is pending and the sponsor has demonstrated the financial resources necessary to complete the proposed replacement project within a reasonable timeframe (i.e. construction to commence within six months of receipt of all necessary City approvals). We understand that the Planning Code already includes similar requirements, but feel it is important to codify and reinforce these protections in Project-specific documents.

Conclusion

Parkmerced is a nationally significant example of landscape design and World War II-era heritage in the San Francisco Bay Area, as well as one of the largest, and few publicly accessible, works by master landscape architect Thomas Church. The undersigned organizations strongly urge the City to adopt Project alternatives or components of Project alternatives maximizing preservation of the Parkmerced Historic District and
retaining its eligibility for the California Register of Historical Resources and National Register of Historic Places. In addition, we believe that the proposed project is patently inconsistent with the City’s Priority Policies. Finally, while we remain opposed to any demolition of the existing resource, in the event the Project is approved, additional mitigation measures are necessary to meaningfully compensate for the severe impacts on the City’s irreplaceable heritage.

Thank you for the opportunity to comment on the Parkmerced Project. Please do not hesitate to contact our organizations with regard to any questions related to these comments.

Sincerely,

Anthea M. Hartig, Ph.D. Cindy Heitzman Mike Buhler
Director, Western Office Executive Director Executive Director
National Trust for Historic Preservation California Preservation Foundation San Francisco Architectural Heritage

Charles A. Birnbaum Bob Pullum Janet Gracyk
President Director of Advocacy President
The Cultural Landscape Foundation Northern California Chapter, Northern California
DOCOMOMO-US Chapter, Historic American
Landscape Survey

cc: Rick Cooper, Major Environmental Analyses, San Francisco Planning Department
M. Wayne Donaldson, California State Historic Preservation Officer
San Francisco Historic Preservation Commission
San Francisco Preservation Consortium
Gabriel Metcalf, Executive Director, SPUR
Since Stellar Management has yet to produce any significant proof of Parkmerced’s deterioration, I am submitting evidence, and images of the current dry-rot repair images I have taken during the 5 years on site when SFSU-CSU and Parkmerced’s (Stellar Management) worked on portions of the site during renovations. This is only a basic rudimentary “non-professional” review of deterioration and soundness yet it gives a strong indication of the lack of proof to date by the owner on the issues and cost/analysis on the actual costs and deterioration levels of the garden units vs. the tower units, and the viability of demolition vs. sustainable preservation. The photo above is of 55 Chumasero which sustained significant structural damage during the 1989 Quake, the tower sits on a sloping hillside, which has had trees removed, and is in an area of liquefaction per US Geological Seismic Maps. The existing towers have notable leaks on the upper floors, as the walls taper, and were the first to utilize lift-slab technology and sika-flex a concrete enhancement formula in the 1940’s and 50’s. These towers are the ONLY towers west of twin peaks un-retrofitted. The towers received “face-lift” and cosmetic work by stellar, inclusive of fire-alarm safety system and elevator upgrades. The majority of the work on the garden units has been focused on cosmetic appearance and “flipping” of the garden unit interiors to a more “luxury” based model, often ignoring low-tech sustainable implementation of water retention, solar, and energy efficiency efforts during renovations Stellar focused primarily on a quick transformation of the site including spending a large amount on trim work on the exteriors and other systems upgrades like trash/recycling/composting that engendered complaints to the SF Civil Rights Committee and concerns on the accessibility, and purchasing of large amounts of new equipment and vehicles to service Parkmerced, while having unskilled labor handle trash issues instead of the local trash city services.

June 6, 2011

By

Aaron Goodman
Parkmerced has a fully mature landscape, that is lush, green, and open. The majority of interior courtyards per Charles Birnbaum of the Cultural Landscape Foundation have great integrity to the original design and concepts of Thomas Dolliver Church the father of modern landscape design. What is missing in the discussion on the proposal is any “proof of deterioration”. As I have witnessed the construction ongoing for the University Park South Blocks and some of the Parkmerced blocks, I have assembled a few photos to exhibit the extent of damage and repairs typical of the current site buildings. The image below right shows rooftops many of which were renovated by Stellar management during the last two years, with new flashing and roofing systems.
The main issue of the garden unit “water intrusion” and claims on flashing come from the eave edge, and gutter system and the intrusion of water inside the stucco finishes due to rust and wear. The solution by SFSU-CSU was to remove the gutter from the wall and redo the detailing at the exterior with new flashing and roofing. Parkmerced’s (Stellar’s) renovation work consisted of paint and trim work, with zero renovation of the existing scuppers and downspouts (bottom left). The majority of SFSU-CSU’s work included removing the internal downspouts and providing new gutters and scuppers along with flashing and re-roofing.

The two images at the right are of work done by SFSU-CSU on similar blocks. The two top left images show minor rust, and deterioration at the scupper of existing units.
SFSU-CSU blocks were completed renovated, including new roofing, recycling of tile roofs, white roofs installed for insulation, and new flashing, canopy awnings replacement and stucco repair and painting along all facades. There was only minimal plywood decking repair during the roofing work. It should be noted that Stellar utilized water-pressure sprayers to hose off the algae on the roofs, spraying UP under the shingles, possibly causing additional damage during repairs.
The majority of the cracking stucco and plaster work on existing windows stems from window replacement that was done without bituthene and proper flashing, seals and building paper in the 1940's vs. today's installation of building weatherproofing membranes. The existing stucco repair was notably basic chiseling out of cracks, sealing and painting over the openings on the SFSU-CSU blocks. Only minimal work was done on the Parkmerced garden units. Additional flashing was placed on some entry areas due to a lack of flashing at the top connection points along the shingles. Only minor dry-rot repair was noted on a minimal number of canopies and entrances.
Dry-rot repair even on the more ornate entrance features was minimal, and was only occasionally requiring a canopy to be removed to replace it with a new cover and seals. The dry-rot repair on the garden units rarely required any full opening of wall areas, canopies, entrances, ceilings, roofs, or any other major intrusive repair efforts. The majority of Parkmerced’s (Stellar’s) repair work was done quickly and shifted around the site rapidly transforming the site colors, but ignoring the impacts that multi-colored facades have on the eye, and scale of the prior community. Light fixtures and trim work were added repeatedly in an effort to transform the character of the site. The original lights are noted below right small and un-obtrusive. The new ones at left bottom show new board, fixtures, numbers, and finishes.
As shown below left the majority of Parkmerced’s (Stellar’s) renovations of the garden units focused on trim, and repainting, along with re-roofing. The unsimilar approach between Stellar and SFSU-CSU seems to indicate a more rushed job on the efforts by Stellar, and one that emphasizes speed, and lack of concern sustainability wise on materials being used, since they than proposed demolishing all finishes and fixtures installed, including signage, door numbers, mailbox slots, door hardware and many renovated interiors of units in 2007 when units were repeatedly flipped during the student move out after stellar’s initial purchase.
To date SFSU-CSU has completed renovating the blocks purchased from Parkmerced prior. The work was done to renovate the units, and has been a very successful effort to date. It would be worthwhile to review the costs by the university, and change-orders for dry-rot repair or cost increases on roofing, flashing and basic remodeling expenses. Although there was no access to internal areas during construction, additional efforts were made to repair interiors as well. Without adequate proof of the soundness of the existing units how are we to decide whether they should be spared, renovated, restored, preserved, or rehabilitated to a basic level vs. demolition. In what ways has stellar management proven or shown proof of deterioration to support their claims that these units are “beyond” their lifespan and requiring a TOTAL tear-down. I have seen and worked on 5 large scale apartment complexes locally on the peninsula, and reviewed reports and drawn up details and worked on construction administration for another local architecture firm in the south bay. I have yet to see major repair on the Parkmerced blocks indicative of a total tear-down. The only other item of concern was when I witnessed employees of stellar caulking large cracks in the basement of 405 Serrano and than painting over them. This is my report, and although not a formal analysis it shows clearly that there is concern on the statements of the current owner’s on the deterioration levels at Parkmerced. Without independent analysis and a full soundness report of the site, including the garden units, and towers, there is no indication of which units are sound and which may require serious or lighter remediation. Per the SF General Plan, the onus on proof lies on the side of the developer when proposing to demolish sound existing rental housing stock. It does not appear like they have shown any semblance of truth to date.
February 4, 2002

This is not at all the same physical campus it was 18 months or even a year ago. The new cafes that have sprung up around campus - on 19th Avenue, behind Burk Hall, and near the Lakeview Center; the new student apartment complex that truly is a Village; the long-wished-for center that brings all student services together in one building; an on-campus credit union that offers free ATM services and free checking for students; an upcoming Internet Cafe; the acquisition of housing for students, faculty and staff on the border of campus; and the first expansion beyond the seemingly inflexible boundaries of our 19th Avenue campus since 1954 all are making this a better community in which to live, work and learn.

These projects - and more like them - are all the work of an organization that in recent years has generated and carried out numerous projects that will benefit the campus far into the future: the University Foundation.

Yet despite its very visible record of fine work, the Foundation is far less well understood and appreciated than I believe it should be. Many on campus are unclear about the Foundation's relationship to the University, its distinct difference from foundations on other CSU campuses, and what it actually does.

The Foundation is a CSU auxiliary, a 501(c)(3) charitable foundation (formally known as the SFSU Foundation Inc.) that supports itself and, in fact, generates funds that can be used for the University's benefit. While it is not legally a part of the University, it exists to serve SFSU - "to promote, assist and enhance the educational mission," in the words of its official charter.

Our Foundation differs in a key respect from those of our sister campuses. While they focus on grants and contracts administration, we run almost all awards and projects through the Office of Research and Sponsored Programs (ORSP). Until 1990, our Foundation was like others in the CSU. That year, we made a fundamental change. In response to a widely perceived faculty need for stronger and more integrated support of our whole research and sponsored programs effort, we expanded the staff in ORSP and moved responsibility for handling externally funded grants and contracts to the University. Three years later, a task force chaired by Professor Julien Wade endorsed that decision and proposed a number of refinements, which were accepted. The effectiveness of moving grants administration from the Foundation into the University shows in the dramatic rise in research awards to SFSU faculty since then, from about $9 million in 1990 to almost $43 million last year.
At this point, the Foundation began to reinvent itself to meet a new main mission: to engage in entrepreneurial ventures, particularly those that the University, as a state agency, could not undertake, and to do this for the benefit of students, faculty and staff. The Foundation Board, once, appropriately, majority faculty, began to recruit community members. In the mid-90s, we hired our first-ever Vice President for University Advancement, Jim Collier, and made serving as executive director of the Foundation part of his portfolio. He has been assisted ably by Larry Ware in his role as the Foundation's director of administration. The Foundation Board commissioned a study, which led, in 1996, to adoption of a strategic plan. As then-Foundation Planning Committee Chair (now Board Chair) John Jacobs said, the SFSU Foundation was "about to...become something unique within the CSU system."

What does the SFSU Foundation do?

It maintains some familiar functions: It administers a small number of grants - far fewer than the 450-plus currently running through ORSP - some of them holdovers from the old days, others there because the grantor (the Ford Foundation, for one) requires they be handled through a non-profit. The Foundation also manages the University's endowment and handles funds for special events such as conferences and institutes.

In its new role, the Foundation is the major provider of food services on campus - all food outside the Student Center, in fact. It saw - and met - the need for more campus gathering spots and food services, hence the new cafes. It operates all campus vending machines outside the Student Center. It hired and oversees Chartwell's, the company that provides the meals for our residence hall students and caters many campus events.

The Foundation identifies other services the campus could use and brings them to us: an on-site car rental site, Enterprise; a new mini-mart (to be run by the Bookstore) Internet cafe, and high-end printing service, all opening soon in the Village.

These ventures, after statutory reserve requirements for foundations are met, generate seed money for future projects and also allow the Foundation to make donations to the University, to help support special programs such as the Presidential Scholars and the new University magazine. These revenue-producing ventures also help us carry out many of the "user-friendly" recommendations that emerged from CUSP I.

It is important to note that any income, such as interest, generated by faculty grants the Foundation administers is never used for entrepreneurial activities.

Nowhere has the redesigned SFSU Foundation been more markedly successful than in the area of housing. With a private partner, the Foundation developed the funding package that brought our spectacular Village at Centennial Square into being. If, in the present fiscal climate, we had pursued a student housing project through the traditional CSU route, we would have had to get in line, and the wait would necessarily have been long. (Consider the Library project.) Rather than the five-year - or longer - process we could have expected, the Foundation brought us 760 new student beds in about 21 months. The Foundation owns the Village, not to mention 180 apartments in Parkmerced (more about this in a moment).

And as part of the Village project, the Foundation negotiated an exceptional add-on: the Student Services Building, a real enhancement for SFSU students.
The Foundation also has done the seemingly impossible: It found ways to expand a campus that we have long thought was "land-locked," surrounded by neighbors who left us no room to gain much-needed land. And in the process, it is helping us to address campus housing needs. Two years ago, the Foundation succeeded in acquiring the "Tapia Triangle," from Parkmerced - 27 units right on the campus border that we are renting to faculty and staff at below-market rates.

But the biggest deal, a real coup for us, is just two months old. Late last December the Foundation closed on the purchase of three complete blocks - 153 units - from Parkmerced. This new, seven-acre property runs down Holloway from Varela to Font, and back up along Serrano. This transaction - something the University could not have done - offers tremendous possibilities, starting with the growth of a University community as we fill vacated units with faculty, staff and students. I'll have more to say in coming months about this incredible asset and what it offers the University.

What next for the Foundation? For one thing, to support future entrepreneurial efforts, it is continuing to develop its Board. It is bringing on new members with the ideas, expertise and even connections to help move good plans forward. With an active and creative Board that already includes three highly respected faculty members - with a fourth to be added at the next Board meeting - the SFSU Foundation is poised to "promote, assist and enhance" this University even more strongly in the years ahead.

Sincerely yours,

Robert A. Corrigan

President
One January over 14 years ago, just a few months after I arrived at San Francisco State, I found myself on a stage in one of the beautiful historic buildings at the Asilomar conference center, amid a costumed group of faculty, administrators and staff, playing an unrehearsed part in a clever and satirical play that purported to recount the University's history.

Our audience was the rest of the several hundred other members of the SFSU community who had gathered at Asilomar, near Monterey, for the University's biennial off-campus retreat. That night, we were, indeed, a community.

New as I was to the campus, I did not know that in the years to come, one of the things I would hear most often in conversations with faculty, staff and students, would be their desire for a greater sense of campus community. It has been many decades since we were a small enough campus that faculty and staff easily knew most of their colleagues by sight, and often by name. But though we have grown and changed in many ways since then, the need for a feeling of camaraderie, of familiarity, persists. I hear it in CUSP II meetings, in gatherings of faculty and staff, and, most recently, at the student leadership retreat.

We know what makes that difficult: our size, our largely non-residential student population, the absence of a collegiate neighborhood around us; even the high cost of housing that has led to long commutes for many on campus.

All the same, I believe we can, with deliberate effort, recover much of that sense of academic community that we once had. A number of successful approaches to this are already under way. Under the warm and energetic leadership of Prof. Vicki Casella, director of the Center for the Enhancement of Teaching, our new faculty orientation program is bringing colleagues together as a cadre, across disciplinary and college lines. I see the effect in the series of new faculty dinners I host during the year. Before we even sit down, the dozen or so faculty, drawn from across campus, are engaging in animated conversation, obviously on familiar terms with each other.

Our Presidential Scholars program, which has proved spectacularly successful in achieving its aim of giving students a "small college within a major university" experience, has given us a model we can expand to many more students through such strategies as moving small groups together through core classes, or working to replicate beyond the residence halls the kind of on- and off-campus activities that help those students feel closer to each other and to
the university. Another fine example of enriching students' personal, as well as academic experience, is our RISE program (Research Initiative for Scientific Enhancement) in the biomedical sciences, which takes its cadre of talented, underrepresented students through a demanding curriculum, pairs them with faculty mentors, helps them form study groups, and brings them together for special events, while preparing them for successful entry into Ph.D. or M.D. programs.

New construction and remodeling has enabled us to give many more faculty individual offices, and providing all tenure-track faculty with a computer has made it more possible -- and more likely -- that they will spend time on campus beyond their teaching and other obligations. The new cafes around campus are part of an effort to provide both a needed service and occasions for casual interaction. And we are looking at opportunities to provide similar gathering spots in some of our academic buildings. With our Parkmerced purchases -- we currently own 180 rental units immediately adjacent to the campus -- we have begun to address the critical issue of faculty and staff housing while providing the foundation for a university neighborhood. We are making further efforts to increase the number of university-owned rental units and we are starting to explore the possibility of developing for-sale housing for staff and faculty.

But we need to find more ways to make this campus much closer to the ideal of the community of scholars that drew so many of us to academic life in the first place. At the recent student leader retreat, led by Vice President Saffold, students told us in no uncertain terms that they wanted more "campus life" -- events and activities that would bring them together. Early on, CUSP II began to discuss the issue of campus community and has been addressing it from several perspectives.

Right now, though, one of our very best opportunities to enjoy a sense of community is at hand. Registration is still open for the 2003 Asilomar retreat, being held January 20-22. Asilomar brings us close to that old, smaller, more collegial campus. The serene, oceanside setting, the shared meals, the presentations and discussions, and the simple pleasure of strolling the car-free paths, talking with colleagues, make for a remarkably rewarding experience. Probationary faculty and lecturers are eligible for subsidies; check the Senate web page for details. Asilomar is a retreat for all of us -- faculty, staff, and administrators. I hope to see a great many of you there.
June 12, 2009

Bill Wycko
Environmental Review Officer
San Francisco Planning Department
1650 Mission Street, Suite 400
San Francisco, CA 94103

Re: Parkmerced NOP of EIR

Dear Mr. Wycko,

On behalf of San Francisco Architectural Heritage (Heritage), thank you for the opportunity to comment on the scope of the upcoming Environmental Impact Report (EIR) for Parkmerced.

The Notice of Preparation states:

“The EIR will discuss the potential for eligibility of individual buildings or groups of buildings for listing on the National Register of Historic Places or the California Register of Historic Resources, and will discuss the impacts of the Proposed Project on the existing context. The EIR will also include cultural landscape analysis and will determine the eligibility of the landscaping for listing on the National Register of Historic Places or the California Register of Historical Resources.”

Heritage concurs with the Historic Resource Evaluation Report (HRER), prepared by Page & Turnbull, that Parkmerced appears to be eligible for the National Register of Historic Places and the California Register of Historic Resources as a historic district, and should be treated as an eligible resource during the environmental review process.

As the purpose of an EIR is “to provide information about potential significant physical environmental effects of the proposed project, to identify possible ways to minimize the significant effects, and to describe and analyze possible alternatives to the Proposed Project,” we ask that the EIR include a preservation alternative that follows the Secretary of Interior Standards.

Thank you,

Jack A. Gold
Executive Director

2007 FRANKLIN ST.
SAN FRANCISCO
CALIFORNIA 94109
TEL 415-441-3000
FAX 415-441-3015
www.sfheritage.org
San Francisco State University

Master Plan Enrollment: 25,000 FTE

Master Plan approved by the Board of Trustees: September 1964

<table>
<thead>
<tr>
<th>Building No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Burk Hall</td>
</tr>
<tr>
<td>2.</td>
<td>Business Building</td>
</tr>
<tr>
<td>3.</td>
<td>HSS Building</td>
</tr>
<tr>
<td>4.</td>
<td>Science Building</td>
</tr>
<tr>
<td>5.</td>
<td>Gymnasium</td>
</tr>
<tr>
<td>6.</td>
<td>Fine Arts Building</td>
</tr>
<tr>
<td>7.</td>
<td>Creative Arts Building</td>
</tr>
<tr>
<td>8.</td>
<td>Children’s Campus</td>
</tr>
<tr>
<td>9.</td>
<td>Gymnasium/Recreation Wellness Center</td>
</tr>
<tr>
<td>10.</td>
<td>BSS Classroom Replacement Building</td>
</tr>
<tr>
<td>11.</td>
<td>HHs Classroom Replacement Building</td>
</tr>
<tr>
<td>12.</td>
<td>Business Building</td>
</tr>
<tr>
<td>13.</td>
<td>Ethnic Studies and Psychology Replacement Building</td>
</tr>
<tr>
<td>14.</td>
<td>Academic Building</td>
</tr>
<tr>
<td>15.</td>
<td>Academic Building / University Club</td>
</tr>
<tr>
<td>16.</td>
<td>Temporary Library Building (Buildings 18A-16B)</td>
</tr>
<tr>
<td>21.</td>
<td>Ethnic Studies and Psychology Building</td>
</tr>
<tr>
<td>22.</td>
<td>J. Paul Leonard Library</td>
</tr>
<tr>
<td>23.</td>
<td>The Village at Centennial Square (Buildings 23a-23d)</td>
</tr>
<tr>
<td>25.</td>
<td>Corporation Yard</td>
</tr>
<tr>
<td>26.</td>
<td>Central Plant</td>
</tr>
<tr>
<td>26A.</td>
<td>Waste Management</td>
</tr>
<tr>
<td>27.</td>
<td>Student Health Center</td>
</tr>
<tr>
<td>29.</td>
<td>Residence Dining Center</td>
</tr>
<tr>
<td>30.</td>
<td>Administration Building</td>
</tr>
<tr>
<td>32.</td>
<td>Humanities Building</td>
</tr>
<tr>
<td>36.</td>
<td>Facilities Building and Corporation Yard</td>
</tr>
<tr>
<td>37.</td>
<td>Satellite Power Plant</td>
</tr>
<tr>
<td>46.</td>
<td>Florence Hale Stephenson Field</td>
</tr>
<tr>
<td>48.</td>
<td>Field House No. 1</td>
</tr>
<tr>
<td>49.</td>
<td>Field House No. 2</td>
</tr>
<tr>
<td>50.</td>
<td>Hensill Hall</td>
</tr>
<tr>
<td>51.</td>
<td>Thornton Hall</td>
</tr>
<tr>
<td>53.</td>
<td>Science Replacement Building</td>
</tr>
<tr>
<td>57.</td>
<td>Children’s Center</td>
</tr>
<tr>
<td>61.</td>
<td>Greenhouse</td>
</tr>
<tr>
<td>62.</td>
<td>Greenhouse No.2</td>
</tr>
<tr>
<td>70.</td>
<td>Softball Field</td>
</tr>
<tr>
<td>71.</td>
<td>Accessory Building</td>
</tr>
<tr>
<td>72.</td>
<td>Parking Garage</td>
</tr>
<tr>
<td>73.</td>
<td>University Park South</td>
</tr>
<tr>
<td>74.</td>
<td>University Park South</td>
</tr>
<tr>
<td>75.</td>
<td>Mashouf Performing Arts Center</td>
</tr>
<tr>
<td>76.</td>
<td>University Park South</td>
</tr>
<tr>
<td>77.</td>
<td>University Park South</td>
</tr>
<tr>
<td>78.</td>
<td>University Park South</td>
</tr>
<tr>
<td>79.</td>
<td>University Park South (Housing)</td>
</tr>
<tr>
<td>80.</td>
<td>University Park South (Housing)</td>
</tr>
<tr>
<td>82.</td>
<td>Warehouse #1</td>
</tr>
<tr>
<td>84.</td>
<td>Warehouse #3</td>
</tr>
<tr>
<td>85.</td>
<td>Pedestrian Bridge</td>
</tr>
<tr>
<td>86.</td>
<td>Press Box</td>
</tr>
<tr>
<td>87.</td>
<td>Stadium Restroom Building</td>
</tr>
<tr>
<td>88.</td>
<td>Parking Structure</td>
</tr>
<tr>
<td>89.</td>
<td>Cesar Chavez Student Center</td>
</tr>
<tr>
<td>91.</td>
<td>Mary Ward Hall</td>
</tr>
<tr>
<td>92.</td>
<td>Mary Park Hall</td>
</tr>
<tr>
<td>94.</td>
<td>Clinical Sciences Building</td>
</tr>
<tr>
<td>97.</td>
<td>The Towers at Centennial Square</td>
</tr>
<tr>
<td>97A.</td>
<td>Science and Technology Theme Community</td>
</tr>
<tr>
<td>98.</td>
<td>Sutro Library</td>
</tr>
<tr>
<td>99.</td>
<td>University Park North (Housing)</td>
</tr>
<tr>
<td>100.</td>
<td>University Park North</td>
</tr>
<tr>
<td>101.</td>
<td>Temporary Building A</td>
</tr>
<tr>
<td>102.</td>
<td>University Park North (Housing)</td>
</tr>
<tr>
<td>103.</td>
<td>University Park North (Housing)</td>
</tr>
<tr>
<td>104.</td>
<td>University Park North (Housing)</td>
</tr>
<tr>
<td>105.</td>
<td>University Conference Center</td>
</tr>
<tr>
<td>106.</td>
<td>Modular Building G</td>
</tr>
<tr>
<td>111.</td>
<td>Restrooms</td>
</tr>
<tr>
<td>114.</td>
<td>Modular Building H</td>
</tr>
<tr>
<td>115.</td>
<td>Modular Building J</td>
</tr>
<tr>
<td>116.</td>
<td>Modular Building K</td>
</tr>
<tr>
<td>117.</td>
<td>Modular Building N</td>
</tr>
<tr>
<td>118.</td>
<td>Modular Building O</td>
</tr>
<tr>
<td>119.</td>
<td>Modular Building P</td>
</tr>
<tr>
<td>120.</td>
<td>Modular Building Q</td>
</tr>
<tr>
<td>121.</td>
<td>Modular Building R</td>
</tr>
<tr>
<td>122.</td>
<td>Modular Building S</td>
</tr>
<tr>
<td>200.</td>
<td>Cox Stadium</td>
</tr>
<tr>
<td>202.</td>
<td>Maloney Field</td>
</tr>
<tr>
<td>202A.</td>
<td>Maloney Field</td>
</tr>
<tr>
<td>11.</td>
<td>Residence</td>
</tr>
<tr>
<td>20.</td>
<td>Tiberon Building 20</td>
</tr>
<tr>
<td>21.</td>
<td>Marine Support</td>
</tr>
<tr>
<td>22.</td>
<td>Blacksmith Shop</td>
</tr>
<tr>
<td>27.</td>
<td>Arc Welding</td>
</tr>
<tr>
<td>30.</td>
<td>Administration</td>
</tr>
<tr>
<td>33.</td>
<td>Rockfish</td>
</tr>
<tr>
<td>36.</td>
<td>Tiberon Building 36</td>
</tr>
<tr>
<td>37.</td>
<td>Dispensary</td>
</tr>
<tr>
<td>39.</td>
<td>Tiberon Building 39</td>
</tr>
<tr>
<td>40.</td>
<td>Storage Shed</td>
</tr>
<tr>
<td>49.</td>
<td>Tiberon Building 49</td>
</tr>
<tr>
<td>50.</td>
<td>Tiberon Building 50</td>
</tr>
<tr>
<td>53.</td>
<td>Tiberon Building 53</td>
</tr>
<tr>
<td>54.</td>
<td>Physiology</td>
</tr>
<tr>
<td>74.</td>
<td>Storage Shed</td>
</tr>
<tr>
<td>75.</td>
<td>Water Tower</td>
</tr>
<tr>
<td>79.</td>
<td>Utility</td>
</tr>
<tr>
<td>86.</td>
<td>Warehouse</td>
</tr>
</tbody>
</table>

LEGEND:

Existing Facility / Proposed Facility

NOTE: Existing building numbers correspond with building numbers in the Space and Facilities Data Base (SFDB)
San Francisco State University
Campus Master Plan Project

Findings of Fact

(Pursuant to Sections 21081 and 21081.6 of the Public Resources Code and Sections 15091 and 15093 of the CEQA Guidelines)

Final Environmental Impact Report
(State Clearinghouse Number 2006102050)
FINDINGS OF FACT

1.0 INTRODUCTION

This statement of findings addresses the environmental effects associated with the San Francisco State University (SF State) Campus Master Plan project located on the SF State campus in San Francisco, California. These findings are made pursuant to the California Environmental Quality Act (CEQA) under Sections 21081 and 21081.6 of the Public Resources Code and Sections 15091 of the CEQA Guidelines, Title 14, Cal. Code Regs. 15000, et. Seq. The potentially significant impacts were identified in both the Draft Environmental Impact Report (EIR) and the Final EIR, as well as additional facts found in the complete record of proceedings.

Public Resources Code 21081 and Section 15091 of the CEQA Guidelines require that the lead agency prepare written findings for identified significant impacts, accompanied by a brief explanation for the rationale for each finding. The California State University (CSU) Board of Trustees is the lead agency responsible for preparation of the EIR in compliance with CEQA and the CEQA Guidelines. Section 15091 of the CEQA Guidelines states, in part, that:

(a) No public agency shall approve or carry out a project for which an EIR has been certified which identifies one or more significant environmental effects of the project unless the public agency makes one or more written findings for each of those significant effects, accompanied by a brief explanation of the rationale for each finding. The possible findings are:

(1) Changes or alterations have been required in, or incorporated into, the project which avoid or substantially lessen the significant environmental effect as identified in the final EIR.

(2) Such changes or alterations are within the responsibility and jurisdiction of another public agency and not the agency making the finding. Such changes have been adopted by such other agency or can and should be adopted by such other agency.

(3) Specific economic, legal, social, technological, or other considerations, including provision of employment opportunities for highly trained workers, make infeasible the mitigation measures or project alternatives identified in the final EIR.

In accordance with Public Resource Code 21081 and Section 15093 of the CEQA Guidelines, whenever significant impacts cannot be mitigated to below a level of significance, the decision-making agency is required to balance, as applicable, the benefits of the proposed project against its unavoidable environmental risks when determining whether to approve the project. If the benefits of a proposed project outweigh the unavoidable adverse environmental effects, the adverse effects may be considered "acceptable." In that case, the decision-making agency may prepare and adopt a Statement of Overriding Considerations, pursuant to the CEQA Guidelines.
Section 15093 of the CEQA Guidelines state that:

a) CEQA requires the decision-making agency to balance, as applicable, the economic, legal, social, technological, or other benefits of a proposed project against its unavoidable environmental risks when determining whether to approve the project. If the specific economic, legal, social, technological, or other benefits of a proposed project outweigh the unavoidable adverse environmental effects, the adverse environmental effects may be considered "acceptable."

b) When the lead agency approves a project which will result in the occurrence of significant effects which are identified in the final EIR but are not avoided or substantially lessened, the agency shall state in writing the specific reasons to support its action based on the Final EIR and/ or other information in the record. The statement of overriding considerations shall be supported by substantial evidence in the record.

c) If an agency makes a statement of overriding considerations, the statement should be included in the record of the project approval and should be mentioned in the notice of determination. This statement does not substitute for, and shall be in addition to, findings required pursuant to Section 15091. As required by CEQA, the Board of Trustees, in adopting these findings, also adopts a Mitigation Monitoring and Reporting Program for the project. The Board of Trustees finds that the Mitigation Monitoring and Reporting Program, which is incorporated by reference and made a part of these findings, meets the requirements of Section 21081.6 of the Public Resources Code by providing for the implementation and monitoring of measures intended to mitigate potentially significant effects of the project.

The Final EIR for the project identified potentially significant effects that could result from project implementation. However, the CSU Board of Trustees finds that the inclusion of certain mitigation measures as part of the project approval will reduce most, but not all, of those effects to less than significant levels. Those impacts that are not reduced to less than significant levels are identified and overridden due to specific project benefits in a Statement of Overriding Considerations.

In accordance with CEQA and the CEQA Guidelines, the Board of Trustees adopts these findings as part of its certification of the Final EIR for the project. Pursuant to Section 21082.1(c)(3) of the Public Resources Code, the Board of Trustees also finds that the Final EIR reflects the Board's independent judgment as the lead agency for the project.

1.2. Organization and Format of Findings

Section 1.0 contains a summary description of the project and background facts relative to the environmental review process. Section 2.0 discusses the CEQA finding of independent judgment. Section 3.0 identifies the impacts of the project that were studied in the EIR. Section 3.1 of these Findings identifies the significant impacts of the project that cannot be mitigated to a less than significant level, even though all feasible mitigation measures have been identified and incorporated into the project.
Section 3.2 identifies the potentially significant effects of the project that would be mitigated to a less than significant level with implementation of the identified mitigation measures. Section 3.3 identifies the project's potential environmental effects that were determined not to be significant and, therefore, do not require mitigation measures. Section 4.0 discusses the feasibility of project alternatives. Section 5.0 discusses findings with respect to mitigation of significant adverse impacts, and adoption of the Mitigation Monitoring and Reporting Program (MMRP).

1.3 Summary of Project Description

The Board of Trustees adopted the 1989 Campus Master Plan to serve as a guide for the physical development of the SF State campus and campus enrollment growth through 20,000 FTE students. As of Fall 2006, the Campus was nearing the enrollment ceiling established by the 1989 Master Plan. Therefore, SF State has prepared a new Campus Master Plan that addresses all aspects of future physical development and land use on the campus to accommodate the proposed increased enrollment ceiling of 25,000 full-time equivalent (FTE) students through 2020. This represents 5,000 additional FTE students over the existing enrollment ceiling of 20,000 FTE, or a 25 percent increase in enrollment capacity. Concurrent with the enrollment increase, faculty and staff would also increase from about 3,428 employees to about 4,139, or an increase of 711 employees. The proposed Campus Master Plan for SF State is intended to respond to the Board of Trustees’ directive to plan for its share of increased enrollment and accommodate the evolving needs of the CSU System’s academic, administrative, and student- and campus-support programs.

The proposed Campus Master Plan provides a comprehensive framework for the physical development of the SF State campus over the next 13 years through 2020. The proposed Campus Master Plan for SF State addresses the recent acquisition of adjacent properties, aging facilities, changing student demographics, and the need for additional academic building space and other support space to accommodate the anticipated growth in enrollment. To accommodate the projected growth in enrollment and academic activities, the proposed Campus Master Plan accommodates a building program that envisions the development of an additional 0.9 million gross square feet of non-residential building space, including a Conference Center and guest accommodations on the campus, and the development or conversion of an additional 1,198 units of housing for employees and students on campus.

The proposed Campus Master Plan includes a master plan map that locates major buildings to guide the siting of future campus facilities. The master plan map proposes to maintain the current general configuration of land uses on the campus, which consists of a concentrated academic core surrounded by residential and other campus uses. Most of the growth in facilities would occur through replacement and densification projects within the already developed campus.

1.4. Project Objectives

CEQA states that the statement of project objectives should be clearly written and define the underlying purpose of the project, in order to permit the development of a reasonable range of alternatives and aid the Lead Agency in making findings.

The objectives of the proposed Campus Master Plan project originate in the obligation SF State has to meet its
educational mission as defined by the California Education Code. The University undertook a lengthy Campus Master Plan development process, led by a Steering Committee comprising the academic and administrative communities on the SF State campus. The project objectives that are drawn from the Campus Master Plan are based on the physical planning principles derived from the long-term vision for the SF State campus, consistent with the University’s strategic plan. The project objectives are provided below.

1. Provide facilities for expansion of academic programs and administrative functions to support the proposed enrollment ceiling increase of 25,000 FTEs, required by the CSU and California Education Code;

2. Provide student, faculty, and staff housing to aid in recruitment and retention;

3. Implement the planning principles provided in the proposed Campus Master Plan as follows:

 A vibrant on-campus community

 - Reinforce the academic core and extend it westward
 - Integrate residential properties to create a unified campus
 - Provide more close-in, affordable housing that enables faculty, staff, and students to walk to school and work.
 - Redefine Holloway and Buckingham as “college main streets” offering neighborhood retail and services

 Strong connections to the surrounding city

 - Strengthen the University’s connections to Lake Merced and the surrounding neighborhoods
 - Work with neighbors, the City of San Francisco, and other entities to improve public transportation and other services that benefit the entire district.

 Emphasis on the pedestrian and alternative transportation

 - Cluster development around high-frequency transit connections to encourage transit use
 - Establish bicycle and pedestrian networks that provide safe, direct and attractive connections to work and school
 - Develop the 19th Avenue edge as a transit-, bicycle-, and pedestrian-friendly parkway
 - Implement Transportation Demand Management strategies to reduce parking demand
 - Decentralize campus parking over time from the current central garage to a series of smaller perimeter parking facilities to disperse traffic and parking impacts, claim the campus core for pedestrians and bicycles, and allow for the eventual removal of the central parking garage from the valley

 Recognition in the city and region

 - Position semi-public uses at the corners of campus, creating icons that redefine the University’s external identity and engage the larger community
 - Create an identifiable and inviting campus perimeter
A continuous greenbelt between 19th Avenue and Lake Merced

- Establish the valley as the central open space of campus
- Provide expanded recreational fields
- Restore ecological landscapes in the valley

Universal design and access

- Ensure that all aspects of the campus physical environment—notably primary circulation routes and main building entrances—are comfortably usable by and inviting to the widest group of people possible
- Organize and design primary pathways and graphic signage to facilitate wayfinding, using a combination of visual, tactile, and auditory cues
- Establish strong north-south connections across the valley and Buckingham Way and Holloway Avenue that link the University to its residential districts and to the surrounding neighborhoods
- Establish clear east-west functional and visual connections across campus and to the surrounding district

A campus that models sustainability

- Develop transportation and land use patterns that encourage greater use of transit, walking, and bicycle commuting and reduce dependence on automobiles
- Make efficient use of redevelopment sites
- Promote sustainability through green building and site design, native landscape, natural stormwater management, alternative transportation, higher-density housing, and walkable neighborhood retail.

These project objectives guided the proposed Campus Master Plan development process and the identification of physical improvements necessary and appropriate for the SF State campus to fulfill its educational mission as well as implement its strategic vision and core values.

1.5. Environmental Review Process

In accordance with the requirements of CEQA and the CEQA Guidelines, a Draft EIR was prepared to address the potential significant environmental effects associated with the development of the SF State Campus Master Plan project.

To determine the number, scope and extent of environmental issues to be addressed in this EIR, the University prepared a Notice of Preparation (NOP) and circulated it for 30 days, beginning October 10, 2006 and ending November 10, 2006, to interested public agencies, organizations, community groups, and individuals in order to receive input on the proposed project. The University also held two Draft EIR scoping meetings on October 24, 2006, to obtain public input on the proposed scope and content of the EIR. Interested parties attended the meeting and provided input.
The Draft EIR was circulated for a 60-day public review period, which was longer than the 45-day review period required by state law, beginning February 2, 2007 and ending April 2, 2007. During this public review period, the University received written comments on the Draft EIR. SF State also held two public hearings on March 6, 2007, in conjunction with circulation of the Draft EIR to obtain public input regarding the Draft EIR. Interested parties attended the meeting and provided input.

Section 15088 of the CEQA Guidelines requires that the Lead Agency responsible for the preparation of an EIR evaluate comments on environmental issues received from parties who reviewed the Draft EIR and prepare a written response addressing each of the comments. The intent of the Final EIR is to provide a forum to air and address comments pertaining to the information and analysis contained within the Draft EIR, and to provide an opportunity for clarifications, corrections, or minor revisions to the Draft EIR as needed.

This Final EIR assembles in one document all of the environmental information and analysis prepared for the proposed project, including comments on the information and analysis contained in the Draft EIR and responses by the University to those comments.

Pursuant to Section 15132 of the State CEQA Guidelines, the Final EIR consists of the following:

(a) The Draft EIR, including all of its appendices, is incorporated by reference in this Final EIR.

(b) A list of persons, organizations, and public agencies commenting on the Draft EIR.

(c) Copies of all letters received by the University during the Draft EIR public review period and responses to significant environmental points concerning the Draft EIR raised in the comment letters.

(d) Revisions to the Draft EIR.

(e) Any other information added by the Lead Agency.

2.0 CEQA FINDING OF INDEPENDENT JUDGMENT

The EIR reflects the Board of Trustees’ independent judgment. The Board of Trustees has exercised independent judgment in accordance with Public Resources Code 21082.1(c)(3) in retaining its own environmental consultant in the preparation of the EIR, as well as reviewing, analyzing and revising material prepared by the consultant.

Having received, reviewed and considered the information in the EIR, as well as any and all other information in the record, the Board of Trustees of the California State University hereby makes findings pursuant to and in accordance with Sections 21081, 21081.5, and 21081.6 of the Public Resources Code.

3.0 FINDINGS OF FACT

3.1 Environmental Effects of the Project which are Considered Unavoidable Significant Impacts
This section identifies the significant unavoidable impacts that require a statement of overriding considerations to be issued by the Board of Trustees, pursuant to Section 15093 of the CEQA Guidelines, if the project is approved. Based on the analysis contained in the EIR, the following impacts have been determined to fall within the "significant unavoidable impacts" category:

a) Historic resource impacts,

b) Construction noise impacts, and

c) Traffic impacts.

HISTORIC RESOURCE IMPACTS

An evaluation of the historic resource impacts associated with the project is found in Section 4.4, *Cultural Resources*, of the Draft EIR (see Impact CULT-2).

The Draft EIR identifies buildings and structures that will be 50 years or older by 2020, which is the planning horizon for the proposed Campus Master Plan. Structures older than 50 years of age have not been evaluated at this time because while they may not qualify as historic structures at this time, their significance could change between now and the time that they are proposed for removal or alteration. Therefore it is possible that some of the site buildings or structures could qualify as historic resources in the future and their alteration or removal could represent a significant adverse impact.

Mitigation Measures

The Board of Trustees finds that there are no feasible measures available to mitigate historic resource impacts of the project to a level less than significant. However, the following feasible mitigation measure would partially reduce the identified impacts.

Mitigation CULT-2A: The campus shall identify all buildings and structures within the project’s area of potential effect that will be 50 years of age or older at the time of project construction. If potentially historic structures are present, Mitigation CULT-2B shall be implemented.

Mitigation CULT-2B: Potential historic structures present within the project’s area of potential effect will be evaluated as follows:

(i) Before altering or otherwise affecting a building or structure 50 years old or older, the campus shall retain a qualified architectural historian to record it based on professional standards, and assess its significance under CEQA Guidelines Section 15064.5. The evaluation process shall include the development of appropriate historical background research as context for the assessment of the significance of the structure in the history of the California State University system, the campus, and/or the region. For historic buildings, structures or features that do not meet the CEQA criteria for a historical resource, no further mitigation is required.

(ii) For a building or structure that qualifies as a historic resource, the architectural historian and the campus shall consider measures that would enable the project to avoid direct or indirect impacts to
the building or structure. These measures could include preserving a building on the margin of the project site, using it “as is,” or other measures that would not alter the building. If the project cannot avoid modifications to a significant building or structure, the campus shall implement Mitigation CULT-2C.

Mitigation CULT-2C: For a structure or building that has been determined by a qualified architectural historian to qualify as a historical resource, and where avoidance is not feasible, documentation and treatment shall be carried out as described below:

(i) If the building or structure can be preserved on site, but remodeling, renovation or other alterations are required, this work shall be conducted in compliance with the “Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings” (Weeks and Grimmer 1995).

(ii) If a significant historic building or structure is proposed for major alteration or renovation, or to be moved and/or demolished, the campus shall ensure that a qualified architectural historian thoroughly documents the building and associated landscaping and setting. Documentation shall include still and video photography and a written documentary record of the building to the standards of the Historic American Building Survey (HABS) or Historic American Engineering Record (HAER), including accurate scaled mapping, architectural descriptions, and scaled architectural plans, if available. A copy of the record shall be deposited with the SF State Library. The record shall be accompanied by a report containing site-specific history and appropriate contextual information. This information shall be gathered through site specific and comparative archival research, and oral history collection as appropriate.

(iii) If preservation and reuse at the site are not feasible, the historical building shall be documented as described in item (ii) and, when physically and financially feasible, be moved and preserved or reused.

(iv) If, in the opinion of the qualified architectural historian, the nature and significance of the building is such that its demolition or destruction cannot be fully mitigated through documentation, the campus shall reconsider project plans in light of the high value of the resource, and implement more substantial modifications to the proposed project that would allow the structure to be preserved intact. These could include project redesign, relocation or abandonment.

Cumulative Impacts

Direct project impacts in this area include impacts on historic resources, as described above. The campus’ contribution to the destruction of the historic resources database in San Francisco will be minimized to the extent feasible, with the implementation of the above mitigation measure. Similarly, the protocols in place for development projects in San Francisco, such as are provided in the CEQA Review Procedures for Historic Resources would also be expected to minimize significant impacts to the cultural resource base associated with construction projects elsewhere in the City. Therefore, it is concluded that the cumulative impact would be less than significant with the protocols in place for development projects on campus and in San Francisco, and the campus’ contribution to this impact would not be cumulatively considerable.
Findings
The Board of Trustees finds that the above mitigation measures are feasible, are adopted, and will reduce the project historic resource impacts. Pursuant to Section 21081(a)(1) of the Public Resources Code, changes or alterations have been required in, or incorporated into, the project that would mitigate, in part, the significant historic resource impacts. However, there are no feasible mitigation measures that would reduce the identified significant impact to a level below significant. Therefore, this impact must be considered unavoidably significant even after implementation of all feasible historic resource mitigation measures. Pursuant to Section 21081(a)(3) of the Public Resources Code, as described in the Statement of Overriding Considerations, the Board of Trustees has determined that specific economic, legal, social, technological, or other benefits, make infeasible the alternatives identified in the EIR and the identified historic resource impacts are thereby acceptable because of specific overriding considerations (see Statement of Overriding Considerations).

CONSTRUCTION NOISE IMPACTS

Summary of Potential Impacts
An evaluation of the construction noise impacts associated with the project is found in Section 4.9, Noise, of the Draft EIR (see Impact NOIS-1).

Routine airborne noise levels from conventional construction activities (with a typical number of pieces of equipment operating on the site) range from 75 to 86 dBA Leq at a distance of 50 feet. Due to improvements in construction equipment silencing technology developed during the past 30 years, these sound levels are 3 decibels less than the noise levels reported in the U.S. EPA 1971 reference study. Typically, the quietest phase of building site construction for similar projects (i.e., schools) is that associated with constructing foundations (75 dBA Leq at a distance of 50 feet), and the typical loudest phases producing 86 dBA Leq at 50 feet are those associated with grading and finishing activities. Noise levels from construction activities generally decrease at a rate of 6 dB per doubling of distance from the activity.

At distances of 100 feet or more from the construction activity, noise from on-campus construction is predicted to be below the significance criteria of 80 dBA Lmax daytime (between 7:00 AM and 8:00 PM). However, if a construction site were less than 100 feet from a nearby receptor, the noise levels from certain construction activities would exceed the significance criteria. In addition, at distances of 500 feet or less from noise sensitive receptors, construction noise levels could exceed nighttime ambient noise levels by 5 dBA or more, which would exceed the nighttime significance threshold.

Most of the new construction would occur in parts of the campus that are distant from off-campus sensitive receptors and relatively distant from most on-campus residential receptors. Therefore, although noise from construction would be audible and would temporarily elevate the local ambient noise levels to some degree at distances greater than 100 feet from the source, construction noise on the campus would not cause an exceedance of the noise impact significance criteria at existing off-campus residences or at receptors on campus.

Construction of replacement and new facilities on some sites on the campus would, however, occur at distances less than 100 feet from existing and future sensitive receptors on the campus. For example, the
redevelopment of two blocks of University Park South would occur less than 100 feet from nearby campus and off-campus receptors, and would result in noise levels that would exceed the criteria at these nearby receptors. This would be a significant impact.

Mitigation Measures

The Board of Trustees finds that there are no feasible measures available to mitigate noise levels attributable to project construction to a level less than significant. However, the following feasible mitigation measure would partially reduce the identified impacts.

Mitigation NOIS-1: The campus shall include the following noise control measures in all construction contracts for construction projects that are within 100 feet of a sensitive receptor:

- Construction equipment used on campus is properly maintained and has been outfitted with feasible noise-reduction devices to minimize construction-generated noise.
- Stationary noise sources such as generators or pumps are located at least 100 feet away from noise-sensitive land uses as feasible.
- Laydown and construction vehicle staging areas are located at least 100 feet away from noise-sensitive land uses.
- Whenever possible, academic, administrative, and residential areas that will be subject to construction noise will be informed in writing at least a week before the start of each construction project.
- Loud construction activity (i.e., construction activity such as jackhammering, concrete sawing, asphalt removal, and large-scale grading operations) within 100 feet of a residential or academic building shall not be scheduled during finals week.
- Loud construction activity as described above within 100 feet of an academic use shall, to the extent feasible, be scheduled during weekends, holidays, Thanksgiving break, Christmas break, Spring break, or Summer break.
- Loud construction activity within 500 feet of a residential building shall be restricted to the hours between 7:30 AM and 7:30 PM, Monday through Saturday.

Cumulative Impacts

Direct project impacts in this area include increases in noise during construction, as described above. As construction noise on campus would not cumulate with construction noise from off-campus construction sites due to distance, significant cumulative construction noise impacts are not anticipated.

Findings

The Board of Trustees finds that the above mitigation measure is feasible, is adopted, and will reduce the project construction noise impacts. Pursuant to Section 21081(a)(1) of the Public Resources Code, changes or alterations have been required in, or incorporated into, the project that would mitigate, in part, the significant construction-related noise impacts. However, there are no feasible mitigation measures that would reduce the
identified significant impact to a level below significant. Therefore, this impact must be considered unavoidably significant even after implementation of all feasible construction-related noise mitigation measures. Pursuant to Section 21081(a)(3) of the Public Resources Code, as described in the Statement of Overriding Considerations, the Board of Trustees has determined that specific economic, legal, social, technological, or other benefits, make infeasible the alternatives identified in the EIR and the identified construction noise impact is thereby acceptable because of specific overriding considerations (see Statement of Overriding Considerations).

TRAFFIC IMPACTS

Summary of Potential Impacts

An evaluation of the traffic impacts associated with the project is found in Section 4.11, *Traffic, Circulation, and Parking* of the Draft EIR (see Impact TRA-1) and as revised in the Final EIR (see Chapter 3, *Changes to the Draft EIR*, pages 3-29 through 3-40).

As a result of campus growth under the Campus Master Plan, the additional students, faculty, and staff would make new trips to the campus using a variety of modes of transportation. To avoid increasing the number of daily and peak hour vehicle trips to the campus, the Campus Master Plan includes an expanded and enhanced Transportation Management program that emphasizes alternate travel modes and a housing program that is designed to house more of the SF State affiliates on the campus. The timely and successful implementation of these programs included in the Campus Master Plan would help avoid a substantial increase in vehicle trips. The EIR presents potential traffic impacts under two scenarios: (1) an analysis of likely traffic impacts assuming that the Campus Master Plan Transportation Management and housing programs are successfully implemented, and (2) a conservative worse-case analysis that assumes that the proposed Transportation Management and housing programs are not implemented successfully or in a timely manner, and therefore new vehicle trips would be added to study area roadways and intersections.

Scenario 1 concludes that the combined effect of the TDM, parking, transit, and housing programs will likely be to maintain campus-related auto traffic levels at their current rates through 2020, and the impact at the study area intersections would be less than significant. Scenario 2 concludes that: (1) Lake Merced Boulevard/South State Drive and (2) Lake Merced Boulevard/Font Boulevard would be significantly affected with the addition of project traffic under Year 2020 Conditions. These affects constitute significant cumulative impacts for which the project would have a considerable contribution. No direct project impacts were identified on study intersections.

Traffic impacts under Scenario 2 were evaluated based on standards of significance used by the City and County of San Francisco to evaluate traffic impacts. Based on these standards, the project’s traffic impacts at signalized intersections were considered significant if:

- Project-related traffic causes the level of service to deteriorate from LOS D or better to LOS E or F, or from LOS E to LOS F, or
- If a signalized intersection operates at LOS E or F under cumulative without project conditions and the following conditions occur: (1) project-related traffic contributes 5 percent or more of the total
traffic at the intersection, and (2) the project-related traffic contributes 5 percent or more of the cumulative growth in traffic volumes at the affected intersection.

With the addition of project traffic, the level of service at the intersection of Lake Merced Boulevard and South State Drive would decline from LOS C to LOS E by 2020. The level of service at Lake Merced Boulevard/Font Boulevard intersection would be LOS F with and without the addition of project traffic by 2020. However, the new vehicle trips added by the project at the intersection of Lake Merced Boulevard/Font Boulevard would make up more than 5 percent of the total volume of traffic in 2020 and more than 5 percent of the growth in traffic between 2006 and 2020. Therefore, the project would result in significant impacts at these two intersections, based on the significance standards identified above. Intersection capacity improvements that can be implemented to improve intersection operations are described below.

- **Lake Merced Boulevard/South State Drive** – The intersection can be restored to operate at an acceptable level of service by widening the westbound approach to provide an additional shared left-right-turn lane (currently, one exclusive left-turn lane and one right-turn lane exists). Implementation of this improvement would require removal of parking at a minimum within 500 feet from the intersection on the west leg.

- **Lake Merced Boulevard/Font Boulevard** – The intersection can be restored to operate at an acceptable level of service by widening the southbound approach to provide an additional exclusive left-turn lane (currently, one exclusive left-turn lane exists). Implementation of this mitigation measure would require elimination of on-street parking between South State Drive and at a minimum 600 feet south of the intersection. The westbound approach will also need to be widened to provide an additional exclusive left-turn lane and an additional exclusive right-turn lane (currently, shared left-right-turn lane exists). Implementation of this improvement would require removal of parking on the west leg of the intersection.

Mitigation Measures

The Board of Trustees finds that there are no feasible measures available to mitigate traffic impacts attributable to the project to a level less than significant. However, the following feasible mitigation measure would partially reduce the identified impacts.

Mitigation TRA-1: The campus shall implement the following monitoring and mitigation program:

- As a first step, the campus shall conduct a new baseline cordon survey no less than 18 months following the certification of this EIR. Alternatively, the campus may use the 2006 cordon survey as a baseline.

- Next, at intervals of no more than every three years, and no later than the addition of each 1,000 students in enrollment, the campus will hire an outside transportation planning or data analysis firm to conduct a statistically significant cordon survey of campus commuters during the PM peak hours. The cordon survey will cover all major entrances to the campus and will examine the travel behavior of SF State affiliates. The survey will be conducted during typical days while classes are in session, excluding final examination, national holiday or orientation weeks.

- If cordon surveys show that the PM peak period auto trips to and from campus are greater than 5 percent above the baseline, the campus shall conduct the cordon surveys annually until such trips fall
below 5 percent above the baseline for 2 years in a row. If and when this occurs, cordon surveys will continue in accordance with the second bullet above.

- If the cordon surveys show an increase in PM peak period auto trips sufficient to result in project impacts at the two affected intersections, the campus will increase the level of TDM programs until the project impacts associated with traffic increases are mitigated to a less-than-significant level.

- If the campus fails to reduce its traffic impacts to a less-than-significant level for more than two years in a row, it will contribute its “fair share” of the cost of identified intersection improvements to the City and County of San Francisco, as appropriate, provided that the legislature appropriates funds as requested by CSU in the State budget process.

No additional mitigation is required beyond that identified in Mitigation TRA-1 above.

Cumulative Impacts

As indicated above, no direct project impacts would occur on study intersections with growth contemplated by the Campus Master Plan. Based on the conservative, worst-case analysis provided in the EIR, significant cumulative impacts on two study intersections would occur for which the project would have a considerable contribution. Even with proposed mitigation in place for the intersections analyzed as part of the Final EIR, cumulative traffic impacts remain significant and unavoidable, as described below.

Findings

The Board of Trustees finds that the above mitigation measure is feasible, is adopted, and will reduce project traffic impacts. Pursuant to Section 21081(a)(1) of the Public Resources Code, changes or alterations have been required in, or incorporated into, the project, which would mitigate, in part, the significant traffic impacts attributable to increased vehicle trips identified in the Final EIR.

A mitigation measure has been identified that would, if implemented in a timely manner, reduce the impacts on traffic conditions to a less-than-significant level. Additionally, pursuant to the recent State Supreme Court decision (City of Marina v Board of Trustees of the California State University), the CSU and the University acknowledge responsibility to negotiate with local agencies in order to determine the amount of voluntary mitigation payment (process subject to Chapter 13.7 of Government Code Section 67685) that would fund the University’s fair share of the off-site traffic improvements under Mitigation TRA-1 above, that may be required to mitigate or avoid the environmental effects of this project. Related to this measure, SF State agrees to work in good faith with the City to fund its “fair share” of intersection improvements identified in Mitigation TRA-1.

The mitigation measure is structured so that off-campus intersection improvements are a last resort to be implemented only if campus PM peak hour trips increase sufficiently and additional transportation demand management measures fail to reduce new vehicle trips. However, since a portion of this mitigation measure (i.e., off-campus intersection improvements) is not within the authority and jurisdiction of the CSU board of trustees, the implementation of these improvements cannot be guaranteed to fully mitigate the potentially significant impacts. In the event the identified traffic improvements on intersections under the jurisdiction of the City and County of San Francisco are required to mitigate the significant impacts of additional campus-
related vehicle trips and are not constructed in a timely manner or caused to be constructed by the responsible agency, traffic impacts would not be reduced to a level below significant. In this instance, there are no additional feasible mitigation measures under the authority and jurisdiction of the CSU board of trustees that would reduce the identified significant impacts, and no agreement has been reached that ensures timely implementation of the necessary improvements, if in fact they are needed. Further, as there is no guarantee that the legislature will appropriate the funds requested by CSU to support the fair share payment of the cost of identified intersection improvements, this measure may ultimately be determined to be infeasible by CSU. Therefore, these impacts must be considered remaining, unavoidably significant even with the implementation of the portion of the mitigation measure that is under the control of the board, because the board cannot guarantee full implementation of all aspects of the measure necessary to reduce traffic impacts to less than significant as described herein.

Therefore, pursuant to Section 21081(a)(3) of the Public Resources Code, as described in the Statement of Overriding Considerations, the Board of Trustees has determined that specific economic, legal, social, technological, or other benefits of the project override the identified traffic impacts if the responsible agency does not complete the off-campus intersection improvements identified in the mitigation measure, if required, and are thereby acceptable because of specific overriding considerations (see Statement of Overriding Considerations).

3.2 Environmental Effects Discussed in the EIR Which Can Be Avoided or Substantially Lessened to Less Than Significant Levels with Implementation of the Identified Mitigation Measures

This section identifies significant adverse impacts of the project that require findings to be made under Section 21081 of the Public Resources Code and Section 15091 of the CEQA Guidelines. Based on information in the EIR, the Board of Trustees finds that, based upon substantial evidence in the record, adoption of the mitigation measures set forth below will reduce the identified significant impacts to less than significant levels. Based on the analysis contained in the EIR, the following impacts have been determined to fall within the category of impacts that can be reduced to less than significant levels with implementation of the mitigation measures set forth below:

a) Aesthetics (off-campus visual character);
b) Air Quality (construction and operational emissions);
c) Biological Resources (sensitive habitats and special-status species);
d) Cultural Resources (archaeological and paleontological resources, and human remains);
e) Geology, Soils and Seismicity (seismic-related ground failure);
f) Hazards and Hazardous Materials (exposure to contaminated building materials);
g) Hydrology and Water Quality (surface water quality); and
h) Traffic, Circulation, and Parking (transit services).
OFF-CAMPUS VISUAL CHARACTER IMPACTS

Summary of Potential Impacts

An evaluation of the off-campus visual character impact associated with the project is found in Section 4.1, *Aesthetics*, of the Draft EIR and as revised in the Final EIR (see Chapter 3, *Changes to the Draft EIR*, pages 3-8 through 3-9).

The Parkmerced neighborhood is located south of the SF State campus. The buildings on the University Park South (UPS) property and development further south, constitute the Parkmerced neighborhood. The proposed Campus Master Plan calls for the redevelopment of a portion of these buildings in UPS to provide for higher density housing. These new buildings will be limited in height to 50-feet, which is taller than the existing Parkmerced buildings immediately to the south of UPS, which are about 20 feet in height. The buildings in UPS along Holloway Avenue and immediately south are mostly 2-stories in height and have a unique architectural style. Given this unique style and the fact that these buildings are part of a larger neighborhood that has fairly uniform and distinct visual characteristics, the redevelopment of the buildings in UPS by the campus could potentially degrade the existing visual character of the adjacent area if not properly designed. This is considered a potentially significant impact. (See Impact AES-3 for additional information.)

Mitigation Measures

The Board of Trustees finds that, based upon substantial evidence in the record, the potential off-campus visual character impact of the project will be reduced to less than significant levels by implementation of the following mitigation measure:

Mitigation AES-3: Develop appropriate architectural and urban design guidelines that apply specifically to the proposed redevelopment of a portion of the existing University South Park (UPS) buildings. These guidelines will require that any proposed new structures in UPS respect the existing visual characteristics of the adjacent Villas Parkmerced neighborhood. The guidelines should consider building color and design, exterior treatments and design details, and building heights/massing such that the proposed new development is visually compatible with the adjacent Villas Parkmerced neighborhood.

Cumulative Impacts

Direct project impacts include potential impacts related to the alteration of the visual character and appearance of the adjacent Parkmerced neighborhood. This impact is a direct project impact specific to the project circumstances and location. Therefore, this impact would not compound over time, or persist and worsen.

As the majority of future development in the vicinity of the campus will be limited to intensification or rebuilding of existing uses, changes to visual character will likely be limited to changes in building size and architectural character. Further, no large-scale changes in land use to the neighborhoods adjacent to the campus are proposed in local plans. Therefore, existing visual conditions around the campus will presumably continue. Although there may be incremental changes over time, these changes will not result in significant cumulative impacts due to substantial degradation of the existing visual character of the area. Therefore, the potential cumulative impact on visual character will be less than significant. (See Impact AES-5 for
additional information.)

Findings

The Board of Trustees finds that the above mitigation measure is feasible, is adopted, and will reduce the potential off-campus visual character impact of the project to less than significant levels. Accordingly, the Board of Trustees finds that, pursuant to Section 21081(a)(1) of the Public Resources Code and Section 15091(a)(1) of the CEQA Guidelines, changes or alterations have been required in, or incorporated into, the project which mitigate or avoid the potentially significant off-campus visual character impact as identified in the Final EIR.

CONSTRUCTION AND OPERATION AIR EMISSIONS IMPACTS

Summary of Potential Impacts

An evaluation of the construction and operation air emissions impacts associated with the project is found in Section 4.2, *Air Quality*, of the Draft EIR and as revised in the Final EIR (see Chapter 3, *Changes to the Draft EIR*, pages 3-9 through 3-10).

Construction-related activities will generate fugitive dust, which is measured in terms of PM$_{10}$ and PM$_{2.5}$, from earthmoving, excavation, grading, and travel over unpaved haul roads. The Bay Area Air Quality Management District (BAAQMD) recognizes that construction activities can cause a substantial increase in localized PM$_{10}$ concentrations, which can create nuisance to nearby sensitive receptors. However, the BAAQMD CEQA Guidelines do not require lead agencies to estimate emissions from construction. This impact is considered potentially significant. The BAAQMD guidelines indicate that if the project proponent implements identified control measures during construction, then construction-phase air quality impacts are considered to be less than significant. (See Impact AIR-1 for additional information.)

The BAAQMD CEQA Guidelines distinguish between projects and plans and recommend that the evaluation of air quality impacts from plans not focus on the quantification of emissions but on an analysis of the plan’s consistency with the Clean Air Plan (CAP). The proposed Campus Master Plan is a plan for the development of the SF State campus over the next 13 years. Therefore, impacts from the development under the proposed Campus Master Plan were evaluated in terms of the plan’s consistency with the CAP. The Draft EIR reported that campus growth might not be consistent with the most recent CAP population projections and criteria regarding toxics. This was identified as a potentially significant impact. (See Impact AIR-2 for additional information.)

Mitigation Measures

The Board of Trustees finds that, based upon substantial evidence in the record, the potential construction and operation air emissions impacts of the project will be reduced to less than significant levels by implementation of the following mitigation measure:

Mitigation AIR-1: The Campus shall apply the following feasible control measures as required by Bay Area Air Quality Management District (BAAQMD):
Basic Control Measures – For all construction sites:
- Water all active construction areas at least twice daily, or as needed.
- Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least two feet of freeboard
- Pave, apply water three times daily, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas and staging areas at construction sites.
- Sweep daily (with water sweepers) all paved access roads, parking areas and staging areas at construction sites.
- Sweep streets daily (with water sweepers) if visible soil material is carried onto adjacent public streets.

Enhanced Control Measures – For sites greater than 4 acres in area:
- All “Basic” control measures listed above.
- Hydroseed or apply (non-toxic) soil stabilizers to inactive construction areas (previously graded areas inactive for ten days or more.)
- Enclose, cover, water twice daily or apply (non-toxic) soil binders to exposed stockpiles (dirt, sand, etc.)
- Limit traffic speeds on unpaved roads to 15 mph.
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways.
- Replant vegetation in disturbed areas as quickly as possible.
- Suspend excavation and grading activity when winds (instantaneous gusts) exceed 25 mph.
- Limit the area subject to excavation, grading and other construction activity at any one time.

Mitigation AIR-2A: The SF State campus will work with the Association of Bay Area Governments (ABAG) to ensure that campus growth associated with the proposed Campus Master Plan is accounted for in the regional population forecasts.

Mitigation AIR-2B: The SF State campus will work with BAAQMD to ensure that campus growth-related emissions are accounted for in the regional emissions inventory and mitigated in future air quality planning efforts.

Mitigation AIR-2C: The SF State campus will work with BAAQMD to ensure that environmental review of projects that will result in new TACs (i.e., expansion of the Central Plant, the new Northern Plant, and expansion of building space for science programs) are closely coordinated with the District’s permitting process. The analysis of TACs from these new sources will be conducted in accordance with the BAAQMD CEQA Guidelines and appropriate and feasible mitigations measures will be developed as necessary to ensure that impacts are reduced to a less-than-significant level. Mitigation measures that could be incorporated into future projects include but are not limited to: the establishment of buffer zones, the installation of control devices on equipment, and changes to operational practices.
Cumulative Impacts

Direct project impacts in this area include construction and operation air emissions, as described above. Localized emissions of PM\textsubscript{10} and PM\textsubscript{2.5} from construction activities on campus would not cumulate with those from other off-campus construction sites due to the distance; and therefore, there is no potential for a cumulative impact. Additionally, the proposed Campus Master Plan would not result in a significant cumulative air quality impact related to regional emissions from project operation, nor would the plan contribute considerably to such a cumulative impact, assuming the mitigation measures identified above are implemented. (See Impact AIR-4 for additional information.)

Findings

The Board of Trustees finds that the above mitigation measures are feasible, are adopted, and will reduce the potential construction and operation air emissions impacts of the project to less than significant levels. Accordingly, the Board of Trustees finds that, pursuant to Section 21081(a)(1) of the Public Resources Code and Section 15091(a)(1) of the CEQA Guidelines, changes or alterations have been required in, or incorporated into, the project that mitigate or avoid the potentially significant construction and operation air emissions impacts as identified in the Final EIR.

SENSITIVE HABITAT AND SPECIAL-STATUS SPECIES IMPACTS

Summary of Potential Impacts

An evaluation of the sensitive habitat and special-status species impacts associated with the project is found in Section 4.3, Biological Resources, of the Draft EIR and as revised in the Final EIR (see Chapter 3, Changes to the Draft EIR, pages 3-10 through 3-15).

The adjacent Lake Merced area contains sensitive habitats (e.g., wetlands) and special-status plants and wildlife (e.g., San Francisco spineflower and double-breasted cormorants). Construction of the proposed Lake Merced Boulevard bridge underpass, creek inlet into Lake Merced, and path connection, and the discharge of storm water into the lake could potentially affect wetlands and other sensitive habitats, as well as special-status plant and wildlife species in the adjacent Lake Merced area. This is considered to be a potentially significant impact. (See Impact BIO-1 for further information.)

Additionally, Lake Merced does provide nesting habitat for a number of special-status and sensitive bird species. The bulrush marsh and willow scrub along the lake edge have been identified as important bird habitat due to its value for nesting. While there are no known occurrences of special-status wildlife species on the SF State campus, there is low potential that the landscaped habitat on campus provides suitable nesting habitat for special-status birds-of-prey and therefore such nesting may be occurring on the site, or may occur in the future. Proposed development contemplated under the Campus Master Plan could potentially result in loss or abandonment of active nests of special-status birds on-campus or in the adjacent Lake Merced area. (See Impact BIO-2 for further information.)

Mitigation Measures
The Board of Trustees finds that, based upon substantial evidence in the record, the potential sensitive habitat and special-status species impacts of the project will be reduced to less than significant levels by implementation of the following mitigation measure:

Mitigation BIO-1A: The new path connection and the new seasonal creek inlet in the East Lake area shall be located in consultation with the San Francisco Public Utilities Commission and any other agency with jurisdiction over the management of Lake Merced. The new path connection shall be sited to avoid wetland and other sensitive habitats (including bulrush marsh and willow scrub areas along the lake edge), and the path will also be sited to avoid bringing people into sensitive bird habitat.

Mitigation BIO-1B: All wetland or other sensitive habitat in Lake Merced temporarily disturbed/removed during the construction of the bridge underpass, path connection and/or seasonal creek shall be replaced and restored in accordance with the SFPUC through its subsequent approval process and all regulatory permit requirements. Prior to any work that could disturb jurisdictional or other wetland habitat, appropriate permits shall be obtained as required from ACOE and/or RWQCB. Consultation with all of these agencies shall govern how the disturbance of wetlands and other sensitive habitats will be mitigated, including the location and extent of wetland restoration and creation, and planting and management specifications (e.g., success criteria, monitoring, reporting, etc.).

Mitigation BIO-1C: At the time that the path connection and/or seasonal creek inlet in the East Lake area are proposed, a clearance-level plant survey shall be performed for these projects to determine the presence or absence of special-status or sensitive plant species. If such species are found and will be either directly or indirectly affected by proposed construction an appropriate replacement and/or mitigation plan shall be developed and implemented in consultation with the California Department of Fish and Game, the U.S. Fish and Wildlife Service, and/or any other agency with jurisdiction over the management of Lake Merced, as appropriate. Such a replacement and/or mitigation plan would include, but would not necessarily be limited to:

- Replacement of removed vegetation at a defined replacement ratio and/or restoration of existing habitat via new plantings, removal of exotic species, etc.
- Monitoring and maintenance of any newly planted areas for a specified time period
- Specification of success criteria
- Specification of reporting requirements

Mitigation BIO-1D: The design and engineering of the creek corridor and the Lake Merced Boulevard underpass/bridge shall ensure that these facilities do not cause erosion along the sand banks in the Lake Merced area, which could degrade localized sensitive habitat values. Erosion of sand banks in Lake Merced could be avoided by providing for adequate stormwater detention on campus and appropriate design elements (e.g., check dams, slope stabilization, etc.) to ensure that the longitudinal creek profile and channel cross-section are stable.

Mitigation BIO-2A: If project construction on campus is scheduled during the typical avian nesting season (February 15 to July 31), each work site (including access routes) and the areas within 150 feet of the work site shall be surveyed by a qualified biologist for the presence of migratory and/or special-status nesting birds. Surveys shall be conducted at each work site within two weeks prior to the commencement of ground disturbing activities. Work sites include tree-removal areas and/or any construction sites on campus.
If nesting birds were found to be present, a 150-foot buffer zone shall be established around the perimeter of the nest substrate (tree, shrub, herb, etc.) and clearly marked with “environmentally sensitive area” fencing. Construction or any related activities shall not be conducted within those areas until all observed nesting activities are completed. A qualified biologist shall determine nesting status. Pre-construction surveys will not be required if project construction is scheduled outside the typical avian nesting season (August 1 – February 15).

Mitigation BIO-2B: For construction off-campus in the Lake Merced area, construction-phase mitigation measures for the protections of nesting special-status birds shall be developed in consultation with the SFPUC through its subsequent approval process to ensure that substantial effects on nesting birds do not occur. Measures could include, but would not be limited to: provisions for pre-construction surveys, prohibitions on initiating construction during certain times of the year (e.g., typical nesting season), and/or buffer distances from active nest sites.

Mitigation BIO-2C: Appropriate signage and other design features (e.g., fencing) will be installed as deemed appropriate by the San Francisco Public Utilities Commission and any other agency with jurisdiction over the management of Lake Merced, to keep people on the connector path and to prohibit the creation of ad-hoc trails. This signage will explain the potential for people to disturb birds nesting in the marsh vegetation around the edges of the lake, if they stray from the path.

Cumulative Impacts

Direct project impacts in this area include those related to sensitive habitat and special-status species, as describe above. Additionally, neither development on campus, nor reasonably foreseeable future development within the southwestern portion of San Francisco, would result in a significant cumulative impact associated with adverse effects to sensitive natural communities and/or special-status species. Therefore, the potential cumulative biological resources impact would be less than significant. (See Impact BIO-4 for additional information.)

Findings

The Board of Trustees finds that the above mitigation measures are feasible, are adopted, and will reduce the potential sensitive habitat and special-status species impacts of the project to less than significant levels. Accordingly, the Board of Trustees finds that, pursuant to Section 21081(a)(1) of the Public Resources Code and Section 15091(a)(1) of the CEQA Guidelines, changes or alterations have been required in, or incorporated into, the project that mitigate or avoid the potentially significant sensitive habitat and special-status species impacts as identified in the Final EIR.

Other Cultural Resource Impacts

Summary of Potential Impacts

An evaluation of the other cultural resource impacts associated with the project is found in Section 4.4, *Cultural Resources*, of the Draft EIR, and as revised in the Final EIR (see Chapter 3, *Changes to the Draft*
There is one known archeological site on campus (P-38-000025/CA-SFR-25), which is described as possible sand midden with some shell and no charcoal. While there are no other known archeological sites on campus, there is a potential that subsurface resources may exist on the campus. Any future campus project under the proposed Campus Master Plan that would disturb site soils or surface features has the potential to result in impacts to archaeological resources of the prehistoric or historic period. Significant resources under CEQA are those that meet CRHR eligibility criteria or are defined as unique under CEQA. If the resource is significant under CEQA, impacts would be significant if the project results in a substantial adverse change in the significance of the resource. Substantial adverse changes to archaeological deposits and features may result from ground disturbance or from increased traffic, erosion, vibrations or other activities that could affect the physical integrity of archaeological deposits or features. (See Impact CULT-1 for further information.)

Although no human remains have been encountered during the construction of buildings and other improvements on the campus, development under the proposed Campus Master Plan that includes excavation and grading has the potential to uncover, displace, and destroy human remains. This is a potentially significant impact. (See Impact CULT-3 for further information.)

There is potential that significant paleontological resources could exist in the Colma Formation that underlies the campus. Given that the Colma Formation has yielded significant vertebrate fossils within the project region, undisturbed sediments of the Colma Formation below the campus are considered to have a high potential for the occurrence of significant paleontological resources. This does not necessarily imply that vertebrate fossils will always be recovered from a high potential-rated rock unit, but only that there are recorded occurrences within the unit elsewhere in the region. Therefore, development under the proposed Campus Master Plan that could result in the disturbance of undisturbed sediments of the Colma Formation has the potential to result in a significant impact on paleontological resources that could exist in this formation. (See Impact CULT-4 for further information.)

Mitigation Measures

The Board of Trustees finds that, based upon substantial evidence in the record, the other cultural resource impacts of the project will be reduced to less than significant levels by implementation of the following mitigation measures:

Mitigation CULT-1A: During the planning and environmental review of specific development projects under the proposed Campus Master Plan, the campus shall follow the following protocol:

- If the project site is within 200 feet of archaeological site P-38-000025/CA-SFR-25, the campus shall have a qualified archaeologist conduct subsurface testing in order to determine whether buried archaeological materials are present and if so the extent of the deposit relative to the project’s area of disturbance. In the event that an archaeological resource is encountered during subsurface testing, the campus shall implement Mitigation CULT-1B. At the completion of the archaeological testing program, the archaeologist will prepare written findings. No surveys or subsurface testing is necessary at project sites in the rest of the campus.

- The campus shall include a standard inadvertent discovery clause in every construction contract, which requires that in the event that an archaeological resource is discovered during construction...
(whether or not an archaeologist is present), all soil disturbing work within 100 feet of the find shall cease, and the campus shall implement Mitigation CULT-1B below.

Mitigation CULT-1B: For an archaeological site that is encountered during the subsurface testing or during construction, the campus shall:

- Retain a qualified archaeologist to determine whether the resource qualifies as a historical resource or a unique archaeological resource.
- If the resource is determined to be a historical resource or a unique archaeological resource, the qualified archaeologist, in consultation with the campus, shall prepare a research design and archaeological data recovery plan for the recovery that will capture those categories of data for which the site is significant, and implement the data recovery plan prior to or during development of the site. The archaeologist shall also perform appropriate technical analyses, prepare a full written report and file it with the appropriate information center, and provide for the permanent curation of recovered materials.

Mitigation CULT-3A: The campus shall implement Mitigation CULT-1 to minimize the potential for disturbance or destruction of human remains in an archaeological context and to preserve them in place, if feasible.

Mitigation CULT-3B: The campus shall provide a representative of the local Native American community an opportunity to monitor any excavation (including archaeological excavation) within the boundaries of a known Native American archaeological site.

Mitigation CULT-3C: In the event of a discovery on campus of human bone, suspected human bone, or a burial, all excavation in the vicinity will halt immediately and the area of the find will be protected until a qualified archaeologist determines whether the bone is human. If the qualified archaeologist determines the bone is human, or if a qualified archaeologist is not present, the campus will notify the County of San Francisco Medical Examiner of the find before additional disturbance occurs. Consistent with California Health and Safety Code § 7050.5(b), which prohibits disturbance of human remains uncovered by excavation until the Coroner has made a finding relative to PRC 5097 procedures, the campus will ensure that the remains and vicinity of the find are protected against further disturbance. If it is determined that the find is of Native American origin, the campus will comply with the provisions of PRC § 5097.98 regarding identification and involvement of the Native American Most Likely Descendant (MLD).

Mitigation CULT-3D: If human remains cannot be left in place, the campus shall ensure that the qualified archaeologist and the MLD are provided an opportunity to confer on archaeological treatment of human remains, and that appropriate studies, as identified through this consultation, are carried out prior to reinternment. The campus shall provide results of all such studies to the local Native American community, and shall provide an opportunity of local Native American involvement in any interpretative reporting. As stipulated by the provisions of the California Native American Graves Protection and Repatriation Act, the campus shall ensure that human remains and associated artifacts recovered from campus projects on state lands are repatriated to the appropriate local tribal group if requested.

Mitigation CULT-4A: Prior to construction, a qualified paleontologist shall be consulted regarding the likelihood of encountering significant fossils on a given construction site. If the paleontologist determines fossils may be present, a paleontologic monitor shall be present at each excavation that penetrates potentially...
fossiliferous undisturbed native soil of the Colma Formation that has been identified by the paleontologist as moderately to highly sensitive.

Mitigation CULT-4B: If a monitor is not required, contractors shall be notified that they are required to watch for potential paleontological resources and must notify the campus if paleontological resources are found.

Mitigation CULT-4C: If paleontological resources are discovered, all soil disturbing work shall cease within 100 feet of the location. The resources shall be evaluated by a qualified paleontologist who will determine the resource’s potential scientific significance. If the find is determined to be significant, or potentially significant, a qualified paleontologist shall design and carry out data recovery consistent with the Standards of the Society of Vertebrate Paleontologists. Adequate recordation and recovery would include, at a minimum, the following:

- Development of site-specific environment and contextual information regarding the particular resource.
- Archival research and review of other studies in the area.
- Accurate recordation and excavation of the noted resources.
- In the event that a major significant find is uncovered, prior to excavating the significant resource, the campus shall ensure that an appropriate museum or scientific repository is selected for curation of the recovered materials.

Cumulative Impacts

Because project impacts will be mitigated to a less than significant level, no adverse cumulative impacts to cultural resources are anticipated.

Findings

The Board of Trustees finds that the above mitigation measures are feasible, are adopted, and will reduce impacts to cultural resources of the project, with the exception of historical resources in exceptional cases, to less than significant levels. Accordingly, the Board of Trustees finds that, pursuant to Section 21081(a)(1) of the Public Resources Code and Section 15091(a)(1) of the CEQA Guidelines, changes or alterations have been required in, or incorporated into, the project that mitigate or avoid the potentially cultural resources impacts as identified in the Final EIR. Please see Section 3.1 above for a discussion of the historical resource impacts of the project.

Seismic Impacts

Summary of Potential Impacts

An evaluation of the seismic impacts associated with the project is found in Section 4.5, *Geology, Soils, and Seismicity*, of the Draft EIR.

Severe seismic ground shaking and related ground failure is a possibility in the area of the SF State campus. The
valley portion of the campus has potential for ground failure related to liquefaction, settlement, and landslide; while the remainder of the campus has some potential for effects related to settlement in areas with loose surficial fills. The CDMC has designated the valley portion of the campus as a Seismic Hazard Zone for liquefaction potential, and the CGS has designated one isolated area on the SF State campus as a Seismic Hazard Zone for landslide potential. To address these types of concerns, the SF State campus routinely performs geotechnical investigations that evaluate the potential for liquefaction, settlement, and other types of ground failure at each building site. This is a potentially significant impact. (See Impact GEO-1 for additional information).

Mitigation Measures

The Board of Trustees finds that, based upon substantial evidence in the record, the potential seismic impacts of the project will be reduced to less than significant levels by implementation of the following mitigation measure:

Mitigation GEO-1: Where existing geotechnical information is not adequate, detailed geotechnical investigations shall be performed for areas that will support buildings or foundations. Such investigations for building or foundation projects located in the valley portion of the SF State campus will comply with the California Geological Survey’s Guidelines for Evaluating and Mitigating Seismic Hazards in California (Special Publication 117), which specifically address the mitigation of liquefaction and landslide hazards in designated Seismic Hazard Zones (CGS, 1997). All recommendations of the geotechnical investigations will be incorporated into project designs.

Cumulative Impacts

Because project impacts will be mitigated to a less than significant level, no adverse cumulative impacts related to seismicity are anticipated.

Findings

The Board of Trustees finds that the above mitigation measures are feasible, are adopted, and will reduce the seismic-related impact of the project to less than significant levels. Accordingly, the Board of Trustees finds that, pursuant to Section 21081(a)(1) of the Public Resources Code and Section 15091(a)(1) of the CEQA Guidelines, changes or alterations have been required in, or incorporated into, the project that mitigate or avoid the potentially significant seismic-related impact identified in the Final EIR.

EXPOSURE TO HAZARDOUS MATERIALS DURING BUILDING DEMOLITION

Summary of Potential Impacts

An evaluation of the potential project impact associated with exposure to hazardous materials during building demolition is found in Section 4.6, Hazards and Hazardous Materials, of the Draft EIR.

Hazardous materials could be encountered in campus buildings when they are demolished or remodeled under the proposed Campus Master Plan. These hazardous materials could be related to lead-based paints or asbestos used in the construction of the buildings, or to past spills and other releases of hazardous materials in
laboratories during research activities. In particular, the Science Building will be demolished in the course of the proposed Campus Master Plan. This building contains laboratories that have been used by the biology and chemistry departments. While no significant spills or contamination have been reported in this building since 1994, proper procedures should be followed whenever a laboratory is scheduled for demolition or renovation. Without such procedures in place, demolition of laboratory space could result in a potentially significant impact related to exposure to contaminated materials. (See Impact HAZ-4 for additional information).

Mitigation Measures

The Board of Trustees finds that, based upon substantial evidence in the record, the potential hazardous materials impact of the project related to building demolition will be reduced to a less than significant level by implementation of the following mitigation measure:

Mitigation HAZ-4: SF State will develop procedures regarding the demolition of laboratory space to ensure compliance with all applicable State regulations. These provisions will ensure the removal of hazardous materials; the decontamination of surfaces and equipment; proper characterization, storage and shipment of hazardous materials removed from laboratories; and proper worker training and safety procedures. These procedures should provide for the following:

- Removal of all hazardous materials
- User inspection for contamination
- Performance of a site audit to determine likelihood of chemical spills
- Performance of sampling for potential chemical contamination, if site audit finds that this is warranted
- Use of survey meters or wipe samples to detect lingering radioactivity, if radioactive materials were present
- Performance of sampling for potential chemical contamination, if site audit finds that this is warranted
- Communication with workers to ensure any remaining risk and health and safety procedures are understood and followed during demolition
- Following proper procedures for characterizing, storing, and shipping hazardous wastes, if necessary

Cumulative Impacts

Because project impacts will be mitigated to a less than significant level, no adverse cumulative impacts related to hazardous materials exposure during building demolition are anticipated.

Findings

The Board of Trustees finds that the above mitigation measures are feasible, are adopted, and will reduce the impact of the project related to hazardous materials exposure during building demolition to less than significant levels. Accordingly, the Board of Trustees finds that, pursuant to Section 21081(a)(1) of the Public
Resources Code and Section 15091(a)(1) of the CEQA Guidelines, changes or alterations have been required in, or incorporated into, the project that mitigate or avoid the potentially significant impact related to hazardous materials exposure during building demolition identified in the Final EIR.

SURFACE WATER QUALITY IMPACTS

Summary of Potential Impacts

An evaluation of the surface water quality impacts associated with the project is found in Section 4.7, *Hydrology and Water Quality*, of the Draft EIR and as revised in the Final EIR (see Chapter 3, *Changes to the Draft EIR*, pages 3-17 through 3-19).

The proposed Campus Master Plan includes a proposal to direct some of the runoff generated by new and replacement buildings and other impervious surfaces built under the proposed Campus Master Plan into a surface creek that would discharge excess runoff into Lake Merced. This element of the proposed Campus Master Plan would have a beneficial effect on Lake Merced as it would add new flows to the lake. To avoid an impact on surface water quality, the proposed Campus Master Plan relies on Low Impact Development (LID) concepts of on-lot infiltration and control, and distributed retention to reduce the impact of increased storm water runoff to Lake Merced. Overall, the proposed open storm water system incorporating LID concepts would treat surface water runoff by utilizing both physical and biological treatment processes occurring in the system’s vegetation and soils. The Campus Master Plan indicates that the proposed system emphasizes on-site filtration and will be designed to meet the highest applicable standards for water quality. Additionally, runoff from locations that could have concentrated sources of pollution (e.g., loading docks and parking lots) would not be directed into the open system, and therefore runoff from these locations would not be a potential source of surface water contamination.

Data on the effectiveness of the various treatment systems included in the proposed Campus Master Plan is variable and not definitive but the data available shows that the use of LID concepts lowers the levels of pollutants in urban runoff especially for heavy metals, with some studies showing large decreases in pollutant loads. Furthermore, the use of LID concepts in urban planning is considered state-of-the-practice and therefore for most urban runoff pollutants such as sediment, metals and oil/grease should result in a less-than-significant impact on Lake Merced water quality. However, potentially significant impacts may occur if campus storm water discharges increase the lake’s concentrations of nutrients and ammonia, which could potentially further decrease the lake’s dissolved oxygen concentrations causing further eutrophication. (See Impact HYDRO-1 for additional information.)

Mitigation Measures

The Board of Trustees finds that based upon substantial evidence in the record, the potential surface water quality impact of the project will be reduced to a less than significant level by implementation of the following mitigation measure:

Mitigation HYDRO-1: The campus shall conduct monitoring of storm water discharges to Lake Merced. If monitoring data indicate that the discharge of storm water from SF State to Lake Merced increases the level of nutrients in the lake, then depending on the source of the nutrient, additional measures (e.g., fertilizer best management practices) to reduce and/or offset nutrient loads shall be implemented on campus. The protocol
and specific requirements for conducting monitoring of campus storm water discharges shall be developed in accordance with the SFPUC through its subsequent approval process.

Cumulative Impacts

Because project impacts will be mitigated to a less than significant level, no adverse cumulative impacts related to surface water quality are anticipated.

Findings

The Board of Trustees finds that the above mitigation measures are feasible, are adopted, and will reduce the surface water quality impact of the project to less than significant levels. Accordingly, the Board of Trustees finds that, pursuant to Section 21081(a)(1) of the Public Resources Code and Section 15091(a)(1) of the CEQA Guidelines, changes or alterations have been required in, or incorporated into, the project that mitigate or avoid the potentially significant surface water quality impact identified in the Final EIR.

TRANSIT IMPACTS

Summary of Potential Impacts

An evaluation of the transit impacts associated with the project is found in Section 4.11, *Traffic, Circulation, and Parking*, of the Draft EIR and as revised in the Final EIR (see Chapter 3, *Changes to the Draft EIR*, pages 3-35 through 3-45).

The transit impact analysis provided in the Draft EIR was conducted for the PM peak hour (5:00-5:59 PM) in accordance with the City and County of San Francisco’s *Transportation Impact Analysis Guidelines for Environmental Review*. These guidelines call for a screenline analysis based on the “capacity, ridership and load factors during PM peak hour conditions for the affected transit lines.” Moreover, the PM peak hour is also when peak loads on the Muni system occur. An additional analysis of the SF State peak was also performed as part of the Final EIR, which was determined to be between 8:00-9:00 AM.

This analysis indicated that the four Muni screenlines would operate at levels far below Muni capacities, based on Muni’s passenger load standard of 85 percent. Therefore, the addition of new Muni riders generated by the Campus Master Plan would not substantially impact the peak hour capacity utilization at the screenlines. However, given the unavailability of M-line ridecheck data, it was not possible to calculate current or projected ridership for the M-line. As a result, peak hour trips associated with campus growth could not be added to existing or projected trips to determine if the M-line would be over capacity. However, observations of passenger loads on the M-line platform at SF State, as well as standing loads on the M-line vehicles suggest that the addition of campus riders to the M-line would exacerbate the crowding and worsen the capacity problems on this line.

The Draft EIR indicated that the City and County of San Francisco has already identified this problem, and is suggesting remedies as part of two ongoing projects: (1) The San Francisco County Transportation Authority's 19th Avenue Project, and (2) The San Francisco Municipal Transportation Agency's Transit Effectiveness Project (TEP). The 19th Avenue Project is considering multimodal solutions for 19th Avenue, including Bus Rapid Transit service. The TEP is looking at a variety of planning, operations and capital
solutions to enhance Muni performance systemwide, but is not yet to the point of making specific recommendations at the route level. If these improvements were implemented, the Draft EIR concludes that they would be more than sufficient to meet the campus's additional transit travel demands and the impact on the M-line would be less than significant. However, these improvements are only in the early planning stages and are under the jurisdiction of Muni or SFCTA to implement and the University cannot guarantee their implementation. Therefore, the Draft EIR concluded that the impact on the M-line is considered significant. Campus growth under the Campus Master Plan would also result in overcrowding and capacity problems on the Campus Shuttle. (See Impact TRA-2 for additional information.)

Mitigation Measures

Mitigation TRA-2A: The San Francisco Municipal Transportation Agency (MTA) and the San Francisco County Transportation Authority (SFCTA) can and should implement improvements to transit services along 19th Avenue via the implementation of MTA’s Transit Effectiveness Project and SFCTA’s 19th Avenue Project, which are in the planning stages. Improvements ultimately included in these programs could include, but would not be limited to, travel time improvements along the M-line and 28/28L lines (e.g., bus rapid transit, improved stop spacing, transit prioritization treatments, expanded Proof-of-Payment, in-lane bus stops), re-establishing a “short-run” of the M-line between the Embarcadero and the SF State stations, etc.

Mitigation TRA-2B: In the event that transit capacity enhancements listed in the Campus Master Plan are not implemented in a timely manner by Muni and/or SFCTA, the campus will extend the Campus Shuttle service to West Portal Station on an interim basis, based on the following program:

- The University will collect data from Muni to establish the baseline average peak period, peak direction passenger loading between the campus and West Portal Station.
- The University will monitor SF State peak period transit use by conducting cordon counts as specified in Mitigation TRA-1.
- If Muni reports that M-line average peak period, peak direction passenger loading between the campus and West Portal Station exceeds 85 percent of combined seating and standing load capacity for two years in a row, and if the cordon surveys show that peak period transit trips on the M-line between the campus and West Portal Station are greater than 5 percent above the baseline, the University will extend campus shuttle service to West Portal Station during the peak period(s).
- This additional campus shuttle service will be operated with adequate capacity (i.e., it will not exceed a 85 percent combined seated/standing passenger capacity target).
- This additional campus shuttle service will be operated until MTA’s and SFCTA’s planned transit capacity enhancements related to 19th Avenue are implemented, as described in Mitigation TRA-2A above.

Mitigation TRA-2C: The campus shall monitor peak hour utilization of Campus Shuttle buses on an annual basis and if average peak period, peak direction passenger loading exceeds 85 percent of combined seated and standing load capacity for shuttle service between the campus and the Daly City BART station, the campus shall increase shuttle frequency or otherwise increase the capacity of the shuttle services during the peak period(s) until this standard is met.
Cumulative Impacts

No direct project impacts would occur on transit services with growth contemplated by the Campus Master Plan. Based on the conservative, worst-case analysis provided in the EIR, significant cumulative impacts on the M-line and the Campus Shuttle would occur for which the project would have a considerable contribution, as described above.

Findings

The Board of Trustees finds that the above mitigation measures are feasible, are adopted, and will reduce the transit impacts of the project to less than significant levels. Accordingly, the Board of Trustees finds that, pursuant to Section 21081(a)(1) of the Public Resources Code and Section 15091(a)(1) of the CEQA Guidelines, changes or alterations have been required in, or incorporated into, the project that mitigate or avoid the potentially significant transit impact identified in the Final EIR.

Additionally, pursuant to the recent State Supreme Court decision (City of Marina v Board of Trustees of the California State University), the CSU and the University acknowledge responsibility to negotiate with local agencies in order to determine the amount of voluntary mitigation payment (process subject to Chapter 13.7 of Government Code Section 67685) that would fund the University’s fair share of the off-site transit improvements under Mitigation TRA-2A above, that may be required to mitigate or avoid the environmental effects of this project. Related to this measure, SF State agrees to work in good faith with the City to fund its “fair share” of transit improvements between the campus and West Portal station, not to exceed the cost of extending the campus shuttle service to West Portal Station. If SF State and the City cannot come to agreement on the appropriate transit improvements or SF State’s “fair share,” SF State agrees to extend campus shuttle service to West Portal Station during the peak period(s) per Mitigation TRA-2B. This additional campus shuttle service will be operated with adequate capacity (i.e., it will not exceed a 85 percent combined seated/standing passenger capacity target). This additional campus shuttle service will be operated until the City meets its own capacity targets in the campus-to-West Portal corridor. Therefore, the implementation of Mitigations TRA-2A and -2B per the above will ensure that the project’s contribution to potentially significant cumulative transit impacts in the campus-to-West Portal corridor are mitigated or avoided.

3.3 Environmental Effects Found to Be Less Than Significant

3.3.1 Environmental Effects Discussed in the EIR Found to Be Less than Significant and Not Requiring Mitigation

This section identifies impacts of the project that are less than significant and do not require mitigation measures. Based on information in the EIR, the Board of Trustees finds that, based upon substantial evidence in the record, the following impacts have been determined to fall within this category:

a) Aesthetics (scenic resources, on-campus visual character, and light and glare);

b) Air Quality (local CO emissions);

c) Biological Resources (conflicts with adopted HCPs);
SCENER RESOURCES, ON-CAMPUS VISUAL CHARACTER, AND LIGHT AND GLARE IMPACTS

Summary of Potential Impacts

An evaluation of the scenic resources, on-campus visual character, and light and glare impacts associated with the project is found in Section 4.1, Aesthetics, of the Draft EIR and as revised in the Final EIR (see Chapter 3, Changes to the Draft EIR, pages 3-8 through 3-9).

A small groves of Monterey Cypress and Monterey Pine located in and around the Quad constitute scenic resources on the campus, as they play an important role in creating the park-like character of the campus. Moreover, they constitute the only surviving pre-campus vegetation that formerly stood amid agricultural fields. The proposed Campus Master Plan identifies the area within and adjacent to the Quad as the Campus Core landscape zone, and indicates that new landscaping in this zone should follow the existing palette of Monterey Cypress and Monterey Pine, broad lawns, boarders of lush, green, clumping masses of plants like agapanthus, bergenia, camellia, and azalea. The proposed Campus Master Plan also identifies the need for a replacement program for the Monterey Cypress and Monterey Pine so that as existing trees naturally decline others will be sufficiently mature to take their place. However, proposed development under the proposed Campus Master Plan could potentially damage some of the small groves or individual trees of Monterey Cypress and Monterey Pine in the Campus Core landscape zone if not sensitively sited and constructed. This is considered a less-than-significant significant impact. (See Impact AES-1 for additional information.)

The proposed Campus Master Plan will not substantially degrade the existing visual character of the existing SF State campus. The proposed Campus Master Plan provides for the replacement of some of the older campus buildings and construction of new campus buildings. Overall, the density of campus development will increase. However, this increase in density will not substantially degrade the existing visual character of the campus, as: (1) the amount of open space on campus will generally be maintained, (2) the existing pattern of development will be maintained, (3) the building heights of new development will be similar to other existing campus development, and (4) other design standards and guidelines of the proposed Campus Master Plan will maintain or further enhance the existing visual character of the campus. (See Impact AES-2 for further information.)
New light sources associated with new development proposed under the Campus Master Plan could include streetlights, illuminated signage, exterior safety and way finding lighting, and light emitted from building windows. The existing night lighting on and adjacent to the campus is typical of a developed urban area and new campus lighting will not substantially change these nighttime conditions. This is considered a less-than-significant impact. Moreover, the proposed Campus Master Plan lighting standards will require that LEED-NC guidelines for light pollution reduction be followed. While mitigation is not required to reduce a significant impact, it is recommended to ensure that these lighting standards will be implemented with future development, which will further reduce the impact. (See Impact AES-4 for further information.)

If new campus buildings will have reflective surfaces, such as metal and glass, the resultant glare could affect nearby residents, pedestrians, and passing motorists, which is considered a less-than-significant impact. However, architectural standards provided in the proposed Campus Master Plan indicate that stucco cladding or poured-in-place concrete are common features in campus buildings that should be applied in new development. Therefore, while it is unlikely that reflective building materials will be utilized, implementation of recommended mitigation will ensure that future buildings do not use reflective building surfaces as the primary materials for building facades. (See Impact AES-4 for further information.)

Mitigation Measures

The Board of Trustees finds that, based upon substantial evidence in the record, the potential aesthetic impacts of the project related to scenic resources, on-campus visual character, and light and glare are less than significant and no mitigation measures are required. However, these less-than-significant impacts will be further reduced by implementation of the following mitigation measures:

Mitigation AES-1A: The small groves of mature Monterey Cypress and Monterey Pine trees located within the Campus Core landscape zone will be maintained and preserved with development under the proposed Campus Master Plan. Tree trimming and/or tree removal will take place in this portion of the campus only if required based on tree health conditions, public safety issues, and/or to allow for proposed development.

Mitigation AES-1B: Any mature Monterey Cypress and Monterey Pine trees that will be removed with proposed development under the proposed Campus Master Plan shall be replaced at a 1:1 ratio elsewhere within the Quad landscape zone. This planting shall be in addition to any replacement program implemented under the proposed Campus Master Plan to address the natural decline of trees.

Mitigation AES-1C: Mature Monterey Cypress and Monterey Pine trees that will be retained within or immediately adjacent to a construction site shall be adequately protected prior to the commencement of construction activities. Fencing shall be installed no closer than the drip line of trees, to the extent possible. Fencing closer to the trunk than the dripline will be permitted only when necessary to allow construction of project elements. The campus shall periodically inspect construction sites to ensure that protective construction fencing remains in place during the entire construction phase of future projects.

Mitigation AES-4A: New campus lighting will be consistent with the most recent LEED-NC guidelines for light pollution reduction. These guidelines require that directional and other lighting methods be used to minimize light trespass from buildings and outdoor areas. Available methods, include but are not limited to: directional and design methods to reduce spillage, automatically controlled turn off of interior spaces during
non-business hours, lighting exterior areas only for safety and comfort, and using lower intensity lights.

Mitigation AES-4A: Reflective metal, mirrored glass, or any other reflective building materials shall not be used as primary building materials for facades.

Cumulative Impacts

Because project impacts related to scenic resources, on-campus visual character, and light and glare will be less than significant, no adverse cumulative impacts related to these topics are anticipated.

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential aesthetic impacts of the project related to scenic resources, on-campus visual character, and light and glare are less than significant and no mitigation measures are required. However, these less-than-significant impacts will be further reduced by implementation of the mitigation measures identified above.

LOCAL CO EMISSIONS IMPACTS

Summary of Potential Impacts

An evaluation of the local carbon monoxide emissions impacts associated with the project is found in Section 4.2, *Air Quality,* of the Draft EIR.

As indicated in the BAAQMD CEQA Guidelines, the air quality analysis for land use plans should focus on an evaluation of the plans consistency with the CAP. However, these guidelines also indicate that there may be some instances where quantification of a plan’s air quality impacts is appropriate, such as when a plan may lead to increased traffic congestion and associated CO concentrations at vicinity intersections. Therefore, the plan’s contribution to CO concentrations at vicinity intersections was estimated. The resulting analyses show that predicted CO concentrations at all four intersections analyzed would be less than the state and federal standards for CO. Because the intersections analyzed had either the highest delay (i.e., worst LOS) or the highest traffic volumes, the other intersections not analyzed are expected to experience even smaller impacts related to CO concentrations. The impact would therefore be less than significant. (See Impact AIR-3 for additional information.)

Cumulative Impacts

The analysis described above constitutes the cumulative assessment of CO concentrations at vicinity intersections. As no significant cumulative impacts were found, no direct project impacts would occur.

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential local CO emissions impact of the project is less than significant and no mitigation measures are required.

CONFLICTS WITH ADOPTED HCPs

Summary of Potential Impacts
An evaluation of conflicts with adopted HCPs associated with the project is found in Section 4.3, Biological Resources, of the Draft EIR.

The campus does not fall within the boundaries of an adopted HCP or NCCP, nor is it adjacent to any properties that have such an adopted plan. Therefore, there is no potential that the implementation of the proposed Campus Master Plan would result in conflicts with an adopted HCP or NCCP.

A Significant Natural Resource Areas Management Plan (San Francisco Recreation and Parks Department 2006) is in place for the adjacent Lake Merced Natural Area. The implementation of the new storm water management system and the new path connection into the East Lake area under the proposed Campus Master Plan would not conflict with or otherwise impede the implementation of the general and site-specific recommendations that apply to Lake Merced, with the implementation of the mitigation measures identified in this section. Therefore, it is expected that these proposed project elements would not conflict with the ultimate management goals of the Significant Natural Resource Areas Management Plan for the adjacent Lake Merced Natural Area. The impact is less than significant. (See Impact BIO-3 for additional information.)

Cumulative Impacts

Because project impacts related to conflicts with adopted HCPs will be less than significant, no adverse cumulative impacts are anticipated.

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential biotic impacts of the project related to conflicts with adopted HCPs are less than significant and no mitigation measures are required.

CONSTRUCTION SOIL EROSION IMPACTS

Summary of Potential Impacts

An evaluation of potential construction-phase soil erosion associated with the project is found in Section 4.5, Geology, Soils, and Seismicity, of the Draft EIR.

Construction of facilities anticipated under the proposed Campus Master Plan will result in short-term soil-disturbing activities that could lead to increased erosion including cut and fill, grading, trenching, boring, and removal of trees and other vegetation. To comply with National Pollutant Discharge Elimination System (NPDES) requirements for construction site storm water discharges, projects involving construction sites that are 1 acre or more are required to prepare and implement a storm water pollution prevention plan (SWPPP). Appropriate erosion-control measures will be incorporated into each SWPPP and implemented during site preparation, grading, and construction. These measures will include but are not limited to the following: design and construction of cut and fill slopes in a manner that will minimize erosion, protection of exposed slope areas, control of surface flows over exposed soils, use of wetting or sealing agents or sedimentation ponds, limiting soil excavation in high winds, construction of beams and runoff diversion ditches, and use of sediment traps, such as hay bales. Following construction of individual projects, erosion potential will be very low because future project sites will be covered by buildings, pavement, and/or landscaping. Therefore, the impact related to erosion and sedimentation will be less than significant. (See Impact GEO-2 for additional information.)
Cumulative Impacts

Because project impacts related to construction-phase soil erosion will be less than significant, no adverse cumulative impacts are anticipated.

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential construction-phase soil erosion of the project are less than significant and no mitigation measures are required.

OTHER HAZARDS AND HAZARDOUS MATERIALS IMPACTS

Summary of Potential Impacts

An evaluation of other hazards and hazardous materials impacts associated with the project is found in Section 4.6, Hazards and Hazardous Materials, of the Draft EIR.

Campus growth under the proposed Campus Master Plan will involve an increase in the number of laboratories and the expansion of other facilities, such as maintenance facilities, which involve the use of hazardous materials, generation of hazardous waste, and the transportation of such materials to and from the campus. SF State is committed to providing a safe environment for the campus and local community by implementing the increasingly complex and stringent laws and regulations regarding the use, storage, and transport of hazardous materials. Throughout the planning horizon of the proposed Campus Master Plan, SF State will continue to comply with all federal and state laws and regulations and will continue to implement all safety programs and procedures currently in place as established by EH&OS. These procedures will continue to avoid or substantially limit exposure of students, faculty, staff, and the community at large to hazardous materials. All SF State projects implemented under the proposed Campus Master Plan will comply with these controls. Therefore, the project will not create significant hazards to the public or the environment through the routine transport, use, or disposal of hazardous materials, or under upset and accident conditions involving the release of hazardous materials into the environment. The impact is therefore considered less than significant. (See Impact HAZ-1 for additional information.)

Although hazardous materials and waste use within ¼ mile of an existing or proposed school will likely increase as a result of campus growth under the proposed Campus Master Plan, these materials will not exist in quantities sufficient to pose a risk to occupants of the school or campus community. Because hazardous materials in laboratories are typically handled in small quantities and will continue to be handled in this manner under the proposed Campus Master Plan, the potential consequences of an accidental release will be limited to a single building and in most cases, to the individual laboratory where the spill occurred. Furthermore, as discussed above SF State will continue to comply with federal and state regulations and will continue to implement existing campus safety programs and procedures. Therefore, the impact to those attending existing or proposed schools and childcare centers will be less than significant. (See Impact HAZ-2 for additional information.)

The proposed project will not be located on a site that is on a list of hazardous material sites complied pursuant to Government Code Section 65962.5. There are no known sites with soil or groundwater
contamination on the main campus as several former UST or LUST sites on campus have been remediated and contamination is no longer a concern. EH&OS is not aware of any existing contaminated sites on campus. Also, the past uses of the campus are well known and are not likely to have resulted in soil or groundwater contamination. Due to the low probability of any remaining contaminated locations on campus, this impact is less than significant. (See Impact HAZ-3 for additional information.)

SF State currently has a campus-wide Emergency Operations Plan (EOP) and individual EOPs for campus buildings in place. Campus growth under the proposed Campus Master Plan will not interfere with the campus (EOP) through construction-related road closures. Under current campus policy, contractors must complete work with the least possible obstruction to traffic, and must keep fire hydrants accessible at all times. The SF State Capital Planning Agency is the lead agency regulating lane closures, and the Department of Public Safety ensures that lanes are passable at all times. Additionally, as new buildings are constructed, new EOPs will be developed for new buildings under current campus policies. While the impacts related to emergency response plans would be less than significant, mitigation measures are recommended in the EIR to ensure that current campus policies regarding EOPs are continued. (See Impact HAZ-5 for additional information.)

Mitigation Measures

The Board of Trustees finds that, based upon substantial evidence in the record, the potential impacts of the project related to exposure to other hazards and hazardous materials are less than significant and no mitigation measures are required. However, these less-than-significant impacts will be further reduced by implementation of the following mitigation measure:

Mitigation HAZ-5A: The campus shall continue to include the following requirements in its standards established by Capital Planning and implement them under the proposed Campus Master Plan:

- Construction work shall be conducted so as to ensure the least possible obstruction to traffic.
- Contractors shall notify the SF State’s Representative at least two weeks before any road closure.
- When paths, lanes, or roadways are blocked, detour signs must be installed to clearly designate an alternate route.
- Fire hydrants shall be kept accessible to fire fighting equipment at all times.
- To ensure adequate access for emergency vehicles when construction projects will result in temporary lane or roadway closures, campus police and dispatchers must be notified of the closures and alternative travel routes.

Mitigation HAZ-5B: New building and/or department-specific EOPs shall be developed for any new development project.

Cumulative Impacts

Because project impacts related to other hazards and hazardous materials issues will be less than significant, no adverse cumulative impacts are anticipated.

Findings
The Board of Trustees finds that, based upon substantial evidence in the record, the potential impacts of the project related to exposure to other hazards and hazardous materials are less than significant and no mitigation measures are required. However, these less-than-significant impacts will be further reduced by implementation of the mitigation measures identified above.

GROUNDWATER IMPACTS

Summary of Potential Impacts

An evaluation of the groundwater impacts associated with the project is found in Section 4.7, *Hydrology and Water Quality*, of the Draft EIR and as revised in the Final EIR (see Chapter 3, *Changes to the Draft EIR*, pages 3-18 through 3-19).

Because redevelopment of existing building sites is a major component of the proposed Campus Master Plan, the plan would not result in a substantial increase in impervious surfaces on the campus. The increase in impervious surfaces would not substantially reduce the recharge of the groundwater basin. Furthermore, the proposed Campus Master Plan includes a storm water drainage system that incorporates LID concepts. These LID concepts would maximize the infiltration of new runoff into the campus lands, and in some areas, the modified storm water drainage system would divert existing runoff from the storm drain system into infiltration areas. Overall, implementation of the proposed Campus Master Plan would add more water to the groundwater basin. Additionally, the proposed open storm water system incorporating LID concepts would treat surface water runoff by utilizing physical and biological treatment processes. These facilities would not only treat surface water runoff, but also would treat water that infiltrates into the groundwater basin. Further, as runoff from locations that could have concentrated sources of pollution (e.g., loading docks and parking lots) would not be directed into the open system, they would not be potential sources of groundwater contamination. In summary, the proposed project would not reduce groundwater recharge or adversely affect water quality in the groundwater basin. The impact is less than significant. (See Impact HYDRO-2 for additional information.)

Cumulative Impacts

Because project impacts related to groundwater will be less than significant, no adverse cumulative impacts are anticipated.

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential groundwater impacts of the project are less than significant and no mitigation measures are required.

LAND USE AND PLANNING IMPACTS

Summary of Potential Impacts

An evaluation of the land use and planning impacts associated with the project is found in Section 4.8, *Land Use and Planning*, of the Draft EIR and as revised in the Final EIR (see Chapter 3, *Changes to the Draft EIR*, page 3-19).
The proposed Campus Master Plan will not physically divide an established community. Additionally, the proposed Campus Master Plan, if adopted, will become the applicable campus land use plan. The California State University System is the only agency with land use jurisdiction over campus projects. Thus, campus development that is consistent with the adopted proposed Campus Master Plan will not have land use impacts under this CEQA threshold of significance. Additionally, while SF State is not subject to local land use regulations, the proposed Campus Master Plan for SF State generally conforms to relevant local land use plans. Overall, land use and planning impacts are less than significant. (See Impacts LU-1 and LU-2 for additional information.

Cumulative Impacts

Because project impacts related to land use would be less than significant, no adverse cumulative impacts are anticipated.

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential land use impacts of the project are less than significant and no mitigation measures are required.

OPERATIONAL NOISE IMPACTS

Summary of Potential Impacts

An evaluation of the operational noise impacts associated with the project is found in Section 4.9, *Noise*, of the Draft EIR.

Traffic noise increases above existing conditions were calculated under an existing plus project scenario, under a 2020 without project scenario, and under a 2020 with project scenario. Noise levels along off-campus study area roadway segments were modeled and evaluated. The selected roadway segments are representative of areas that are expected to experience the greatest project-related traffic increases under the proposed Campus Master Plan. The modeled locations, therefore, represent the reasonable worst-case noise increases for this analysis. Cumulative traffic noise increases under Year 2020 cumulative conditions, both with and without the project, would be less than the standards of significance used in this analysis. This impact would be less-than-significant. (See Impact NOIS-2 for additional information.)

Cumulative Impacts

Based on the conservative, worst-case analysis provided in the EIR, significant cumulative operational traffic noise impacts would not occur with the project, as described above.

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential operational noise impacts of the project are less than significant and no mitigation measures are required.
POPULATION AND HOUSING IMPACTS

Summary of Potential Impacts

An evaluation of the population and housing impacts associated with the project are found in Section 4.10, Population and Housing, of the Draft EIR and as revised in the Final EIR (see Chapter 3, Changes to the Draft EIR, pages 3-19 through 3-27).

Growth of the campus under the proposed Campus Master Plan would directly increase the study area population as a result of new SF State affiliates and their dependents. Overall, the increment of population that would be added to the study area as a result of SF State campus growth under the proposed Campus Master Plan would not be substantial, and the impact would be less than significant. (See Impact POP-1 for additional information.)

Growth in off-campus areas would not be triggered by the utility extensions serving new campus buildings, as the surrounding neighborhoods are already built out, and the undeveloped lands adjacent to the campus to the west are within city or state parks and are protected from development. Moreover, the proposed Campus Master Plan does not propose any roadway widening improvements. Therefore, the surrounding neighborhoods and commercial areas would not be expected to grow substantially as a result of utility extensions or roadway widening from campus development. (See Impact POP-2 for additional information.)

The proposed Campus Master Plan would affect study area housing resources in two ways: (1) by adding more people to the study area that would require housing and (2) by removing and replacing some of the existing housing on and adjacent to the campus. Regarding the first item, the housing demand in San Francisco associated with new SF State affiliates will be well within the projected supply and would not trigger shifts of demand to other parts of the Bay Area region, nor would it stimulate the need to build additional new housing above and beyond that already projected. Likewise, housing demand elsewhere in the Bay Area region associated with new SF State affiliates also would be well within the projected supply. Therefore, there would be no substantial shift in demand to more distant communities outside the Bay Area region, nor would the project stimulate the need to build additional new housing above and beyond that already projected. Therefore, this impact is less than significant. (See Impact POP-3 for additional information.)

Regarding the second item above, the proposed Campus Master Plan calls for new housing on a portion of the UPN and UPS sites, which would result in the demolition of existing apartments and the construction of new units, for a net gain in units on campus. While the project would temporarily displace housing units, it would more than compensate for the loss, and the total housing supply in the study area would increase as a result of the proposed Campus Master Plan. Therefore, this temporary displacement of housing units will not necessitate the construction of replacement housing elsewhere in the region. However, the redevelopment of a few blocks in UPS and UPN could displace non-SF State people that have not already voluntarily vacated their units by the time this proposed construction takes place. Because the number of units is small compared to the projected increase in housing in San Francisco and the Bay Area, this displacement will not necessitate the construction of replacement housing elsewhere. Therefore, these impacts are less than significant. Furthermore, the campus will comply with the California Relocation Assistance Act (Government Code 7260 et seq), which applies to state entities that may displace residents and businesses. This act generally requires
that public entities provide assistance and financial payments to persons who are displaced as the result of the acquisition of property for a public use. Financial assistance that may be required would include, for example, moving expenses and temporary rent subsidies. In addition to what is required by the law, SF State will provide displaced persons with the option to relocate to comparable units in other campus housing in UPN and UPS and maintain their current rent. (See Impacts POP-3 and POP-4 for additional information.)

Cumulative Impacts

Campus growth under the proposed Campus Master Plan, in conjunction with other regional growth in the study area, would result in a demand for housing that could potentially exceed the projected housing supply in 2020. This cumulative impact would be significant. However, because the demand generated by campus growth would not constitute a substantial portion of the total housing demand in the region (2.0 percent or less than 45 new units per year over the 13-year plan period), the project’s contribution would not be cumulatively considerable. (See Impact POP-5 for additional information.)

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential population and housing impacts of the project are less than significant and no mitigation measures are required.

PED/BIKE ACCESS, PARKING, AND TRANSPORTATION PLAN IMPACTS

Summary of Potential Impacts

An evaluation of the pedestrian/bike access, parking, and transportation plan impacts associated with the project are found in Section 4.11, Traffic, Circulation, and Parking, of the Draft EIR.

As a result of both improved pedestrian facilities and an increase in campus population, the level of pedestrian activity in and around the campus is expected to increase. The increase in enrollment at the campus will not cause substantial overcrowding on public sidewalks, especially the sidewalks and crosswalks near the Holloway and 19th Avenue intersection, based on a pedestrian level of service analysis conducted in the Draft EIR. With respect to the concern regarding pedestrian safety from increased campus-related traffic along Holloway Avenue, the Campus Master Plan has been designed to avoid the increase in vehicle trips to the campus. Furthermore, the Campus Master Plan envisions Holloway Avenue as a pedestrian-friendly street that would have two narrow travel lanes, bicycle lanes, street trees, and ground-floor activity and entrances facing the street. This would be effective in reducing automobile travel speeds and improving conditions for pedestrians along this street. The proposed project would not otherwise create potentially hazardous conditions for pedestrians. In summary, the Campus Master Plan would have a beneficial effect on pedestrians. It should also be noted that existing pedestrian safety concerns on 19th Avenue are being addressed by a number of projects under the 19th Avenue/Park Presidio Boulevard Transportation Plan. (See Impact TRA-3 for additional information.)

In order to facilitate safe and convenient bicycle access across campus and to increase the use of bicycles among the campus commuters, the Campus Master Plan includes an on-campus bicycle network along shared bicycle-pedestrian routes. Bicycle racks will also be provided in visible locations near buildings. Secure bicycle lockers will be provided at multiple locations on campus, including in conjunction with all new
parking structures on campus. As the campus is developed, the Bike Barn will be replaced with a Bike Station. The Bike Station will extend services to SF State students, faculty, and staff. In summary, the proposed Campus Master Plan includes numerous improvements to enhance bicycle use on the campus and the plan therefore would not adversely affect conditions for bicyclists. (See Impact TRA-4 for additional information.)

The proposed project would not have a significant impact related to parking because the parking strategy included in the Campus Master Plan is consistent with the City’s Transit First policy, and the planned supply of parking is designed to ensure that single-occupant vehicle mode split does not increase in the future and that new single-occupant vehicle trips are not generated. Pursuant to Mitigation TRA-1, the campus will conduct cordon counts every three years or if necessary every year, and make additional improvements to its TDM program to ensure that new trips are not generated. Therefore, the demand for parking will not exceed the projected supply. Furthermore, pursuant to the Campus Master Plan, the campus will work with the MTA to minimize the social impact of campus affiliates parking in surrounding neighborhoods. (See Impact TRA-5 for additional information.)

The Campus Master Plan includes a parking strategy, bicycle and pedestrian improvements, and a program for shuttle service improvements. All of these elements of the Campus Master Plan are designed to discourage automobile use and encourage the use of alternate means of transportation. In addition, campus representatives will participate in local planning efforts to advocate for prioritization and funding of improvements to transit services that serve the campus area, including the TEP and the 19th Avenue study. Therefore, implementation of the Campus Master Plan would not conflict with any adopted plans, policies or programs that support alternative transportation. (See Impact TRA-6 for additional information.)

Cumulative Impacts

Because project impacts related to ped/bike access, parking, and transportation plans would be less than significant, no adverse cumulative impacts are anticipated.

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential ped/bike access, parking, and transportation plan impacts of the project are less than significant and no mitigation measures are required.

Utilities and Public Service Impacts

Summary of Potential Impacts

An evaluation of the utilities and public service impacts associated with the project are found in Section 4.12, *Utilities and Public Services*, of the Draft EIR and as revised in the Final EIR (see Chapter 3, *Changes to the Draft EIR*, pages 3-47 through 3-52).

Off-site improvements to the distribution piping or other facilities near the campus would not be required to serve the estimated increase in demand for potable water. However, the SFPUC has indicated that it is unclear whether or not off-site improvements (e.g., line or pump up-grades) would be required to provide for adequate fire flows. The SFPUC supplies water to the campus at two points of connection, located in 19th
Avenue and Lake Merced Boulevard. These connections are equipped with turbine meters to maximize available water flow and pressure. Within the boundaries of the SF State campus, beyond these points of connection with the City’s system, the University has its own water system that it manages.

According to the Campus Master Plan Existing Conditions Analysis (WRT, 2006), while no major upgrades to the campus water system are known to be needed at this time, it is possible that if a given proposed building has a substantially larger flow requirement than existing development, upsizing of existing on-campus piping may be required. Given the pressure and flow provided by the turbine meters, however, improvements to the off-campus system to provide for adequate fire flows are not anticipated by the University.

While such off-campus upgrades are not expected, if they are required the SFPUC can charge the SF State campus for these upgrades under Government Code Section 54999, which authorizes public utilities to charge the campus a limited capital facilities fee under certain circumstances. This fee (i.e., a non-discriminatory charge to defray the actual cost of that portion of a public utility facility actually serving the campus) covers SF State’s fair share of the construction cost, including the cost of mitigation measures to address environmental impacts, if any. However, it should be noted that any such upgrades would not be expected to result in significant environmental effects due to the urban context. For the above reasons, the proposed project will not require the construction of new water supply facilities or new water supply entitlements off campus that could cause significant environmental effects. The impact is less than significant. (See Impact UTIL-1 for additional information.)

The campus is planning to meet a net zero increase in combined wet weather flows both over the long term and incrementally. Given this, off-site improvements to the downstream sewer system should not be required. While significant impacts to the physical environment have not been identified, Mitigation UTL-2 has been developed (see below) to ensure that SF State verifies that a “net zero” increase in combined wet-weather flows can be achieved incrementally, as each individual building and phase is implemented, in consultation with the SFPUC.

While off-site improvements to the wastewater distribution system are not anticipated to serve growth at the campus, as described above, it is possible that improvements to San Francisco’s distribution piping near the campus may be required if the campus does not achieve the objective of having a “net zero” increase in combined sewer flows. Specifically, the City has indicated that sewer lines on Font Boulevard and Holloway Avenue and further downstream may need to be enlarged to accommodate higher combined peak wet weather flows. While such upgrades are not expected to result in significant environmental effects due to the urban context, the SFPUC can charge the SF State campus for these upgrades under Government Code Section 54999, which authorizes public utilities to charge the campus a limited capital facilities fee under certain circumstances. This fee (i.e., a non-discriminatory charge to defray the actual cost of that portion of a public utility facility actually serving the campus) covers SF State’s fair share of the construction cost, including the cost of mitigation measures to address environmental impacts, if any. Therefore, the proposed project will not require the construction of new wastewater facilities off campus that could cause significant environmental effects. The impact is less than significant. (See Impact UTIL-2 for additional information.)

While the proposed Campus Master Plan calls for new generating facilities to reduce its requirements for power from PG&E’s electrical power grid and to promote energy independence, it is possible that the campus
may satisfy some or all of the increase in demand for power from PG&E’s electrical power grid. Given that the campus is located in a developed urban area, it is highly unlikely that proposed campus growth would result in the need for expansion or construction of new electrical system capacity improvements above and beyond those already being pursued by PG&E in the San Francisco Peninsula Area (e.g., the 230-kilovolt Jefferson-Martin transmission line). Moreover, the project-generated demand for electricity will be negligible in the context of overall demand within San Francisco and the State, and will not in and of itself require a major expansion of power facilities. Therefore, the proposed Campus Master Plan will not require the construction of new or expanded electrical system capacity improvements off-campus that could result in significant environmental impacts. The impact is less than significant. (See Impact UTIL-3 for additional information.)

Implementation of the proposed Campus Master Plan will result in an increased demand for police protection services on and adjacent to the campus. It is expected that with the proposed population increase and facility development that about 20 additional officers will be needed by 2020. This additional staffing and associated increase in the police fleet will require a substantially larger police station and parking area over that currently in use. Under the proposed Campus Master Plan, the existing police station and the rest of the facilities located in the Corporation Yard and the Lakeview Center will be relocated to a site in the northwestern portion of the campus, north of Winston Drive. A larger police station could be accommodated in this area as well. The environmental effects of constructing and operating facilities in the northwestern portion of the campus, including a proposed new police station are addressed in other sections of this EIR. If potentially significant impacts were indicated, they will be mitigated to less-than-significant levels by the implementation of mitigation measures presented in this EIR. Therefore, the proposed Campus Master Plan will not result in the construction of new police facilities that will cause significant environmental impacts. The impact is less than significant. (See Impact UTIL-4 for additional information.)

The project will also result in an incremental increase in the demand for fire protection services from the SFFD. However, this increase in demand will not likely be substantial in relationship to the existing demand for fire protection services in San Francisco as a whole. Furthermore, the increase in demand will not likely require the construction of any new fire protection facilities that might result in significant environmental impacts. Therefore, significant impacts related to fire protection services would not occur as a result of the implementation of the proposed Campus Master Plan. (See Impact UTIL-4 for additional information.)

Additionally, significant impacts related to solid waste, schools, and parks and recreational facilities would not occur as a result of the implementation of the proposed Campus Master Plan. (See Impact UTIL-5 for additional information.)

Mitigation Measures

The Board of Trustees finds that based upon substantial evidence in the record, the potential utilities and public service impacts of the project are less than significant and no mitigation measures are required. However, the less-than-significant wastewater impact will be further reduced by implementation of the following mitigation measure:

Mitigation UTL-2: As each future building project is proposed, SF State will verify that it can achieve a net
zero increase in combined wet weather flow to the City’s combined sewer system. If a net increase in such flows would occur campus wide, SF State will coordinate with the SFPUC to determine whether such an increase will require downstream system capacity improvements.

Cumulative Impacts

Because project impacts related to utilities and public services would be less than significant, no adverse cumulative impacts are anticipated.

Findings

The Board of Trustees finds that, based upon substantial evidence in the record, the potential utilities and public services impacts of the project are less than significant and no mitigation measures are required. However, the less-than-significant wastewater impact will be further reduced by implementation of the mitigation measure identified above.

3.3.2 Environmental Effects Determined Not to be Significant in the NOP Scoping Process and Not Discussed in the EIR

Section 15128 of the CEQA Guidelines requires an EIR to contain a statement briefly indicating the reasons that various possible significant effects of a project were determined not to be significant and were, therefore, not discussed in detail in the EIR. Section 4.13, Other Environmental Resources, of the Draft EIR addresses the potential environmental effects that have been found not to be significant as a result of the distribution of a Notice of Preparation (NOP), the responses to the NOP, and the NOP scoping process. Based on the NOP scoping process, potential impacts on the following resources were determined to be less than significant without the implementation of mitigation measures and are, therefore, not discussed in detail in this EIR: Agriculture and Mineral Resources.

4.0 FINDINGS REGARDING CONSIDERATIONS THAT MAKE ALTERNATIVES ANALYZED IN THE EIR INFEASIBLE.

Based on the entire record, the Board of Trustees finds that the EIR identified and considered a reasonable range of feasible alternatives to the proposed project which are capable, to varying degrees, of reducing identified impacts. The EIR evaluates three alternatives in accordance with CEQA guidelines, including:

- No Project Alternative, which assumes that no development occurs on the project site;
- Reduced Housing Growth Alternative, which reduces the amount of new housing construction in response to the community concerns about reconstruction and replacement of existing units; and
- Expanded Housing Growth Alternative, which would reduce traffic impacts and impacts on regional housing resources.

No Project Alternative

As required by the CEQA Guidelines, the EIR’s alternatives analysis must include consideration of the No Project Alternative. The “No Project” analysis discusses the existing conditions as well as what would
reasonably be expected to occur in the foreseeable future if the project was not approved (CEQA Guidelines § 15126.6 (e) (2) and (3) (A)). Under the No Project Alternative, a new Campus Master Plan and an enrollment ceiling increase to 25,000 FTE students would not be adopted and the campus would continue to operate under the previously adopted 1989 Campus Master Plan, as amended most recently in early 2006. While the existing 1989 Campus Master Plan map (as amended) does identify sites for new academic buildings (e.g., Behavioral and Social Sciences building), these buildings cannot be built under the existing plan because they would add FTE capacity to the campus. This additional capacity cannot be added until the CSU Board of Trustees approves an enrollment ceiling increase. The only new building shown on the existing Campus Master Plan map that could be built without adding FTE capacity to the campus is a proposed new greenhouse.

Environmental Effects. The implementation of the No Project Alternative will avoid or reduce environmental impacts in all categories to less-than-significant levels, as only a new greenhouse will be developed under this alternative. Therefore, the significant unavoidable impacts of the proposed Campus Master Plan will be avoided under this alternative.

Relation to Project Objectives. The No Project Alternative would not meet the primary project objectives of increasing the enrollment cap to 25,000 FTEs and providing for the necessary expansion of academic programs and administrative functions to support the enrollment increase (see Section 1.4 above). Therefore, this alternative will not allow the SF State campus to be responsive to the CSU Board of Trustees’ directive to plan for its share of the increased enrollment anticipated to occur in the CSU system. Additionally, this alternative would not meet any other of the project objectives.

Feasibility. The No Project alternative is infeasible because it would not meet any of the project objectives. The No Project alternative would not provide any of the benefits outlined in the Statement of Overriding Considerations.

Reduced Housing Growth Alternative

Under the Reduced Housing Growth Alternative, future development of the campus would be planned to accommodate the proposed enrollment ceiling increase to 25,000 FTE students on campus by 2020. However, under this alternative the existing housing in UPS and UPN will be retained and will not be redeveloped to provide for higher density housing and to provide for the Hotel and Conference Center. Therefore, this alternative will not result in the construction of new housing in UPN and UPS, nor will it result in the construction of the Hotel and Conference Center. While the replacement of units in UPN and UPS will not result in significant environmental impacts under CEQA, some members of the surrounding community are concerned about this demolition and the resulting possible displacement of people that currently live in these units. Therefore this alternative considers the environmental implications of not providing this housing.

Environmental Effects. The Reduced Housing Growth Alternative would reduce aesthetic impacts with no redevelopment in UPS. The Reduced Housing Growth Alternative would have greater impacts on housing supply and the alternative’s contribution to the cumulative housing supply deficit in the study area by 2020 will also be greater than the proposed project. This alternative would have similar or slightly reduced impacts
in the other impact categories. However, the level of significance of all impacts would remain the same. In particular, the significant unavoidable impacts associated with historic resources, construction noise, and traffic would remain under this alternative.

Relation to Project Objectives. Like the proposed project, the Reduced Housing Growth Alternative would support the primary project objectives of increasing the enrollment cap to 25,000 FTEs and providing for the necessary expansion of academic programs and administrative functions to support the enrollment increase. The alternative, however, would not fully meet the objective of providing for faculty and staff housing to aid in recruitment and retention, as compared to the proposed Campus Master Plan. This alternative also would not meet the project objectives related to: (1) providing more close-in housing that enables the SF State population to walk to school and work; (2) redefining Holloway and Buckingham as “college main streets” that offer neighborhood retail and services, because with no redevelopment of UPN and UPN for higher density housing and for the Hotel and Conference Center, such retail could not be provided; (3) making efficient use of redevelopment sites; (4) integrating new residential properties to create a unified campus; and (5) positioning semi-public uses at key campus corners. Additionally, it would be more difficult to establish a strong north-south connection across the valley and Buckingham Way and Holloway Avenue without redeveloping UPN and UPS. The other planning principles of the proposed Campus Master Plan could be implemented under this alternative.

Feasibility. The Reduced Housing Growth Alternative is infeasible because it would prevent attainment of many of the basic project objectives as identified in Section 1.4, above; it would negatively impact the University's ability to recruit and retain quality faculty and staff in support of its educational mission; and, it would not provide many of the benefits outlined in the Statement of Overriding Considerations.

Expanded Housing Growth Alternative

Under the Expanded Housing Growth Alternative, future development of the campus would be planned to accommodate the proposed enrollment ceiling increase to 25,000 FTE students on campus by 2020, similar to the proposed Campus Master Plan. However, under this alternative all of the existing housing in UPS and UPN would be redeveloped to provide for higher density housing and to provide for the Conference Center. No other land beyond these properties to the north and south was considered in this alternative (e.g., other locations within Parkmerced), because the campus is not considering expanding beyond UPN and UPS. This alternative was considered in order to maximize the provision of on-campus housing in order to minimize vehicle trips to the campus in the surrounding neighborhoods.

Environmental Effects. The environmentally superior alternative is the Expanded Housing Growth Alternative because it would reduce the project’s significant impacts with respect to traffic and air quality, and would place a reduced demand on off-campus housing supply. Some of the footprint impacts of this alternative, such as impacts on cultural and biological resources, would be greater than that of the proposed project or the other alternatives evaluated in detail, but because the additional areas that would be redeveloped (UPN and UPS) under this alternative are already highly disturbed, the likelihood of significant impacts related to biological and cultural resources in these areas is very low. This alternative would also provide a greater environmental benefit compared to the proposed project and the other alternatives evaluated in detail because under this alternative more storm water runoff from the campus would be infiltrated and/or
discharged into Lake Merced and this would help restore lake levels. However, the level of significance of all impacts would remain the same. In particular, the significant unavoidable impacts associated with historic resources, construction noise, and traffic would remain under this alternative.

Relation to Project Objectives. The Expanded Housing Growth Alternative would support the primary project objectives of increasing the enrollment cap to 25,000 FTEs and providing for the necessary expansion of academic programs and administrative functions to support the enrollment increase. The alternative would meet all other project objectives. In particular, the objectives related to the provision of on-campus housing to aid in recruitment and retention of faculty and staff and to allow the SF State population to walk to work or school would be more fully met under this alternative, given that it provides for more on-campus housing.

Feasibility. The Expanded Housing Growth Alternative is infeasible within the time frame of the Campus Master Plan (i.e., 2020). However, the long-term vision identified in the Campus Master Plan does contemplate the amount of new housing development in UPN and UPS reflected in this alternative. Therefore, while it is not being recommended for approval at this time, ultimately the campus may propose additional housing in its next Campus Master Plan revision consistent with this alternative.

5.0 FINDINGS WITH RESPECT TO MITIGATION OF SIGNIFICANT ADVERSE IMPACTS, AND ADOPTION OF MITIGATION MONITORING PLAN

Based on the entire record before the Board of Trustees, and having considered the unavoidable significant impacts of the project, the Board of Trustees hereby determines that all feasible mitigation within the responsibility and jurisdiction of the CSU has been adopted to reduce or avoid the potentially significant impacts identified in the EIR, and that no additional feasible mitigation is available to further reduce significant impacts. The feasible mitigation measures are discussed in Section 3.1 and 3.2, above, and are set forth in the Mitigation Monitoring and Reporting Program.

The CSU Board of Trustees is vested with "full power and responsibility in the construction and development of any state University campus, and any buildings or other facilities or improvements connected with the California State University" (California Education Code 66606). CEQA provides that each public agency shall mitigate or avoid the significant effects on the environment of projects it approves or carries out whenever it is feasible to do so (Public Resources Code 21001.1[b]). In mitigating or avoiding a significant effect of a project on the environment, a public agency may exercise only those express or implied powers provided by law other than under CEQA (PRC 21004). The California State University (CSU) has specific powers to mitigate effects that occur within its jurisdiction, namely within the campus.

Local agencies frequently impose fees for the mitigation of projects and cumulative impacts to finance the fair share cost of infrastructure improvements needed to accommodate growth. Such imposition of fees can occur only for those entities that are within the jurisdiction of that local agency. Government Code 54999 et. seq. does allow local entities to negotiate with the State for the imposition of "capital facilities fees" for the connection of specified utility services. Therefore, insofar as CSU agrees with a local entity for a capital facilities fee, such as needed expansion of a wastewater treatment facility to accommodate university growth, that amount may be assessed CSU. Utilities covered under 54999 include water, light, heat, communications, power, garbage service, flood control, drainage, sanitation and sewage collection, treatment, and disposal.
Additionally, pursuant to the recent State Supreme Court decision (City of Marina v Board of Trustees of the California State University), the CSU and the University acknowledge responsibility to negotiate with local agencies in order to determine the amount of a voluntary mitigation payment (process subject to Chapter 13.7 of Government Code Section 67685) that would fund the University’s fair share of the off-site improvements required to mitigate or avoid the environmental effects of this project including off-site impacts to roadways and intersections as well as potential impacts in other areas of local services and infrastructure.

The Board of Trustees finds that each mitigation measure within the responsibility and jurisdiction of the CSU is a binding condition of project approval, fully enforceable by the Board. However, certain mitigation measures that are adopted by the board are solely within the responsibility and jurisdiction of the City and County of San Francisco, and therefore are not fully enforceable by the board. For these mitigation measures that are under the sole jurisdiction of the City and County of San Francisco, the board recognizes that a Memorandum of Understanding or other binding agreement is needed to ensure that the City and County agree to the conditions of approval.

Section 21081.6 of the Public Resources Code requires the Board of Trustees to adopt a monitoring or compliance program regarding the changes in the project and mitigation measures imposed to lessen or avoid significant effects on the environment. The Mitigation Monitoring and Reporting Program for the SF State Campus Master Plan project is hereby adopted by the Board of Trustees because it fulfills the CEQA mitigation monitoring requirements:

- The Mitigation Monitoring Program is designed to ensure compliance with the changes in the project and mitigation measures imposed on the project during project implementation; and
- Measures to mitigate or avoid significant effects on the environment are fully enforceable through conditions of approval, permit conditions, agreements or other measures.
SAN FRANCISCO STATE UNIVERSITY

Financial Statements

June 30, 2011

(With Independent Auditors’ Report Thereon)
SAN FRANCISCO STATE UNIVERSITY

Table of Contents

Independent Auditors' Report 1
Management's Discussion and Analysis 3
Financial Statements:
 Statement of Net Assets 17
 Statement of Revenues, Expenses, and Changes in Net Assets 18
 Statement of Cash Flows 19
Notes to Financial Statements 21
Independent Auditors’ Report

Dr. Robert A. Corrigan
President
San Francisco State University:

We have audited the accompanying financial statements of San Francisco State University (the University), an agency of the State of California, and its aggregate discretely presented component units as of and for the year ended June 30, 2011, which collectively comprise the University’s financial statements as listed in the table of contents. These financial statements are the responsibility of the University’s management. Our responsibility is to express opinions on these financial statements based upon our audit. We did not audit the financial statements of the aggregate discretely presented component units. Those financial statements were audited by other auditors whose reports thereon have been furnished to us, and our opinions, insofar as they relate to the amounts included for the aggregate discretely presented component units, are based solely on the reports of the other auditors.

We conducted our audit in accordance with auditing standards generally accepted in the United States of America. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the financial statements are free of material misstatement. An audit includes consideration of internal control over financial reporting as a basis for designing audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the University’s internal control over financial reporting. Accordingly, we express no such opinion. An audit also includes examining, on a test basis, evidence supporting the amounts and disclosures in the financial statements, assessing the accounting principles used and significant estimates made by management, as well as evaluating the overall financial statement presentation. We believe that our audit and the reports of other auditors provide a reasonable basis for our opinions.

As discussed in note 2, the financial statements of the University, an agency of the State of California, are intended to present the financial position, the changes in financial position, and cash flows of only that portion of the governmental activities, the business-type activities, each major fund, and the aggregate remaining fund information of the State of California that is attributable to the transactions of the University. They do not purport to, and do not, present fairly the financial position of the State of California or the California State University System as of June 30, 2011, the changes in their financial position, or, where applicable, their cash flows for the year then ended in conformity with U.S. generally accepted accounting principles.

In our opinion, based on our audit and the reports of other auditors, the financial statements referred to above present fairly, in all material respects, the respective financial position of the University and of its aggregate discretely presented component units as of June 30, 2011, and the respective changes in financial position and, where applicable, cash flows thereof, for the year then ended in conformity with U.S. generally accepted accounting principles.
Management’s discussion and analysis on pages 3 through 16 is not a required part of the basic financial statements but is supplementary information required by U.S. generally accepted accounting principles. We have applied certain limited procedures, which consisted principally of inquiries of management regarding the methods of measurement and presentation of the required supplementary information. However, we did not audit the information and express no opinion on it.

January 27, 2012

KPMG LLP
This section of San Francisco State University (the University) annual financial report presents our discussion and analysis of the financial performance of the University for the fiscal year ended June 30, 2011. This discussion has been prepared by management and should be read in conjunction with the financial statements and notes.

Introduction to the Financial Statements

This annual report consists of a series of financial statements prepared in accordance with the Governmental Accounting Standards Board (GASB) Statement No. 34, Basic Financial Statements – and Management’s Discussion and Analysis – for State and Local Governments, as amended by GASB Statement No. 35, Basic Financial Statements – and Management’s Discussion and Analysis – for Public Colleges and Universities. For reporting purposes, the University is considered a special-purpose government engaged only in business-type activities.

The financial statements include the statement of net assets; the statement of revenues, expenses, and changes in net assets; and the statement of cash flows. These statements are supported by the notes to the financial statements and this section. All sections must be considered together to obtain a complete understanding of the financial picture of the University.

Statement of Net Assets – The statement of net assets includes all assets and liabilities. Assets and liabilities are generally reported at their book value, on an accrual basis, as of the statement date, except investments, which are reported at their fair value. It also identifies major categories of restrictions on the net assets of the University.

Statement of Revenues, Expenses, and Changes in Net Assets – The statement of revenues, expenses, and changes in net assets presents the revenues earned and expenses incurred during the year on an accrual basis.

Statement of Cash Flows – The statement of cash flows presents the inflows and outflows of cash for the year and is summarized by operating, noncapital financing, capital and related financing, and investing activities. The statement is prepared using the direct method of cash flows and, therefore, presents gross rather than net amounts for the year’s activities.

The statement of cash flows for the discretely presented component units is not included in the University’s financial statements.

Analytical Overview

Summary

The following discussion highlights management’s understanding of the key financial aspects of the University’s financial activities. Included is an analysis of current year activities and balances; a discussion of restrictions of University net assets; a discussion of capital assets and long-term debt; and factors impacting future reporting periods.
SAN FRANCISCO STATE UNIVERSITY
Management Discussion and Analysis
June 30, 2011

The University’s condensed summary of net assets as of June 30, 2011 and 2010 is as follows:

Condensed Summary of Net Assets

<table>
<thead>
<tr>
<th></th>
<th>June 30</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
<td>2010</td>
</tr>
<tr>
<td>Assets:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current assets</td>
<td>$177,803,586</td>
<td>152,022,137</td>
</tr>
<tr>
<td>Capital assets</td>
<td>553,732,295</td>
<td>536,957,668</td>
</tr>
<tr>
<td>Other noncurrent assets</td>
<td>37,045,593</td>
<td>58,372,273</td>
</tr>
<tr>
<td>Total assets</td>
<td>768,581,474</td>
<td>747,352,078</td>
</tr>
<tr>
<td>Liabilities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current liabilities</td>
<td>84,242,963</td>
<td>82,738,973</td>
</tr>
<tr>
<td>Long-term debt obligations, net of current portion</td>
<td>242,237,842</td>
<td>248,137,675</td>
</tr>
<tr>
<td>Other noncurrent liabilities</td>
<td>25,148,782</td>
<td>29,092,012</td>
</tr>
<tr>
<td>Total liabilities</td>
<td>351,629,587</td>
<td>359,968,660</td>
</tr>
<tr>
<td>Net assets:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invested in capital assets, net of related debt</td>
<td>299,539,040</td>
<td>279,452,723</td>
</tr>
<tr>
<td>Restricted, nonexpendable</td>
<td>2,666,131</td>
<td>2,972,668</td>
</tr>
<tr>
<td>Restricted, expendable</td>
<td>18,963,461</td>
<td>39,520,306</td>
</tr>
<tr>
<td>Unrestricted</td>
<td>95,783,255</td>
<td>65,437,721</td>
</tr>
<tr>
<td>Total net assets</td>
<td>$416,951,887</td>
<td>387,383,418</td>
</tr>
</tbody>
</table>

Assets

Total assets increased $21.2 million from prior year due to a $25.8 million increase in current assets and $16.8 million increase in capital assets, offset by a $21.3 million decrease in other noncurrent assets.

Total current assets increased $25.8 million primarily due to a $7.6 million increase in cash and a $34.2 million increase in short-term investments, offset by a $15.9 million decrease in accounts receivable, net. The $7.6 million increase in cash is due to cash deposited at the end of the year but not yet invested. The $34.2 million increase in short-term investments primarily consists of a tuition fee increase of $14.4 million, a new recreation and wellness fee of $2.0 million, an $8.3 million prior year claim reimbursement from the State Controller’s Office (SCO) and California State Library received in current year, a $4.2 million of Chancellor’s Office (CO) reimbursements for achieving over the enrollment target, and a $3.1 million reimbursement from the CO for retirement rate increases.

The above increases were offset by a $15.9 million decrease in accounts receivable, net primarily due to $10.8 million decrease in other receivables, a $3.0 million decrease in government grants and contracts receivable, and a $1.7 million decrease in accounts receivable from CO. The $10.8 million decrease in other receivables is due to a $4.5 million prior year claim reimbursement from the SCO received in current year and a $6.8 million reimbursement of the California State Library’s share of the library project-to-date renovation costs in current year. The $3.0 million decrease in government grants and contracts receivable were primarily due to $1.4 million in projects with large accounts receivable balances in prior year that have expired in current year.

(Continued)
and higher reimbursement received before year end for the HeadStart program. The $1.7 million decrease in accounts receivable from CO attributed to the settlement in current year of the funds due to the student union debt decentralization. The decentralization of the student union debt occurred prior to current year and the University has had an accounts receivable on its books for a few fiscal year for such funds held centrally by the CO.

Capital assets, net, increased $16.8 million primarily due to $41.4 million of current year additions, which was offset by current year depreciation expense of $24.3 million. Current year capital asset additions of $41.4 million are primarily related to purchases of equipment ($3.7 million) and library books and materials ($0.7 million) as well as a $37.0 million increase in construction work in progress related to the following projects: library renovations ($26.6 million), new creative arts building ($4.5 million), renovation for university park south property ($1.1 million), parking lot seismic upgrade ($1.3 million), and $3.5 million in other various projects.

Other noncurrent assets decreased $21.3 million primarily due to a decrease in state appropriation receivable as a result of spending down on the appropriation for the library projects in current year of $20.0 million.

Liabilities

Total liabilities decreased $8.3 million from prior year due to $1.5 million increase in current liabilities, offset by a $3.9 million decrease in long-term debt obligations, net of current portion, and $3.9 million decrease in other noncurrent liabilities.

Total current liabilities increased $1.5 million primarily due to an increase of a $4.0 million long-term debt-current, a $2.5 million increase in accrued compensated absences current portion, and a $1.3 million increase in accrued salaries and benefits payable, offset by a decrease in accounts payable of $6.8 million. The primary reason for the $4.0 million long-term debt, current increase is due to a $3.8 million Bond Anticipation Note taken for the parking seismic project in current year. The $2.5 million increase in accrued compensated absences, current portion, is primarily due to expected higher usage in the coming year as a result of the elimination of furloughs. The $1.3 million increase in accrued salaries and benefits payable is primarily due to no furloughs in the current year and benefit rate changes. These increases were offset by a decrease in accounts payable of $6.8 million because the University's cash on-hand at year end exceeded outstanding checks (see change in cash discussed above). In prior year, $4.8 million of outstanding checks created a cash overdraft position and were classified as accounts payable. There were also lower noncapital payables due to third-parties as a result of timing differences.

Long-term debt obligations, net of current portion decreased $5.9 million primarily due to principal payments.

Other noncurrent liabilities decreased $3.9 million primarily due to $3.7 million decrease in accrued compensated absences, net of current portion due to expected higher usage in the coming year, which led to a higher amount classified to current portion.

Net Assets

Total net assets increased $29.6 million from the prior year. A significant portion, $299.5 million, of net assets at the end of the year is invested in capital assets, net of related debt. Net assets invested in capital assets, net of related debt increased $20.1 million from prior year primarily due to a $16.8 million increase in capital assets and a $5.9 million payment of long-term debt, which were offset by a $3.8 million increase in long-term debt.

(Continued)
SAN FRANCISCO STATE UNIVERSITY
Management’ Discussion and Analysis
June 30, 2011

Restricted net assets totaled $19.0 million as discussed below.

$95.8 million of net assets at the end of the year is unrestricted. Unrestricted net assets represent all other net resources available to the University for general and educational obligations. A significant amount of unrestricted net assets are designated to support future operations in areas specified by legislative requirements. These requirements limit the area of operations for which expenditures of net assets may be made. Campus housing programs, student center programs, student health services, parking programs, and financial aid programs are primary examples of operations that have unrestricted net assets with designated uses. Unrestricted net assets increased $30.0 million mainly because the campus received the final state appropriation late in the current year. Due to the uncertainty of the state budget, the campus budget implemented in July 2010 was based on anticipated cut in state funding and reduced resident student enrollment. In October 2010, the campus received the final state appropriation, which included restored state funding of $18.0 million. In addition, the campus also received $9.0 million of federal stimulus funding. The late funding received will be used to help fill the further budget cut for fiscal year 2012. See Factors Impacting Future Periods on page 16.

Restricted Resources

Net assets of the University include funds that are restricted by donor or law. The following table summarizes which funds are restricted, the type of restriction, and the amount:

<table>
<thead>
<tr>
<th>Restricted Net Assets</th>
<th>June 30</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonexpendable:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonexpendable-endowments</td>
<td>$2,666,131</td>
<td>2,972,668</td>
<td></td>
</tr>
<tr>
<td>Total restricted net assets – nonexpendable</td>
<td>$2,666,131</td>
<td>2,972,668</td>
<td></td>
</tr>
<tr>
<td>Expendable:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loans</td>
<td>$346,111</td>
<td>340,120</td>
<td></td>
</tr>
<tr>
<td>Capital projects</td>
<td>18,617,350</td>
<td>38,574,937</td>
<td></td>
</tr>
<tr>
<td>Debt service</td>
<td></td>
<td>605,249</td>
<td></td>
</tr>
<tr>
<td>Total restricted net assets – expendable</td>
<td>$18,963,461</td>
<td>39,520,306</td>
<td></td>
</tr>
</tbody>
</table>

Total restricted net assets – expendable decreased $20.6 million primarily due to $20.0 million spent on the library project in the current year.
The University's condensed summary of revenues, expenses, and changes in net assets for the years ended June 30, 2011 and 2010 is as follows:

<table>
<thead>
<tr>
<th></th>
<th>June 30 2011</th>
<th>June 30 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating revenues:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student tuition and fees, net</td>
<td>144,138,893</td>
<td>139,481,482</td>
</tr>
<tr>
<td>Grants and contracts, noncapital</td>
<td>53,420,094</td>
<td>53,774,225</td>
</tr>
<tr>
<td>Sales and services of educational activities</td>
<td>2,805,120</td>
<td>2,912,196</td>
</tr>
<tr>
<td>Sales and services of auxiliary enterprises, net</td>
<td>41,321,485</td>
<td>39,259,877</td>
</tr>
<tr>
<td>Other operating revenues</td>
<td>7,153,073</td>
<td>7,885,456</td>
</tr>
<tr>
<td>Total operating revenues</td>
<td>248,838,665</td>
<td>243,313,236</td>
</tr>
<tr>
<td>Operating expenses</td>
<td>(439,824,396)</td>
<td>(412,103,547)</td>
</tr>
<tr>
<td>Operating loss</td>
<td>(190,985,731)</td>
<td>(168,790,311)</td>
</tr>
<tr>
<td>Nonoperating revenues (expenses):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State appropriations, noncapital</td>
<td>143,570,384</td>
<td>130,172,853</td>
</tr>
<tr>
<td>Federal financial aid grants, noncapital</td>
<td>48,420,572</td>
<td>39,795,763</td>
</tr>
<tr>
<td>State financial aid grants, noncapital</td>
<td>15,800,771</td>
<td>14,865,874</td>
</tr>
<tr>
<td>Nongovernmental and other financial aid grants, noncapital</td>
<td>19,107</td>
<td>—</td>
</tr>
<tr>
<td>Other federal nonoperating grants, noncapital</td>
<td>9,036,000</td>
<td>27,208,400</td>
</tr>
<tr>
<td>Gifts, noncapital</td>
<td>1,320,141</td>
<td>1,510,612</td>
</tr>
<tr>
<td>Investment income, net</td>
<td>313,991</td>
<td>(99,022)</td>
</tr>
<tr>
<td>Endowment income</td>
<td>6,921</td>
<td>14,115</td>
</tr>
<tr>
<td>Interest expense</td>
<td>(11,668,164)</td>
<td>(11,938,422)</td>
</tr>
<tr>
<td>Other nonoperating expenses, net</td>
<td>4,313,801</td>
<td>5,570,250</td>
</tr>
<tr>
<td>Total nonoperating revenues</td>
<td>211,133,524</td>
<td>207,100,423</td>
</tr>
<tr>
<td>Income before other additions</td>
<td>20,147,793</td>
<td>38,310,112</td>
</tr>
<tr>
<td>State appropriations, capital</td>
<td>5,277,167</td>
<td>715,592</td>
</tr>
<tr>
<td>Grants and gifts, capital</td>
<td>4,451,735</td>
<td>1,212,799</td>
</tr>
<tr>
<td>Additions to permanent endowments</td>
<td>(308,226)</td>
<td>—</td>
</tr>
<tr>
<td>Increase in net assets</td>
<td>29,568,469</td>
<td>40,238,503</td>
</tr>
<tr>
<td>Beginning net assets</td>
<td>387,383,418</td>
<td>347,144,915</td>
</tr>
<tr>
<td>Ending net assets</td>
<td>$ 416,951,887</td>
<td>387,383,418</td>
</tr>
</tbody>
</table>

Operating Revenues and Expenses

Operating revenues and expenses come from sources that are connected directly to the University's primary business function. This includes revenues from categories such as tuition and fees, certain grants and contracts that will be used for noncapital purposes, and sales and services of auxiliary enterprises and education activities. Expenses include categories such as salaries, benefits, supplies and other services, scholarships and fellowships,
and depreciation and amortization. In this discussion and analysis, expenses are reported by functional program such as instruction, research, public service, academic support, student services, institutional support, operation and maintenance of plant, student grants and scholarships, auxiliary enterprise expenses, and depreciation and amortization.

Operating Revenues

Total operating revenues increased $5.5 million primarily due to a $4.7 million increase in student tuition and fees, net, a $2.1 million increase in sales and services of auxiliary enterprises, net, $1.2 million increase in state grants and contracts, noncapital, offset by a decrease in federal grants and contracts, noncapital of $1.3 million, and $0.7 million decrease in other operating revenues.

Student tuition and fees, net, increased $4.7 million from prior year due to $12.6 million, or 7.6%, increase in tuition fees, offset by an $8.0 million increase in scholarship allowance. The increase in tuition fees was due to rate increases per student of 5% and 10% for the Fall 2010 and Spring 2011 semesters, respectively. Student headcount remained consistent between the current and prior years. The scholarship allowance increase is primarily due to higher tuition (7.6%), an increase of percentage of students receiving financial aid (51% in prior year versus 53% in current year), and a Pell grant award increase of $200 per student.

Sales and services of auxiliary enterprises increased $2.1 million primarily due to a new recreation and wellness fee of $2.0 million.

State grants and contracts, noncapital increased $1.2 million primarily due to higher revenue for the following programs: Coastal Ocean Currents Monitoring Program (COCMP), $1.0 million and child development program, $0.6 million.

Federal grants and contracts, noncapital decreased $1.3 million primarily due to the Headstart program ($0.8 million) and expiration of various projects ($1.4 million) offset by an increase of $1.0 million for the Master: Fall Habitat project.

Other operating revenues decreased $0.7 million primarily due to nonrecurring proceeds for a legal settlement of $0.8 million received in prior year.

The following charts present the proportional share that each category of operating revenues contributed to the total for fiscal years 2011 and 2010.
Operating Revenues 2011
(Dollar amounts in millions)

Operating Revenues
Year ended June 30, 2011

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student tuition and fees, net</td>
<td>$144,138,893</td>
<td>57.9%</td>
</tr>
<tr>
<td>Grants and contracts, noncapital – federal</td>
<td>$36,025,396</td>
<td>14.5%</td>
</tr>
<tr>
<td>Grants and contracts, noncapital – state</td>
<td>$9,071,983</td>
<td>3.6%</td>
</tr>
<tr>
<td>Grants and contracts, noncapital – local</td>
<td>$4,355,060</td>
<td>1.8%</td>
</tr>
<tr>
<td>Grants and contracts, noncapital – nongovernmental</td>
<td>$3,967,655</td>
<td>1.6%</td>
</tr>
<tr>
<td>Sales and services of educational activities</td>
<td>$2,805,120</td>
<td>1.1%</td>
</tr>
<tr>
<td>Sales and services of auxiliary enterprises, net</td>
<td>$41,321,485</td>
<td>16.6%</td>
</tr>
<tr>
<td>Other</td>
<td>$7,153,073</td>
<td>2.9%</td>
</tr>
<tr>
<td>Total operating revenues</td>
<td>$248,838,665</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Operating Revenues 2010
(Dollar amounts in millions)

Operating Revenues
Year ended June 30, 2010

Student tuition and fees, net $139,481,482 57.4%
Grants and contracts, noncapital – federal 37,347,523 15.3%
Grants and contracts, noncapital – state 7,921,895 3.3%
Grants and contracts, noncapital – local 4,790,562 2.0%
Grants and contracts, noncapital – nongovernmental 3,714,245 1.5%
Sales and services of educational activities 2,912,196 1.2%
Sales and services of auxiliary enterprises, net 39,259,877 16.1%
Other 7,885,456 3.2%

Total operating revenues $243,313,236 100.0%
Operating Expenses

The University’s operating expenses consist of salaries and fringe benefits of $281.1 million, supplies and other services of $72.4 million, scholarships and fellowships of $62.0 million, and depreciation of $24.3 million. Total operating expenses increased by $27.7 million, primarily due to increases of $14.5 million in instruction, $7.1 million in student grants and scholarships, $4.2 million in institutional support, and $2.4 million in research.

Instruction increased $14.5 million primarily due to $7.8 million of higher payroll and $5.2 million of higher benefits relating to the fact that furloughs were eliminated in the current year.

Student grants and scholarships increased $7.1 million primarily due to a $5.0 million Pell grant increase because the maximum award increased by $200 per student and tuition increased by 7.6%.

Institutional support increased $4.2 million primarily due to higher payroll expense from elimination of furloughs in the current year.

Research increased $2.4 million primarily due to the Master: Fall Habitat, a new grant in current year ($1.0 million) and higher spending on the COCMP project resulting in $0.3 million higher in payroll and $0.7 million higher in supplies and services cost.
The following chart presents the distribution of resources in support of the University’s mission for fiscal years 2011 and 2010:

Operating Expenses

Year ended June 30, 2011

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>$147,846,602</td>
<td>33.6%</td>
</tr>
<tr>
<td>Research</td>
<td>$18,493,525</td>
<td>4.2%</td>
</tr>
<tr>
<td>Public service</td>
<td>$25,865,068</td>
<td>5.9%</td>
</tr>
<tr>
<td>Academic support</td>
<td>$41,785,764</td>
<td>9.5%</td>
</tr>
<tr>
<td>Student services</td>
<td>$32,338,954</td>
<td>7.3%</td>
</tr>
<tr>
<td>Student grants and scholarships</td>
<td>$61,992,562</td>
<td>14.1%</td>
</tr>
</tbody>
</table>

Total instruction and educational support activities: $328,322,475 | 74.6%

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutional support</td>
<td>$34,538,816</td>
<td>7.9%</td>
</tr>
<tr>
<td>Operation and maintenance of plant</td>
<td>$29,039,431</td>
<td>6.6%</td>
</tr>
<tr>
<td>Auxiliary enterprises expenses</td>
<td>$23,587,718</td>
<td>5.4%</td>
</tr>
<tr>
<td>Depreciation and amortization</td>
<td>$24,335,956</td>
<td>5.5%</td>
</tr>
</tbody>
</table>

Total operating expenses: $439,824,396 | 100.0%
SAN FRANCISCO STATE UNIVERSITY
Management’ Discussion and Analysis
June 30, 2011

Operating Expenses
Year ended June 30, 2010

<table>
<thead>
<tr>
<th>Activity</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>$133,396,503</td>
<td>32.4%</td>
</tr>
<tr>
<td>Research</td>
<td>$16,128,033</td>
<td>3.9%</td>
</tr>
<tr>
<td>Public service</td>
<td>$26,796,446</td>
<td>6.5%</td>
</tr>
<tr>
<td>Academic support</td>
<td>$43,687,890</td>
<td>10.6%</td>
</tr>
<tr>
<td>Student services</td>
<td>$30,038,170</td>
<td>7.3%</td>
</tr>
<tr>
<td>Student grants and scholarships</td>
<td>$54,937,628</td>
<td>13.3%</td>
</tr>
<tr>
<td>Total instruction and educational support activities</td>
<td>$304,984,670</td>
<td>74.0%</td>
</tr>
<tr>
<td>Institutional support</td>
<td>$30,346,115</td>
<td>7.4%</td>
</tr>
<tr>
<td>Operation and maintenance of plant</td>
<td>$30,798,253</td>
<td>7.5%</td>
</tr>
<tr>
<td>Auxiliary enterprises expenses</td>
<td>$22,795,411</td>
<td>5.5%</td>
</tr>
<tr>
<td>Depreciation and amortization</td>
<td>$23,179,098</td>
<td>5.6%</td>
</tr>
<tr>
<td>Total operating expenses</td>
<td>$412,103,547</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Nonoperating Revenues

Nonoperating revenues (expenses) come from sources that are not part of the University’s primary business functions. Included in this classification are categories such as state appropriations, federal grants, certain financial aid grants, noncapital, grants and gifts, capital, investment income, and interest expense.

As the University is part of the California State University System, which is an agency of the State of California, the University’s operations are funded primarily from appropriations of state tax revenues. Appropriations used for purposes of acquisition of capital assets totaled $5.3 million for the fiscal year ended June 30, 2011, up from $0.7 million for the fiscal year ended June 30, 2010 primarily due to $4.6 million additional appropriation from the state for library equipment. State appropriations, noncapital increased $13.4 million to partially make up for the $18.0 million decline in American Recovery and Reinvestment Act (ARRA) funding in current year. In addition, federal financial aid grants, noncapital increased $8.6 million due to higher Pell grants attributable to a 7.63% tuition increase and a $200 per student increase in maximum award. Grants and gifts, capital increased $3.2 million primarily due to a contribution from San Francisco State University Foundation to fund the utilities project related to the Creative Arts building. Other federal nonoperating grants, noncapital decreased $18.2 million due to lower ARRA funding in current year versus prior year. Other nonoperating revenues decreased $1.3 million due to lower Infrastructure Terminal Resource equipment assets transferred from CO in current year than in prior year.

Capital Assets and Long-Term Debt Obligations

Capital Assets

Capital assets, net of accumulated depreciation, are shown below:

<table>
<thead>
<tr>
<th>June 30</th>
<th>2011</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land and land improvements</td>
<td>$43,630,119</td>
<td>43,630,119</td>
</tr>
<tr>
<td>Works of art and historical treasures</td>
<td>4,606,522</td>
<td>4,551,522</td>
</tr>
<tr>
<td>Buildings and building improvements</td>
<td>360,887,660</td>
<td>365,994,271</td>
</tr>
<tr>
<td>Improvements, other than buildings</td>
<td>422,683</td>
<td>505,880</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>23,267,533</td>
<td>23,762,349</td>
</tr>
<tr>
<td>Personal property</td>
<td>17,823,276</td>
<td>17,503,464</td>
</tr>
<tr>
<td>Leasehold improvements</td>
<td>4,413,829</td>
<td>5,165,747</td>
</tr>
<tr>
<td>Intangible assets</td>
<td>109,132</td>
<td>334,011</td>
</tr>
<tr>
<td>Construction work in progress</td>
<td>98,571,541</td>
<td>75,510,305</td>
</tr>
<tr>
<td>Total capital assets, net of accumulated depreciation</td>
<td>$553,732,295</td>
<td>536,957,668</td>
</tr>
</tbody>
</table>

Capital assets commitments at June 30, 2011 totaled $18.4 million. See note 6 of the notes to the financial statements for further information on capital assets.
SAN FRANCISCO STATE UNIVERSITY
Management’s Discussion and Analysis
June 30, 2011

Long-Term Debt Obligations

Debt outstanding at June 30, 2011 and 2010 is summarized below by type of debt instrument:

<table>
<thead>
<tr>
<th></th>
<th>June 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>Systemwide Revenue Bonds:</td>
<td></td>
</tr>
<tr>
<td>Series 2004A</td>
<td>$6,000,000</td>
</tr>
<tr>
<td>Series 2005A</td>
<td>139,100,000</td>
</tr>
<tr>
<td>Series 2007D</td>
<td>76,825,000</td>
</tr>
<tr>
<td>Series 2005B</td>
<td>14,010,000</td>
</tr>
<tr>
<td>Series 2007C</td>
<td>8,240,000</td>
</tr>
<tr>
<td>Housing Series M</td>
<td>220,000</td>
</tr>
<tr>
<td>Housing Series P</td>
<td>470,000</td>
</tr>
<tr>
<td>BAN</td>
<td>3,738,000</td>
</tr>
<tr>
<td>Total</td>
<td>248,603,000</td>
</tr>
<tr>
<td>Unamortized bond premium (discount)</td>
<td>3,912,690</td>
</tr>
<tr>
<td>Unamortized loss on refunding</td>
<td>(779,848)</td>
</tr>
<tr>
<td>Total long-term debt</td>
<td>251,735,842</td>
</tr>
<tr>
<td>Less current portion</td>
<td>(9,498,000)</td>
</tr>
<tr>
<td>Long-term debt, net of current portion</td>
<td>$242,237,842</td>
</tr>
</tbody>
</table>

Bond Ratings

Moody’s Investors Service currently provides an intrinsic rating of Aa2, with a stable outlook, for the Systemwide Revenue Bonds. Standard & Poor’s Rating Service currently provides an intrinsic rating of A+, with a stable outlook, for the Systemwide Revenue Bonds. With the exception of certain maturities of Series 2005C, Series 2007A, Series 2008A, Series 2009A, and all maturities of Series 2010A and 2010B, all Systemwide Revenue Bonds are insured. Since the middle of fiscal year 2008, some providers of insurance for Systemwide Revenue Bonds have been downgraded to ratings below Aaa/AAA. Those bonds that are uninsured bear the intrinsic ratings of the Systemwide Revenue Bonds, which are Aa2 from the Moody’s Investors Service and A+ from the Standard & Poor’s Rating Service. See notes 7 and 8 to the financial statements for further information on long-term debt obligations.
Factors Impacting Future Periods

The State Budget Act for fiscal year 2012, approved by the Governor on June 30, 2011, reduces the California State University System (the System) appropriations by $650 million, or 24% below the fiscal year 2011 enacted budget level. The result will be an approximately $480 million decrease in noncapital state appropriations for the System in fiscal year 2012 to a total of $2.10 billion from $2.58 billion in fiscal year 2011. In December 2011, the System’s fiscal year 2012 appropriations were further reduced by an additional $100 million due to the $1 billion shortfall in the State revenues.

To mitigate the impact of the appropriation reductions, the System increased tuition fee rates, including a 10% increase approved by the Board of Trustees (the Board) in November 2010 and an additional 12% increase approved by the Board in July 2011, both effective for fiscal year 2012, which together will yield approximately $265 million in new tuition fee revenue after discounting for financial aid. Moreover, the System reduced its base resident student enrollment target for fiscal year 2012 by roughly 10,000 full-time equivalent students (FTE) to approximately 332,000, and reduces expense measures of approximately $292 million.

In November 2011, the Board approved an increase in student tuition fees for fiscal year 2013 to raise approximately $138 million in new tuition fee revenue after discounting for financial aid.

The University’s state noncapital appropriations budget enacted for fiscal year 2012 approved by the legislative process is $111.8 million, a decrease of $31.8 million over the fiscal year 2011 funding level of $143.6 million. In addition, an increase in student fees in fiscal year 2012 is expected to generate $21.4 million during fiscal year 2012 in new revenue, net of financial aid.
SAN FRANCISCO STATE UNIVERSITY
Statement of Net Assets
June 30, 2011

<table>
<thead>
<tr>
<th>Assets</th>
<th>University</th>
<th>Discretely presented component units</th>
<th>FASB Auxiliary Organizations</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GASB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current assets:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash and cash equivalents</td>
<td>7,593,128</td>
<td>1,133,514</td>
<td>185,081</td>
<td>8,911,723</td>
</tr>
<tr>
<td>Short-term investments</td>
<td>154,955,531</td>
<td>5,965,046</td>
<td>10,214,213</td>
<td>171,134,790</td>
</tr>
<tr>
<td>Accounts receivable, net</td>
<td>12,652,139</td>
<td>993,499</td>
<td>3,623,845</td>
<td>17,269,483</td>
</tr>
<tr>
<td>Pledges receivable, net</td>
<td>823,541</td>
<td></td>
<td>823,541</td>
<td></td>
</tr>
<tr>
<td>Prepaid expenses and other assets</td>
<td>2,602,788</td>
<td></td>
<td>2,026,922</td>
<td>4,629,710</td>
</tr>
<tr>
<td>Total current assets</td>
<td>177,803,586</td>
<td>8,915,600</td>
<td>16,050,061</td>
<td>202,769,247</td>
</tr>
<tr>
<td>Noncurrent assets:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounts receivable, net</td>
<td>19,231,551</td>
<td></td>
<td>405,724</td>
<td>19,637,275</td>
</tr>
<tr>
<td>Student loans receivable, net</td>
<td>9,809,131</td>
<td></td>
<td></td>
<td>9,809,131</td>
</tr>
<tr>
<td>Pledges receivable, net</td>
<td>436,529</td>
<td></td>
<td></td>
<td>436,529</td>
</tr>
<tr>
<td>Endowment investments</td>
<td>2,666,131</td>
<td>32,992,301</td>
<td></td>
<td>35,658,432</td>
</tr>
<tr>
<td>Other long-term investments</td>
<td>5,338,780</td>
<td>19,931,659</td>
<td>2,752,495</td>
<td>28,022,934</td>
</tr>
<tr>
<td>Capital assets, net</td>
<td>553,732,295</td>
<td>2,512,427</td>
<td>3,071,704</td>
<td>559,316,426</td>
</tr>
<tr>
<td>Total noncurrent assets</td>
<td>590,777,888</td>
<td>55,872,916</td>
<td>6,229,923</td>
<td>652,880,727</td>
</tr>
<tr>
<td>Total assets</td>
<td>768,581,474</td>
<td>64,788,516</td>
<td>22,279,984</td>
<td>855,649,974</td>
</tr>
</tbody>
</table>

Liabilities and Net Assets				
Current liabilities:				
Accounts payable	5,551,352	2,233,204	1,559,869	9,344,425
Accrued salaries and benefits payable	20,358,186	115,379	61,072	20,561,637
Accrued compensated absences – current	11,817,763	67,252	391,360	12,726,375
Deferred revenue	28,771,440		353,157	29,124,597
Capitalized lease obligations – current	771,583			771,583
Long-term debt obligations – current	9,498,000		141,945	9,639,945
Depository accounts – current	3,062,987		238,826	3,261,813
Other liabilities	4,384,652	343,138	23,826	4,751,616
Total current liabilities	84,242,963	2,758,973	2,531,229	89,533,165
Noncurrent liabilities:				
Accrued compensated absences, net of current	5,983,457			5,983,457
Deferred revenue			262,406	262,406
Grants refundable	9,837,563			9,837,563
Capitalized lease obligations, net of current	2,266,682			2,266,682
Long-term debt obligations, net of current	242,237,842		225,045	242,462,887
Depository accounts	897,138		151,196	1,048,334
Other postemployment benefits obligation	5,484,806			5,484,806
Other liabilities	679,136			679,136
Total noncurrent liabilities	267,386,624		638,647	268,025,271
Total liabilities	351,629,587	2,758,973	3,169,876	357,558,436

Net assets:
Invested in capital assets, net of related debt
Restricted for:
Nonexpendable – endowments
Expendable:
Scholarships and fellowships
Loans
Capital projects
Other
Unrestricted
Total net assets

$ 416,951,887
| 62,029,543
| 19,110,108
| 498,091,538

See accompanying notes to financial statements.
Statement of Revenues, Expenses, and Changes in Net Assets

Year ended June 30, 2011

<table>
<thead>
<tr>
<th>Discretely presented component units</th>
<th>University</th>
<th>Auxiliary Organizations</th>
<th>FASB Auxiliary Organizations</th>
<th>Eliminations</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating revenues:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student tuition and fees (net of scholarship allowances of $40,684,312)</td>
<td>$144,138,893</td>
<td>5,368,109</td>
<td>149,507,002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grants and contracts, noncapital:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal</td>
<td>36,025,396</td>
<td>171,758</td>
<td>36,197,154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>9,071,983</td>
<td>132,557</td>
<td>9,415,243</td>
<td>4,362,142</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>4,355,060</td>
<td>7,082</td>
<td>4,484,142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nongovernmental</td>
<td>3,967,655</td>
<td>874,094</td>
<td>4,841,749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales and services of educational activities</td>
<td>2,805,120</td>
<td></td>
<td></td>
<td>2,805,120</td>
<td></td>
</tr>
<tr>
<td>Sales and services of auxiliary enterprises (net of scholarship allowances of $0)</td>
<td>41,321,485</td>
<td>18,450,440</td>
<td>64,305,022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other operating revenues</td>
<td>7,153,073</td>
<td>469,502</td>
<td>8,062,575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total operating revenues</td>
<td>248,838,665</td>
<td>6,785,472</td>
<td>24,670,503</td>
<td>280,294,640</td>
<td></td>
</tr>
<tr>
<td>Expenses:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating expenses:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction</td>
<td>147,846,602</td>
<td>219,378</td>
<td>148,065,980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>18,493,525</td>
<td>631,214</td>
<td>19,124,739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public service</td>
<td>25,865,068</td>
<td>2,844,759</td>
<td>28,709,827</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic support</td>
<td>41,785,764</td>
<td>2,242,709</td>
<td>44,028,473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student services</td>
<td>32,338,955</td>
<td>2,453,646</td>
<td>34,886,141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institutional support</td>
<td>34,538,816</td>
<td>861,870</td>
<td>36,390,685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation and maintenance of plant</td>
<td>29,039,431</td>
<td>29,039,431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student grants and scholarships</td>
<td>61,992,562</td>
<td>758,945</td>
<td>61,862,445</td>
<td>45,822,008</td>
<td></td>
</tr>
<tr>
<td>Auxiliary enterprise expenses</td>
<td>23,587,717</td>
<td>20,532,786</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciation and amortization</td>
<td>24,335,956</td>
<td>824,862</td>
<td>25,170,677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total operating expenses</td>
<td>439,824,356</td>
<td>24,696,111</td>
<td>473,337,575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating loss</td>
<td>(190,985,731</td>
<td>(2,943,609)</td>
<td>(25,608)</td>
<td>912,009</td>
<td>(193,042,939)</td>
</tr>
<tr>
<td>Nonoperating revenues (expenses):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State appropriations, noncapital</td>
<td>143,570,384</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal financial aid grants, noncapital</td>
<td>48,420,572</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State financial aid grants, noncapital</td>
<td>15,800,771</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nongovernmental and other financial aid grants, noncapital</td>
<td>19,107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other federal nonoperating grants, noncapital</td>
<td>9,036,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gifts, noncapital</td>
<td>1,320,141</td>
<td>(912,009)</td>
<td>408,132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment income, net</td>
<td>313,991</td>
<td>5,037,986</td>
<td>6,174,702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endowment income</td>
<td>6,921</td>
<td>6,921</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest expense</td>
<td>(11,668,164)</td>
<td>(21,075)</td>
<td>(11,689,239)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other nonoperating revenues (expenses), net</td>
<td>4,313,801</td>
<td>2,972,960</td>
<td>7,286,761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net nonoperating revenues (expenses)</td>
<td>211,133,524</td>
<td>8,010,946</td>
<td>219,034,111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income before other additions</td>
<td>20,147,793</td>
<td>776,042</td>
<td>25,921,832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State appropriations, capital</td>
<td>5,277,167</td>
<td></td>
<td>5,277,167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grants and gifts, capital</td>
<td>4,451,735</td>
<td>(4,282,402)</td>
<td>169,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additions to permanent endowments</td>
<td>(308,226)</td>
<td>806,196</td>
<td>497,970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase in net assets</td>
<td>29,568,469</td>
<td>776,042</td>
<td>31,344,511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net assets:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net assets at beginning of year</td>
<td>387,383,418</td>
<td>18,334,066</td>
<td>466,155,896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net assets at end of year</td>
<td>$ 416,951,887</td>
<td>19,110,108</td>
<td>498,061,938</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See accompanying notes to financial statements.
SAN FRANCISCO STATE UNIVERSITY

Statement of Cash Flows

Year ended June 30, 2011

<table>
<thead>
<tr>
<th>Description</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash flows from operating activities:</td>
<td></td>
</tr>
<tr>
<td>Student tuition and fees</td>
<td>$144,607,930</td>
</tr>
<tr>
<td>Federal grants and contracts</td>
<td>37,437,999</td>
</tr>
<tr>
<td>State grants and contracts</td>
<td>10,586,870</td>
</tr>
<tr>
<td>Local grants and contracts</td>
<td>4,446,318</td>
</tr>
<tr>
<td>Nongovernmental grants and contracts</td>
<td>4,035,086</td>
</tr>
<tr>
<td>Payments to suppliers</td>
<td>(77,389,204)</td>
</tr>
<tr>
<td>Payments to employees</td>
<td>(279,354,275)</td>
</tr>
<tr>
<td>Payments to students</td>
<td>(61,992,562)</td>
</tr>
<tr>
<td>Collections of student loans</td>
<td></td>
</tr>
<tr>
<td>Sales and services of educational activities</td>
<td>2,805,120</td>
</tr>
<tr>
<td>Sales and services of auxiliary enterprises</td>
<td>41,423,748</td>
</tr>
<tr>
<td>Other receipts</td>
<td>6,701,554</td>
</tr>
<tr>
<td>Net cash used in operating activities</td>
<td>(166,691,416)</td>
</tr>
<tr>
<td>Cash flows from noncapital financing activities:</td>
<td></td>
</tr>
<tr>
<td>State appropriations</td>
<td>143,570,384</td>
</tr>
<tr>
<td>Federal financial aid grants</td>
<td>48,420,572</td>
</tr>
<tr>
<td>State financial aid grants</td>
<td>15,800,771</td>
</tr>
<tr>
<td>Other federal nonoperating grants</td>
<td>9,036,000</td>
</tr>
<tr>
<td>Gifts and grants received for other than capital purposes</td>
<td>1,031,022</td>
</tr>
<tr>
<td>Federal loan program receipts</td>
<td>138,949,551</td>
</tr>
<tr>
<td>Federal loan program disbursements</td>
<td>(139,052,662)</td>
</tr>
<tr>
<td>Monies received on behalf of others</td>
<td>2,910,239</td>
</tr>
<tr>
<td>Monies disbursed on behalf of others</td>
<td>(3,626,452)</td>
</tr>
<tr>
<td>Other noncapital financing activities</td>
<td>12,240,591</td>
</tr>
<tr>
<td>Net cash provided by noncapital financing activities</td>
<td>229,280,016</td>
</tr>
<tr>
<td>Cash flows from capital and related financing activities:</td>
<td></td>
</tr>
<tr>
<td>Proceeds from capital debt</td>
<td>3,738,000</td>
</tr>
<tr>
<td>State appropriations</td>
<td>29,766,338</td>
</tr>
<tr>
<td>Capital grants and gifts</td>
<td>4,451,735</td>
</tr>
<tr>
<td>Acquisition of capital assets</td>
<td>(41,377,389)</td>
</tr>
<tr>
<td>Principal paid on capital debt and leases</td>
<td>(7,029,975)</td>
</tr>
<tr>
<td>Interest paid on capital debt and leases</td>
<td>(11,843,321)</td>
</tr>
<tr>
<td>Net cash used in capital and related financing activities</td>
<td>(22,294,612)</td>
</tr>
<tr>
<td>Cash flows from investing activities:</td>
<td></td>
</tr>
<tr>
<td>Proceeds from sales and maturities of investments</td>
<td>628,207,959</td>
</tr>
<tr>
<td>Purchases of investments</td>
<td>(661,406,909)</td>
</tr>
<tr>
<td>Investment income received</td>
<td>485,848</td>
</tr>
<tr>
<td>Net cash used in investing activities</td>
<td>(32,713,102)</td>
</tr>
<tr>
<td>Net increase in cash and cash equivalents</td>
<td>7,580,886</td>
</tr>
<tr>
<td>Cash and cash equivalents at beginning of year</td>
<td>12,242</td>
</tr>
<tr>
<td>Cash and cash equivalents at end of year</td>
<td>$ 7,593,128</td>
</tr>
</tbody>
</table>

(Continued)
Reconciliation of operating loss to net cash used in operating activities:

<table>
<thead>
<tr>
<th>Description</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating loss</td>
<td>$(190,985,731)</td>
</tr>
<tr>
<td>Adjustments to reconcile operating loss to net cash used in operating activities:</td>
<td></td>
</tr>
<tr>
<td>Depreciation and amortization</td>
<td>24,335,956</td>
</tr>
<tr>
<td>Change in assets and liabilities:</td>
<td></td>
</tr>
<tr>
<td>Accounts receivable, net</td>
<td>2,886,823</td>
</tr>
<tr>
<td>Student loans receivable, net</td>
<td>163,450</td>
</tr>
<tr>
<td>Prepaid expenses and other assets</td>
<td>(5,441,311)</td>
</tr>
<tr>
<td>Accounts payable</td>
<td>1,310,201</td>
</tr>
<tr>
<td>Accrued salaries and benefits</td>
<td>(1,207,342)</td>
</tr>
<tr>
<td>Accrued compensated absences</td>
<td>586,225</td>
</tr>
<tr>
<td>Deferred revenue</td>
<td>1,703,633</td>
</tr>
<tr>
<td>Other postemployment benefits obligation</td>
<td>(43,320)</td>
</tr>
<tr>
<td>Other liabilities</td>
<td></td>
</tr>
<tr>
<td>Net cash used in operating activities</td>
<td>$(166,691,416)</td>
</tr>
</tbody>
</table>

Supplemental schedule of noncash transactions:

<table>
<thead>
<tr>
<th>Description</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributed capital assets</td>
<td>$105,000</td>
</tr>
<tr>
<td>Acquisition of capital asset through capital lease</td>
<td>21,440</td>
</tr>
<tr>
<td>Construction work in progress acquired from the Office of the Chancellor</td>
<td>662,899</td>
</tr>
<tr>
<td>Change in accrued capital asset costs (purchased but unpaid at year-end)</td>
<td>(776,018)</td>
</tr>
<tr>
<td>Amortization of bond premium</td>
<td>211,691</td>
</tr>
<tr>
<td>Amortization of loss on refunding</td>
<td>71,858</td>
</tr>
<tr>
<td>Loss on retirement of capital assets</td>
<td>280,127</td>
</tr>
</tbody>
</table>

See accompanying notes to financial statements.
SAN FRANCISCO STATE UNIVERSITY
Notes to Financial Statements
June 30, 2011

(1) Organization

San Francisco State University (the University), an agency of the State of California, was established as a campus of the California State University under the State of California Education Code to offer undergraduate and graduate instruction for professional and occupational goals emphasizing a broad liberal arts education. As one of 23 campuses in the California State University System (the System), the University is included in the financial statements of the System. Responsibility for the University is vested in the Trustees of the System (the Trustees) who, in turn, appoint the Chancellor, the chief executive officer of the System, and the University president, the chief executive officer of the University.

The University provides instruction for baccalaureate and masters’ degrees and certificate programs and operates various auxiliary enterprises such as student dormitories, student unions, and parking facilities. In addition, the University administers a variety of financial aid programs, which are funded primarily through state and federal programs, and carries out research and grant administration.

(2) Summary of Significant Accounting Policies

(a) Financial Reporting Entity

In accordance with Governmental Accounting Standards Board (GASB) Statements No. 34, Basic Financial Statements – and Management’s Discussion and Analysis – for State and Local Governments, and No. 35, Basic Financial Statements – and Management’s Discussion and Analysis – for Public Colleges and Universities, the accompanying financial statements include the accounts of the University and the University’s five recognized auxiliary organizations. These auxiliary organizations are legally separate entities that provide services primarily to the University’s students and faculty. Separate financial statements are issued for each of the recognized auxiliary organizations and may be obtained from the University.

The recognized auxiliary organizations are as follows:

- The University Corporation, San Francisco State (the University Corporation)
- San Francisco State University Student Center (Student Center)
- Associated Students of San Francisco State University (Associated Students)
- Franciscan Shops (operating as SFSU Bookstore)
- San Francisco State University, Foundation (the Foundation)
Summary information for the discretely presented component units is as follows:

<table>
<thead>
<tr>
<th>June 30, 2011</th>
<th>The University Corporation</th>
<th>The Foundation</th>
<th>Other auxiliary organizations</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current assets</td>
<td>$ 4,820,876</td>
<td>4,094,724</td>
<td>16,050,061</td>
<td>24,965,661</td>
</tr>
<tr>
<td>Capital assets, net</td>
<td>2,512,427</td>
<td></td>
<td>3,071,704</td>
<td>5,584,131</td>
</tr>
<tr>
<td>Other noncurrent assets</td>
<td>8,979,533</td>
<td>44,380,956</td>
<td>3,158,219</td>
<td>56,518,708</td>
</tr>
<tr>
<td>Total assets</td>
<td>16,312,836</td>
<td>48,475,680</td>
<td>22,279,984</td>
<td>87,068,500</td>
</tr>
<tr>
<td>Current liabilities</td>
<td>961,184</td>
<td>1,797,789</td>
<td>2,531,229</td>
<td>5,290,202</td>
</tr>
<tr>
<td>Noncurrent liabilities</td>
<td></td>
<td></td>
<td>638,647</td>
<td>638,647</td>
</tr>
<tr>
<td>Total liabilities</td>
<td>961,184</td>
<td>1,797,789</td>
<td>3,169,876</td>
<td>5,928,849</td>
</tr>
<tr>
<td>Invested in capital assets, net of related debt</td>
<td>2,512,427</td>
<td></td>
<td>2,704,714</td>
<td>5,217,141</td>
</tr>
<tr>
<td>Restricted</td>
<td>7,877,636</td>
<td>46,175,427</td>
<td></td>
<td>54,053,063</td>
</tr>
<tr>
<td>Unrestricted</td>
<td>4,961,589</td>
<td>502,464</td>
<td>16,405,394</td>
<td>21,869,447</td>
</tr>
<tr>
<td>Total net assets</td>
<td>$ 15,351,652</td>
<td>46,677,891</td>
<td>19,110,108</td>
<td>81,139,651</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year ended June 30, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating revenues:</td>
</tr>
<tr>
<td>Student tuition and fees, net</td>
</tr>
<tr>
<td>Grants and contracts, noncapital</td>
</tr>
<tr>
<td>Sales and services of educational activities</td>
</tr>
<tr>
<td>Sales and services of auxiliary enterprises, net</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Total operating revenues</td>
</tr>
</tbody>
</table>

| Operating expenses: |
Instruction	219,378				219,378
Research	631,214				631,214
Public service	2,844,759				2,844,759
Academic support	2,242,709				2,242,709
Student services	93,540	2,453,646	2,547,186		
Institutional support	980,172	861,870	1,842,042		
Operation and maintenance of plant		22,947	22,947		
Student grants and scholarships	758,945			758,945	
SAN FRANCISCO STATE UNIVERSITY
Notes to Financial Statements
June 30, 2011

<table>
<thead>
<tr>
<th>June 30, 2011</th>
<th>The University Corporation</th>
<th>The Foundation</th>
<th>Other auxiliary organizations</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary enterprise expenses</td>
<td>$1,174,575</td>
<td>526,930</td>
<td>20,532,786</td>
<td>22,234,291</td>
</tr>
<tr>
<td>Depreciation and amortization</td>
<td>256,859</td>
<td>—</td>
<td>824,862</td>
<td>1,081,721</td>
</tr>
<tr>
<td>Total operating expenses</td>
<td>9,202,151</td>
<td>526,930</td>
<td>24,696,111</td>
<td>34,425,192</td>
</tr>
<tr>
<td>Operating income (loss)</td>
<td>(3,202,747)</td>
<td>259,138</td>
<td>(25,608)</td>
<td>(2,969,217)</td>
</tr>
<tr>
<td>Net nonoperating revenues</td>
<td>4,294,447</td>
<td>3,716,499</td>
<td>801,650</td>
<td>8,812,596</td>
</tr>
<tr>
<td>Income (loss) before other additions</td>
<td>1,091,700</td>
<td>3,975,637</td>
<td>776,042</td>
<td>5,843,379</td>
</tr>
<tr>
<td>Grants and gifts, capital</td>
<td>—</td>
<td>(4,282,402)</td>
<td>—</td>
<td>(4,282,402)</td>
</tr>
<tr>
<td>Additions to permanent endowments</td>
<td>—</td>
<td>806,196</td>
<td>—</td>
<td>806,196</td>
</tr>
<tr>
<td>Increase in net assets</td>
<td>1,091,700</td>
<td>499,431</td>
<td>776,042</td>
<td>2,367,173</td>
</tr>
</tbody>
</table>

Beginning net assets, July 1, 2010 | $14,259,952 | 46,178,460 | 18,334,066 | 78,772,478 |

Ending net assets, June 30, 2011 | $15,351,652 | 46,677,891 | 19,110,108 | 81,139,651 |

The auxiliary organizations are presented in the accompanying financial statements as component units due to the nature and significance of their relationship with the University. The relationships are such that exclusion of these organizations from the reporting entity would render the financial statements incomplete, primarily due to the activities that the organizations carry out on behalf of the University, such as foodservice, bookstore, and academic support. The auxiliary organizations are discretely presented to allow the financial statement users to distinguish them from the University.

The financial statements present only the statement of net assets, statement of revenues, expenses, and changes in net assets, and statement of cash flows of only that portion of the governmental activities, the business-type activities, each major fund, and the aggregate remaining fund information of the State of California that is attributable to the transactions of the University and the financial statements do not purport to, and do not, present fairly the financial position of the State of California or the California State University System as of June 30, 2011 and the changes in their financial position, or, where applicable, their cash flows for the year then ended in conformity with U.S. generally accepted accounting principles.
SAN FRANCISCO STATE UNIVERSITY
Notes to Financial Statements
June 30, 2011

(b) Basis of Presentation

The accompanying financial statements have been prepared using the economic resources measurement focus and the accrual basis of accounting in accordance with U.S. generally accepted accounting principles, as prescribed by the GASB. Revenues are recorded when earned and expenses are recorded when a liability is incurred, regardless of the timing of related cash flows. Grants and similar items are recognized as revenue as soon as all eligibility requirements have been met.

The financial statements required by GASB Statement Nos. 34 and 35 include a statement of net assets, a statement of revenues, expenses, and changes in net assets, and a statement of cash flows. As a public institution, the University is considered a special-purpose government under the provisions of GASB Statement No. 35. The University records revenue in part from fees and other charges for services to external users and, accordingly, has chosen to present its financial statements using the reporting model for special-purpose governments engaged only in business-type activities. This model allows all financial information for the University to be reported in a single column in each of the financial statements, accompanied by aggregated financial information for the auxiliary organizations. In accordance with the business-type activities reporting model, the University prepares its statement of cash flows using the direct method.

The Student Center, Associated Students, and Franciscan Shops auxiliary organizations included in these financial statements apply the accounting and reporting standards promulgated by the Financial Accounting Standards Board (FASB), while The University Corporation and The Foundation apply the accounting and reporting standards promulgated by the GASB.

(c) Election of Applicable FASB Statements

The University has elected to follow standards of accounting and financial reporting issued by the FASB prior to November 30, 1989, unless those standards conflict with or contradict guidance of the GASB. The University also has the option of following subsequent private-sector guidance subject to the same limitation. The University has elected not to adopt the pronouncements issued by the FASB after November 30, 1989.

(d) Classification of Current and Noncurrent Assets (other than Investments) and Liabilities

The University considers assets to be current that can reasonably be expected, as part of its normal business operations, to be converted to cash and be available for liquidation of current liabilities within 12 months of the statement of net assets date. Liabilities that reasonably can be expected, as part of normal University business operations, to be liquidated within 12 months of the statement of net assets date are considered to be current. All other assets and liabilities are considered to be noncurrent. For classification of current and noncurrent investments, refer to note 2(f).

(e) Cash Equivalents and Statement of Cash Flows

The University considers highly liquid investments with an original maturity date of three months or less to be cash equivalents. The University considers amounts included in the California State University Investment Pool to be investments. The statement of cash flows does not include the cash flows of the discretely presented component units.
(f) Investments
Investments are reflected at fair value using quoted market prices. Realized and unrealized gains and losses are included in the accompanying statement of revenues, expenses, and changes in net assets as investment income, net.

Investments that are used for current operations are classified as short-term investments. Investments that are restricted for withdrawal or use for other than current operations, designated or restricted for the acquisition or construction of noncurrent assets, designated or restricted for the liquidation of the noncurrent portion of long-term debt, and restricted as to the liquidity of the investments are classified as other long-term investment.

(g) Capital Assets
Capital assets are stated at cost or estimated historical cost if purchased, or if donated, at estimated fair value at date of donation. Capital assets, including infrastructure, with a value of $5,000 or more and with a useful life of one year or more are capitalized. Such costs include, where applicable, interest capitalized as part of the cost of constructed capital assets. Title to all assets, whether purchased, constructed, or donated, is held by the State. Although title is not with the University for land and buildings, the University has exclusive use of these assets and is responsible for the maintenance of these assets and thus has recorded the cost of these assets on the accompanying financial statements. Capital assets, with the exception of land and land improvements, works of art and historical treasures, and construction work in progress, are depreciated on a straight-line basis over their estimated useful lives, which range from 3 to 45 years. Library books, unless considered rare collections, are capitalized and depreciated over a 10-year period. Periodicals and subscriptions are expensed as purchased. Works of art and historical treasures are valued at cost if purchased or the fair market value at the date of donation if contributed. The costs of normal maintenance and repairs that do not add to the value of the asset or materially extend its life are expensed as incurred.

Depreciation expense is shown separately in the statement of revenues, expenses, and changes in net assets rather than being allocated among other categories of operating expenses.

(h) Deferred Revenue
Deferred revenue consists primarily of fees collected in advance for summer and fall terms, continuing education programs, and grants and contracts awards received in advance of work performed.

(i) Compensated Absences
Compensated absences are recognized when the right to receive the compensation is earned by the employees. Vacation is accrued on a monthly basis. The University uses an employee’s current pay rate as of July 1, 2011 to calculate the liability for accrued compensated absences. The University employees pay rates are based on length of service and job classifications.

(j) Grants Refundable
The University periodically receives contributions from the federal government in support of its operation of the Federal Perkins and Nursing Loan programs, both Title IV loan programs. The
federal government has the ability to terminate its support of these programs at any time and to request the University to return those contributions that it has made on a cumulative basis.

Accordingly, the federal contributions received and retained by the University at year-end are considered to be liabilities of the University, and are reflected as such in the accompanying statement of net assets.

(k) **Net Assets**

The University’s net assets are classified into the following net asset categories:

Invested in capital assets, net of related debt – Capital assets, net of accumulated depreciation and outstanding principal balances of debt attributable to the acquisition, construction, or improvement of those assets.

Restricted – nonexpendable – Net assets subject to externally imposed conditions that the University retains them in perpetuity. Net assets in this category consist of endowments held by the University or its related auxiliaries.

Restricted – expendable – Net assets subject to externally imposed conditions that can be fulfilled by the actions of the University or by the passage of time.

Unrestricted – All other categories of net assets. In addition, unrestricted net assets may be designated for use by management of the University or have legislative requirements associated with their use. These requirements limit the area of operations for which expenditures of net assets may be made and require that unrestricted net assets be designated to support future operations in these areas. Campus housing programs are a primary example of operations that have unrestricted net assets with designated uses.

(l) **Classification of Revenues and Expenses**

The University considers operating revenues and expenses in the statement of revenues, expenses, and changes in net assets to be those revenues and expenses that result from exchange transactions or from other activities that are connected directly to the University’s primary functions. Exchange transactions include charges for services rendered and the acquisition of goods and services. Moreover, the Office of the Chancellor administers and charges campuses for centralized expenses such as State pro rata and management of capital projects and pooled investments, which are included in operating expenses by function in the accompanying statement of revenues, expenses, and changes in net assets.

Certain other transactions are reported as nonoperating revenues and expenses or capital contributions in accordance with GASB Statement No. 35. These nonoperating activities include the University’s capital and noncapital appropriations from the State, financial aid and American Recovery and Reinvestment Act (ARRA) grants, noncapital, net investment income, gifts, interest expense, and capital contributions.

The State appropriates funds to the System on an annual basis. The appropriations are, in turn, allocated among the campuses by the Office of the Chancellor. Appropriations are recognized as
revenue when authorization is received, and are reported as either noncapital appropriations when used to support general operations or capital appropriations when used for capital projects.

In fiscal year 2011, the State received federal education grants that were passed on to school districts and the State’s universities to restore state appropriations. The Governor had filed an application with the federal government to receive the State’s share of the Education Stabilization Fund that was created as part of the federal stimulus bill under the ARRA. The federal education grants have been appropriated to the System by the State and reported separately under the caption of other federal nonoperating grants, noncapital in nonoperating revenues and expenses in the accompanying statement of revenues, expenses, and changes in net assets.

Student tuition and fee revenue, and sales and services of auxiliary enterprises, including revenues from student housing programs, are presented net of scholarships and fellowships applied to student accounts. Certain other scholarship amounts are paid directly to, or refunded to, the student and are reflected as expenses.

(m) Internal Services Activities

Certain institutional internal service providers offer goods and services to University departments, as well as their external customers. These include activities such as copy centers, postal services, and telecommunications. All internal services activities to University departments have been eliminated in the accompanying financial statements. These eliminations are recorded by removing the revenue and expense in the internal service sales and service units and, if significant, allocating any residual balances to those departments receiving the goods and services during the year.

(n) Income Taxes

The System was established under the State of California Education Code as an agency of the State. As a campus of the System, the University is generally not subject to federal or state income taxes. However, the University remains subject to income taxes on any net income that is derived from a trade or business, regularly carried on and not in furtherance of the purpose for which it was granted exemption. No income tax provision has been recorded as the net income, if any, from any unrelated trade or business, in the opinion of management, is not material to the financial statements taken as a whole.

(o) Eliminations

All significant nonexchange transactions between the University and the discretely presented component units have been eliminated from the total column and are separately presented in the eliminations column in the accompanying statement of revenues, expenses, and changes in net assets.

(p) Use of Estimates

The preparation of financial statements in conformity with U.S. generally accepted accounting principles requires management to make estimates and assumptions that affect the reported amounts in the accompanying financial statements. Actual results could differ from those estimates.
(3) Cash and Cash Equivalents and Investments

The University’s cash and cash equivalents and investments as of June 30, 2011 are classified in the accompanying statement of net assets as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and cash equivalents</td>
<td>$7,593,128</td>
</tr>
<tr>
<td>Short-term investments</td>
<td>154,955,531</td>
</tr>
<tr>
<td>Endowment investments</td>
<td>2,666,131</td>
</tr>
<tr>
<td>Other long-term investments</td>
<td>5,338,780</td>
</tr>
<tr>
<td>Total investments</td>
<td>162,960,442</td>
</tr>
<tr>
<td>Total cash, cash equivalents, and investments</td>
<td>$170,553,570</td>
</tr>
</tbody>
</table>

(a) Cash and Cash Equivalents

At June 30, 2011, cash and cash equivalents consisted of demand deposits held at commercial banks and petty cash. Total cash and cash equivalents of $7.6 million had a corresponding carrying balance with the commercial banks of $7.1 million at June 30, 2011. The differences related primarily to deposits in transit and outstanding checks.

Custodial Credit Risk for Deposits

Custodial credit risk for deposits is the risk that the University will not be able to recover deposits or will not be able to recover collateral securities that are in possession of an outside party. The California Government Code and Education Code do not contain legal or policy requirements that would limit the exposure to custodial credit risk for deposits, other than the provision that a financial institution must secure deposits made by state or local governmental units by pledging securities in an undivided collateral pool held by a depository regulated under state law. This risk is mitigated in that the University’s deposits are maintained at financial institutions that are fully insured or collateralized as required by state law.

(b) Investments

At June 30, 2011, the University’s investment portfolio consists primarily of investments in the State of California Surplus Money Investment Fund (SMIF) and the California State University Investment Pool. For the California State University Investment Pool, separate accounting is maintained as to the amounts allocable to the University’s various funds and programs.

Investment Policy

State law and regulations require that surplus monies of the University must be invested. The primary objective of the University’s investment policy is to safeguard the principal. The secondary objective is to meet the liquidity needs of the University. The third objective is to return an acceptable yield. The University’s investment policy authorizes funds held in local trust accounts under Education Code Sections 89721 and 89724 to be invested in any of the securities authorized by Government Code Section 16430 and Education Code Section 89724, subject to certain limitations. In general, the University’s investment policy permits investments in obligations of the
federal and California state governments, certificates of deposit, and certain other investment instruments.

Interest Rate Risk

Interest rate risk is the risk that changes in interest rates will adversely affect the fair value of an investment. Generally, the longer the maturity of an investment, the greater the sensitivity of its fair value to changes in market interest rates. The University has formal duration guidelines to manage its interest rate risk. The duration guidelines include limits on the maximum maturity of any individual investment in the portfolio and average duration of the investment portfolio. One of the ways that the California State University Investment pools its exposure to interest rate risk is by purchasing a combination of short-term and long-term investments and by timing cash flows from maturities so that a portion of the portfolio is maturing or nearing maturity evenly over time as necessary to provide the cash flow and liquidity needed for operations. The University monitors the interest rate risk inherent in its allocated share at the California State University Investment pool by measuring the weighted average maturity of its portfolio. Weighted average maturity is based on the stated maturity date, assuming that the callable investments will not be called. The weighted average maturity of the University’s allocated share at the California State University Investment pool for each investment type as of June 30, 2011 is presented in the table in the following page.

Credit Risk

Credit risk is the risk that an issuer of an investment will not fulfill its obligation to the holder of the investment. This is measured by the assignment of a rating by a nationally recognized statistical rating organization.

The following table presents the fair value, weighted average maturity, and actual rating by investment type of the University’s allocated share of the California State University Investment Pool and the Surplus Money Investment Fund as of June 30, 2011:

<table>
<thead>
<tr>
<th>Investment type</th>
<th>Fair value</th>
<th>average maturity (in years)</th>
<th>Rating as of year-end</th>
<th>Not rated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money market</td>
<td>$ 277,379</td>
<td>$</td>
<td>AAA</td>
<td>$</td>
</tr>
<tr>
<td>Repurchase Agreements</td>
<td>376,693</td>
<td>0.03</td>
<td>AAA</td>
<td>376,693</td>
</tr>
<tr>
<td>Commercial Paper</td>
<td>11,825,622</td>
<td>0.075</td>
<td>AAA</td>
<td>11,825,622</td>
</tr>
<tr>
<td>Certificates of deposit</td>
<td>22,112,098</td>
<td>0.410</td>
<td>AAA</td>
<td>22,112,098</td>
</tr>
<tr>
<td>U.S. agency securities</td>
<td>49,456,600</td>
<td>1.204</td>
<td>AAA</td>
<td>49,456,600</td>
</tr>
<tr>
<td>Corporate and fixed income securities</td>
<td>52,246,746</td>
<td>1.700</td>
<td>AAA</td>
<td>52,246,746</td>
</tr>
<tr>
<td>U.S. Treasury securities</td>
<td>21,203,495</td>
<td>1.445</td>
<td>AAA</td>
<td>21,203,495</td>
</tr>
<tr>
<td>State of California Surplus</td>
<td>4,603,485</td>
<td>7.550</td>
<td>AAA</td>
<td>4,603,485</td>
</tr>
<tr>
<td>Money Investment Fund</td>
<td>848,324</td>
<td>7.550</td>
<td>AAA</td>
<td>848,324</td>
</tr>
<tr>
<td>Mortgage-backed securities</td>
<td>848,324</td>
<td>7.550</td>
<td>AAA</td>
<td>848,324</td>
</tr>
<tr>
<td>Total</td>
<td>$162,960,442</td>
<td>$</td>
<td>AAA</td>
<td>$162,960,442</td>
</tr>
</tbody>
</table>

(Continued)
SAN FRANCISCO STATE UNIVERSITY
Notes to Financial Statements
June 30, 2011

Concentration of Credit Risk

The University’s investment policy contains no limitations on the amount that can be invested in any one issuer beyond that stipulated by the California Government Code. As of June 30, 2011, the following allocation of pooled investments (other than U.S. Treasury securities, mutual funds, and external investment pools) represented 5% or more of the University’s investment portfolio: Federal Home Loan Banks Office of Finance, $18.5 million (11.7%), Federal Home Loan Mortgage Corporation, $18.5 million (11.7%), and Federal National Mortgage Association, $10.3 million (6.5%).

Risk and Uncertainties

The University may invest in various types of investment securities. Investment securities are exposed to various risks such as interest rate, market, and credit risks. Due to the level of risk associated with certain investment securities, it is at least reasonably possible that changes in the values of investment securities will occur in the near term and that such changes could materially affect the amounts reported in the statement of net assets.

The University through the California State University Investment pool invests in securities with contractual cash flows, such as asset-backed securities and mortgage-backed securities. The value, liquidity, and related income of these securities are sensitive to changes in economic conditions, including real estate value, delinquencies or defaults, or both, and may be adversely affected by shifts in the market’s perception of the issuers and changes in interest rates.

For information regarding the investments of the individual discretely presented component units, refer to their separately issued financial statements.

(4) Accounts Receivable

Accounts receivable at June 30, 2011 consisted of the following:

<table>
<thead>
<tr>
<th>Description</th>
<th>Current</th>
<th>Noncurrent</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>State appropriations</td>
<td>$</td>
<td>19,102,114</td>
<td>19,102,114</td>
</tr>
<tr>
<td>Auxiliary organizations</td>
<td>1,900,520</td>
<td>—</td>
<td>1,900,520</td>
</tr>
<tr>
<td>Student accounts</td>
<td>714,543</td>
<td>33,584</td>
<td>748,127</td>
</tr>
<tr>
<td>Government grants and contracts</td>
<td>9,290,835</td>
<td>129,436</td>
<td>9,420,271</td>
</tr>
<tr>
<td>Other</td>
<td>1,319,028</td>
<td>583,605</td>
<td>1,902,633</td>
</tr>
<tr>
<td></td>
<td>13,224,926</td>
<td>19,848,739</td>
<td>33,073,665</td>
</tr>
<tr>
<td>Less allowance for doubtful accounts</td>
<td>(572,787)</td>
<td>(617,188)</td>
<td>(1,189,975)</td>
</tr>
<tr>
<td>Total</td>
<td>$ 12,652,139</td>
<td>19,231,551</td>
<td>31,883,690</td>
</tr>
</tbody>
</table>
(5) **Student Loans Receivable**

Student loans receivable, net at June 30, 2011 consisted of the following:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkins loans</td>
<td>$11,016,134</td>
</tr>
<tr>
<td>Other loans</td>
<td>$165,040</td>
</tr>
<tr>
<td>Total student loans receivable, gross</td>
<td>$11,181,174</td>
</tr>
<tr>
<td>Less allowance for doubtful accounts</td>
<td>$(1,372,043)</td>
</tr>
<tr>
<td>Total student loans receivable, net</td>
<td>$9,809,131</td>
</tr>
</tbody>
</table>
(6) Capital Assets

Capital assets activity for the year ended June 30, 2011 consisted of the following:

<table>
<thead>
<tr>
<th>Nondepreciable capital assets:</th>
<th>Balance,</th>
<th>Additions</th>
<th>Retirements</th>
<th>Transfers</th>
<th>Balance,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land and land improvements</td>
<td>$43,630,119</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>43,630,119</td>
</tr>
<tr>
<td>Works of art and historical treasures</td>
<td>4,551,522</td>
<td>55,000</td>
<td>—</td>
<td>—</td>
<td>4,606,522</td>
</tr>
<tr>
<td>Construction work in progress</td>
<td>75,510,305</td>
<td>37,014,659</td>
<td>(169,322)</td>
<td>(13,784,101)</td>
<td>98,571,541</td>
</tr>
<tr>
<td>Total nondepreciable capital assets</td>
<td>123,691,946</td>
<td>37,069,659</td>
<td>(169,322)</td>
<td>(13,784,101)</td>
<td>146,808,182</td>
</tr>
</tbody>
</table>

Depreciable capital assets:					
Buildings and building improvements	656,965,252	—	—	—	13,621,669
Improvements, other than buildings	3,107,740	—	—	—	3,107,740
Infrastructure	27,953,097	—	—	—	162,432
Leasehold Improvements	6,878,645	—	—	—	6,878,645
Personal property:					
Equipment	40,380,953	3,646,848	(1,057,906)	—	42,969,895
Library books and materials	19,995,038	661,794	(166,767)	—	20,490,065
Intangible assets	2,235,641	12,409	—	—	2,248,050
Total depreciable capital assets	757,516,366	4,321,051	(1,224,673)	13,784,101	774,396,845

| Total cost | 881,208,312 | 41,390,710 | (1,393,995) | — | 921,205,027 |

Less accumulated depreciation:					
Buildings and building improvements	(290,970,981)	(18,728,280)	—	—	(309,699,261)
Improvements, other than buildings	(2,601,860)	(83,197)	—	—	(2,685,057)
Infrastructure	(4,190,748)	(657,248)	—	—	(4,847,996)
Leasehold improvements	(1,712,898)	(751,918)	—	—	(2,464,816)
Personal property:					
Library books and materials	(15,659,461)	(769,885)	166,767	—	(16,262,579)
Intangible assets	(1,901,630)	(237,288)	—	—	(2,138,918)
Total accumulated depreciation	(344,250,644)	(24,335,956)	1,113,868	—	(367,472,732)

| Net capital assets | $536,957,668 | 17,054,754 | (280,127) | — | 553,732,295 |

For information regarding the capital assets of the individual discretely presented component units, refer to their separately issued financial statements.
(7) Lease Obligations

The University is obligated under various capital and operating leases and installment purchase agreements for the acquisition of equipment and facility rentals.

Capital leases consist primarily of leases of certain facilities and office equipment. Total capital assets related to capital leases have a carrying value of $4.3 million and capital leases passed down from the CO of $0.5 million at June 30, 2011. Substantially all of these assets are pledged as security for the related leases. The leases bear interest at rates ranging from 1.04% to 19.00% and have terms expiring in various years through 2018.

Operating leases consist primarily of leases for the use of real property and have terms expiring in various years through fiscal year 2022. Future minimum lease payments under capital and operating leases having remaining terms in excess of one year are as follows:

<table>
<thead>
<tr>
<th>Year ending June 30:</th>
<th>Capital leases</th>
<th>Operating leases</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>$887,956</td>
<td>5,541,171</td>
</tr>
<tr>
<td>2013</td>
<td>508,261</td>
<td>4,719,971</td>
</tr>
<tr>
<td>2014</td>
<td>476,299</td>
<td>4,779,125</td>
</tr>
<tr>
<td>2015</td>
<td>456,723</td>
<td>4,623,750</td>
</tr>
<tr>
<td>2016</td>
<td>448,339</td>
<td>4,625,683</td>
</tr>
<tr>
<td>2017 – 2021</td>
<td>663,622</td>
<td>24,499,381</td>
</tr>
<tr>
<td>2022 – 2026</td>
<td></td>
<td>2,999,315</td>
</tr>
<tr>
<td>Total minimum lease payments</td>
<td>3,441,200</td>
<td>$51,788,396</td>
</tr>
<tr>
<td>Less amount representing interest</td>
<td>(402,935)</td>
<td></td>
</tr>
<tr>
<td>Present value of future minimum lease payments</td>
<td>3,038,265</td>
<td></td>
</tr>
<tr>
<td>Less current portion</td>
<td>(771,583)</td>
<td></td>
</tr>
<tr>
<td>Capital lease obligations, net of current portion</td>
<td>$2,266,682</td>
<td></td>
</tr>
</tbody>
</table>

Rent expense under operating leases for the year ended June 30, 2011 totaled $5.5 million.

Lease financing is provided to the System for the construction of various System and campus facilities through its participation with the State in the State Public Works Board Lease Revenue Bond Program. Certain capital assets recorded by the University may have been financed under these arrangements. However, since the obligation for the repayment of this financing rests with the System and the proceeds of such financing are not readily identifiable with a campus or project, a substantial portion of such financing is not allocated to the individual campuses of the System. Unallocated Lease Revenue Bonds outstanding for the System as of June 30, 2011 totaled $804,745,000.
(8) Long-Term Debt Obligations

(a) General Obligation Bond Program

The General Obligation Bond program of the State has provided capital outlay funds for the three segments of California Higher Education through voter-approved bonds. Each of the approved bond programs provides a pool of available funds, which is allocated on a project-by-project basis among the University of California, the System, and the Community Colleges. Financing provided to the University through State General Obligation Bonds is not allocated to the System by the State. This debt remains the obligation of the State and is funded by state tax revenues. Accordingly, such debt is not reflected in the accompanying financial statements. Total General Obligation Bond debt carried by the State related to System projects is approximately $2,707,128,000 as of June 30, 2011.

(b) Revenue Bond Programs

The Revenue Bond Act of 1947 provides the Trustees with the ability to issue revenue bonds to fund specific self-supporting programs. The statute has enabled the Trustees to finance student housing, student unions, parking facilities, health facilities, continuing education facilities, and auxiliary organization facilities.

The housing program provides on-campus housing primarily for students. Housing is a self-supporting program deriving its revenues from fees collected for the use of the residence facilities and from interest income. Funds are used for current operating expenses, maintenance and repair, improvements to facilities, and interest and principal payments on outstanding bonds. Available balances after payment of all operating expenses and required charges remain available for future program expenses and capital needs.

The student union program provides facilities and programs aimed at creating and enhancing learning experiences outside the classroom by promoting interaction among students, faculty, and staff. The student union program is self-supporting and derives its revenues primarily from student fees and from interest income. Funds are used for maintenance and repair, improvements to facilities, and interest and principal payments on outstanding bonds. After payment of all authorized charges, the balances of these funds are available and can be transferred to a campus auxiliary organization that would have a contract with the University to operate the facility. The operating entity may derive additional revenue from facility subrental, recreational and commercial activities, and interest income.

The parking program provides parking facilities. The parking program is self-supporting and derives its revenues primarily from student fees and from interest income. Funds are used for construction, repair and maintenance, and principal and interest payments on outstanding bonds. Available balances after payment of all operating expenses and required charges remain available for future program expenses and capital needs.

The health facilities program provides facilities on campus in which to provide health services to students. The health facilities program derives its revenues primarily from student fees and from interest income. Funds are used for current operating expenses, maintenance and repair, improvements to facilities, and interest and principal payments on outstanding bonds. Available
balances after payment of all operating expenses and required charges remain available for future program expenses and capital needs.

The continuing education program provides nonstate-supported courses to students. The continuing education program is self-supporting and derives its revenues primarily from student fees and from interest income. Funds are used for current operating expenses, maintenance and repair, improvements to facilities, and interest and principal payments on outstanding bonds. Available balances after payment of all operating expenses and required charges remain available for future program expenses and capital needs.

Designated auxiliary organization programs provide for certain additional facilities on campuses for the benefit of students and staff. Funds received by the University from designated auxiliary organizations are used to pay principal and interest payments on outstanding bonds. Available balances after payment of all operating expenses and required charges remain available for future program expenses and capital needs.

The Systemwide Revenue Bond program, formerly the Housing Revenue Bond program, was approved by the Trustees in fiscal year 2003. This program provides funding for various construction projects, including student residence and dining halls facilities, continuing education buildings, student unions, parking facilities, health facilities, and auxiliary organization facilities at designated campuses within the System as specified by the individual bond documents. It is designed to provide lower cost debt and greater flexibility to finance revenue bond projects of the System. Rather than relying on specific pledged revenues to support specific debt obligations, this program pools several sources of revenue as the pledge for the related revenue producing projects.

The University participates in the Systemwide Revenue Bond program and its allocated share of outstanding Systemwide Revenue Bond debt as of June 30, 2011 was $251,735,842, which has been used to finance certain projects.

The System has pledged future continuing education, healthcare facilities, housing, parking, and student union revenues plus designated auxiliary revenues, net of maintenance and operation expenses before extraordinary items (net income available for debt service), to repay $3,618,713,000 in Systemwide Revenue Bonds issued through fiscal year 2011. The bonds are payable solely from continuing education, healthcare facilities, housing, parking, student union, and designated auxiliary net income available for debt service and are payable through fiscal year 2038. The Systemwide Revenue Bond indenture requires net income available for debt service to be at least equal to aggregate debt service for all bond indebtedness each fiscal year. The total debt service remaining to be paid on the bonds for the System is $6,048,938,884. In fiscal year 2011, total debt service paid and net income available for debt service, which excluded the designated auxiliary net income, for the System were $226,515,000 and $309,165,000, respectively.
(c) **Revenue Bond Anticipation Notes**

Revenue Bond Anticipation Notes (BANs) are authorized and issued by the Trustees and purchased by the California State University Institute (the Institute), an auxiliary organization of the System, to provide short-term financing to the System for construction projects. They are generally issued for a one- to three-year periods of up to three years in anticipation of issuing permanent revenue bonds at a future date. The University issued BANs were issued for the University during 2011 to finance the seismic upgrade of student parking facilities. Interest is variable and changes based upon the cost of the Institute’s commercial paper program. The interest rate ranged from 0.32% and 0.24% as of June 30, 2011. Amounts outstanding under the BANs totaled $3,738,000 at June 30, 2011.

Long-term debt obligations of the University as of June 30, 2011 consist of the following:

<table>
<thead>
<tr>
<th>Description</th>
<th>Interest rate</th>
<th>Fiscal year maturity date</th>
<th>Original issue amount</th>
<th>Amount outstanding at June 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemwide revenue bonds:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Series 2004A (Housing)</td>
<td>3.50 - 5.25%</td>
<td>2033/35</td>
<td>$6,780,000</td>
<td>6,000,000</td>
</tr>
<tr>
<td>Series 2005A (Housing)</td>
<td>3.25 - 5.00%</td>
<td>2035/36</td>
<td>150,655,000</td>
<td>139,100,000</td>
</tr>
<tr>
<td>Series 2005B (Housing)</td>
<td>5.00%</td>
<td>2021/22</td>
<td>18,160,000</td>
<td>14,010,000</td>
</tr>
<tr>
<td>Series 2007C (Union)</td>
<td>5.00%</td>
<td>2023/24</td>
<td>9,505,000</td>
<td>8,240,000</td>
</tr>
<tr>
<td>Series 2007D (Housing)</td>
<td>4.00 - 5.00%</td>
<td>2037/38</td>
<td>80,360,000</td>
<td>76,825,000</td>
</tr>
<tr>
<td>Housing Series M</td>
<td>3.00%</td>
<td>2020/21</td>
<td>495,000</td>
<td>220,000</td>
</tr>
<tr>
<td>Housing Series P</td>
<td>3.00%</td>
<td>2021/22</td>
<td>975,000</td>
<td>470,000</td>
</tr>
<tr>
<td>BAN</td>
<td>variable</td>
<td>2011/12</td>
<td>3,738,000</td>
<td>3,738,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>248,603,000</td>
</tr>
<tr>
<td>Unamortized bond premium</td>
<td></td>
<td></td>
<td></td>
<td>3,912,690</td>
</tr>
<tr>
<td>Unamortized loss on refunding</td>
<td></td>
<td></td>
<td></td>
<td>(779,848)</td>
</tr>
<tr>
<td>Total long-term debt</td>
<td></td>
<td></td>
<td></td>
<td>251,735,842</td>
</tr>
<tr>
<td>Less current portion</td>
<td></td>
<td></td>
<td></td>
<td>(9,498,000)</td>
</tr>
<tr>
<td>Long-term debt, net of current portion</td>
<td></td>
<td></td>
<td></td>
<td>$242,237,842</td>
</tr>
</tbody>
</table>

36 (Continued)
Long-term debt principal obligations and related interest mature in the following fiscal years:

<table>
<thead>
<tr>
<th>Year ending June 30:</th>
<th>Principal</th>
<th>Interest</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>$9,498,000</td>
<td>11,483,324</td>
<td>20,981,324</td>
</tr>
<tr>
<td>2013</td>
<td>6,040,000</td>
<td>11,247,867</td>
<td>17,287,867</td>
</tr>
<tr>
<td>2014</td>
<td>6,370,000</td>
<td>10,985,333</td>
<td>17,355,333</td>
</tr>
<tr>
<td>2015</td>
<td>6,720,000</td>
<td>10,697,532</td>
<td>17,417,532</td>
</tr>
<tr>
<td>2016</td>
<td>7,095,000</td>
<td>10,390,058</td>
<td>17,485,058</td>
</tr>
<tr>
<td>2017-2021</td>
<td>42,145,000</td>
<td>46,269,819</td>
<td>88,414,819</td>
</tr>
<tr>
<td>2022-2026</td>
<td>44,630,000</td>
<td>35,533,533</td>
<td>80,163,533</td>
</tr>
<tr>
<td>2027-2031</td>
<td>51,510,000</td>
<td>24,364,501</td>
<td>75,874,501</td>
</tr>
<tr>
<td>2032-2036</td>
<td>64,980,000</td>
<td>10,281,150</td>
<td>75,261,150</td>
</tr>
<tr>
<td>2037-2041</td>
<td>9,615,000</td>
<td>437,512</td>
<td>10,052,512</td>
</tr>
<tr>
<td></td>
<td>$248,603,000</td>
<td>171,690,629</td>
<td>420,293,629</td>
</tr>
</tbody>
</table>

Long-term debt obligations of the discretely presented component units have been issued to purchase or construct facilities for University-related uses. For information regarding the long-term debt obligations of the individual discretely presented component units, refer to their separately issued financial statements.

9. Long-Term Liabilities Activity

Long-term liabilities activity of the University for the year ended June 30, 2011 was as follows:

<table>
<thead>
<tr>
<th>Long-term debt obligations (note 8):</th>
<th>Beginning balance</th>
<th>Additions</th>
<th>Reductions</th>
<th>Ending balance</th>
<th>Current portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemwide Revenue Bonds</td>
<td>250,320,000</td>
<td>—</td>
<td>(5,455,000)</td>
<td>244,865,000</td>
<td>5,760,000</td>
</tr>
<tr>
<td>BAN</td>
<td>—</td>
<td>3,738,000</td>
<td>—</td>
<td>3,738,000</td>
<td>3,738,000</td>
</tr>
<tr>
<td>Total</td>
<td>250,320,000</td>
<td>3,738,000</td>
<td>(5,455,000)</td>
<td>248,603,000</td>
<td>9,498,000</td>
</tr>
<tr>
<td>Unamortized bond premium (discount)</td>
<td>(4,124,381)</td>
<td>—</td>
<td>(211,691)</td>
<td>3,912,690</td>
<td>—</td>
</tr>
<tr>
<td>Unamortized loss on refunding</td>
<td>(851,706)</td>
<td>—</td>
<td>71,858</td>
<td>(779,848)</td>
<td>—</td>
</tr>
<tr>
<td>Total long-term debt obligations</td>
<td>253,592,675</td>
<td>3,738,000</td>
<td>(5,594,333)</td>
<td>251,735,842</td>
<td>9,498,000</td>
</tr>
<tr>
<td>Total long-term liabilities</td>
<td>$278,567,720</td>
<td>14,094,906</td>
<td>(20,087,299)</td>
<td>272,575,327</td>
<td>22,087,346</td>
</tr>
</tbody>
</table>
(10) Pension Plan and Postretirement Benefits

(a) Pension Plan

Plan Description

The University, as an agency of the State, contributes to the CalPERS. The State’s plan with CalPERS is an agent multiple-employer defined benefit pension plan and CalPERS functions as an investment and administrative agent for its members. For the University, the plan acts as a cost-sharing multiple-employer defined benefit pension plan, which provides a defined benefit pension and postretirement program for substantially all eligible University employees. The plan also provides survivor, death, and disability benefits. Eligible employees are covered by the Public Employees’ Medical and Hospital Care Act (PEMHCA) for medical benefits.

CalPERS issues a publicly available comprehensive annual financial report that includes financial statements and required supplementary information. Copies of the CalPERS annual financial report may be obtained from the California Public Employees’ Retirement System Executive Office, 400 P Street, Sacramento, CA 95814.

Funding Policy

University personnel are required to contribute 5% of their annual earnings in excess of $513 per month to CalPERS. The University is required to contribute at an actuarially determined rate; the current rate is approximately 18.2% of annual covered payroll. The contribution requirements of the plan members are established and may be amended by CalPERS. There is no contractual maximum contribution required for the University by CalPERS.

The University’s contributions to CalPERS for the most recent three fiscal years were equal to the required contributions and were as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>$29,215,892</td>
</tr>
<tr>
<td>2010</td>
<td>27,515,586</td>
</tr>
<tr>
<td>2011</td>
<td>31,988,269</td>
</tr>
</tbody>
</table>

(b) Postretirement Healthcare Plan

The GASB has issued GASB Statement No. 45, Accounting and Financial Reporting by Employers for Postemployment Benefits Other Than Pensions, relating to Other Postemployment Benefits (OPEB), which is effective July 1, 2007. Under this Statement, public employers sponsoring and subsidizing retiree healthcare benefit programs will need to recognize the cost of such benefits on an accrual basis.

Plan Description

The State provides retiree healthcare benefits to statewide employees including University employees through the programs administered by CalPERS. The State’s substantive plan represents a single-employer defined benefit OPEB plan, which includes medical and prescription drug benefits (collectively, healthcare benefits) to the retired University employees. The System provides dental
benefits to eligible University’s retirees. Eligible retirees receive healthcare and dental benefits upon retirement at age 50 with five years of service credit.

For healthcare benefits, CalPERS offers Preferred Provider Organizations (PPOs), Health Maintenance Organizations (HMOs), and Exclusive Provider Organizations (EPOs) (limited to members in certain California counties); for dental benefits, a Dental Maintenance Organization (DMO) and dental indemnity plans to the University’s retirees. Health plans offered, covered benefits, monthly rates, and copayments are determined by the CalPERS Board, which reviews health plan contracts annually.

The contribution requirements of retirees and the State are established and may be amended by the State legislature. For healthcare benefits, the State makes a contribution towards the retiree’s monthly health premiums, with the retirees covering the difference between the State’s contribution and the actual healthcare premium amount. The State contribution is normally established through collective bargaining agreements. No retiree contribution is required for dental benefits.

Funding Policy

For healthcare benefits, responsibility for funding the cost of the employer share of premiums is apportioned between the State and the System based on “billable” and “nonbillable” accounts. Billable accounts have special revenue sources such as fees, licenses, penalties, assessments, and interest, which offset the costs incurred by a State department during the year. The System reimburses the State for retiree’s health benefit costs allocated to billable accounts but not for costs allocated to nonbillable accounts. The System is responsible for funding the costs of the billable accounts on a pay-as-you-go basis as part of the statewide general administrative costs charged to the System. The University then reimburses the System for its share of healthcare premiums for all billable funds based on annual retirement expenses.

The State is responsible for funding the cost of the employer share of healthcare premiums of retirees for all nonbillable accounts.

The System is responsible for funding the cost of dental benefits for all University retirees. The System makes payments directly to Delta Dental for the retiree’s monthly dental premiums. The System is funding these benefits on a pay-as-you-go basis. The University does not pay the System for its share of dental premiums.
Annual OPEB Cost and Net OPEB Obligation

The following table shows the total annual required contribution (ARC) for the University’s allocated portion of the postretirement healthcare plan, net of dental benefit portion, the amount contributed to the plan by the University, and changes in the University’s net OPEB obligation (NOO) for billable accounts for the fiscal year ended 2011:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billable Accounts Only:</td>
<td></td>
</tr>
<tr>
<td>Annual required contribution (ARC) Contributions during the year</td>
<td>$2,796,093</td>
</tr>
<tr>
<td>Increase in net OPEB obligation (NOO)</td>
<td>$1,703,633</td>
</tr>
<tr>
<td>NOO – beginning of year</td>
<td>$3,781,173</td>
</tr>
<tr>
<td>NOO – end of year</td>
<td>$5,484,806</td>
</tr>
<tr>
<td>Percentage of annual OPEB cost contributed during the year ended June 30, 2011</td>
<td>39%</td>
</tr>
</tbody>
</table>

Actuarial Methods and Assumptions and Plan Funding Information

As an agency of the State, the University was included in the State’s OPEB actuarial study. The analysis of the statewide ARC by accounts is performed by the State Controller’s Office (SCO) and allocated to the System. The System allocates the ARC to the University, which only includes the health benefit portion for the billable accounts. The dental benefit portion is not allocated to the University because the System centrally funds the cost of dental benefits for all retirees for the System.

Projections of benefits for financial statement reporting purposes are based on the substantive plan and include the types of benefits provided at the time of each valuation and the historical pattern of sharing of benefit cost between the State and the plan members to that point. The actuarial methods and assumptions used are consistent with a long-term perspective. In the June 30, 2010 actuarial valuation, the individual entry age normal cost method was used. The actuarial assumptions included a 4.50% investment rate of return and an annual State health care cost trend rate of actual increases for 2011 and 9.00% in 2012, initially, reduced to an ultimate rate of 4.50% after seven years. Both rates included a 3.00% annual inflation assumption. Annual wage inflation is assumed to be 3.25%. The unfunded actuarial accrued liabilities are being amortized as a level percentage of projected payroll on an open basis over a 30-year period.

Funding progress information specifically related to the System’s portion of the statewide OPEB plan is not available. For more details about the actuarial methods and assumptions used by the State as well as the statewide plans funding progress and status refer to the State of California’s Comprehensive Annual Financial Report (CAFR) for the fiscal year ended June 30, 2011.
(11) Self-Insurance Program

The System and certain auxiliary organizations have established California State University Risk Management Authority (CSURMA), a blended component unit of the System, to manage centrally workers' compensation, general liability, industrial and nonindustrial disability, unemployment insurance coverage, and other risk-related programs. The liability included in the accompanying financial statements reflects the estimated ultimate cost of settling claims related to events that have occurred on or before June 30, 2011. The liability includes estimated amount that will be required for future payments of claims that have been reported and claims related to events that have occurred but have not been reported. The liability is also reduced by estimated amounts recoverable from the reinsurer that are related to the liabilities for unpaid claims and claim adjustment expenses. The liability is estimated through an actuarial calculation using individual case basis valuations and statistical analyses. Although considerable variability is inherent in such estimates, management believes that the liability is reasonable at June 30, 2011.

Changes in the System’s self-insurance claims liability for the two years ended June 30, 2011 are as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liability at June 30, 2009</td>
<td>$ 70,748,000</td>
</tr>
<tr>
<td>Incurred claims and changes in estimates</td>
<td>43,097,000</td>
</tr>
<tr>
<td>Claim payments</td>
<td>(26,536,000)</td>
</tr>
<tr>
<td>Liability at June 30, 2010</td>
<td>87,309,000</td>
</tr>
<tr>
<td>Incurred claims and changes in estimates</td>
<td>21,270,000</td>
</tr>
<tr>
<td>Claim payments</td>
<td>(20,338,000)</td>
</tr>
<tr>
<td>Liability at June 30, 2011</td>
<td>88,241,000</td>
</tr>
<tr>
<td>Less current portion</td>
<td>(25,473,000)</td>
</tr>
<tr>
<td>Long-term liability at June 30, 2011, net of current portion</td>
<td>$ 62,768,000</td>
</tr>
</tbody>
</table>

For the year ended June 30, 2011, the CSURMA purchased excess insurance to protect the members from catastrophic losses. The CSURMA maintained excess public entity liability insurance coverage provided by School Excess Liability Fund (SELF), a Joint Power Authority, with coverage for individual claims above $5,000,000 and up to $45,000,000 per occurrence until December 2009, Ironshore Specialty Insurance Company and other various insurers with coverage for individual claims above $5,000,000 and up to $200,000,000 per occurrence. The CSURMA purchased excess workers’ compensation insurance provided by the National Union Fire Insurance Company of Pittsburgh, PA (Chartis) to statutory limits in excess of the $2,500,000 self-insured retention. For the Auxiliary Organizations’ Risk Management Authority (AORMA) Workers’ Compensation Program, the CSURMA purchased excess workers’ compensation insurance provided by Safety National to Statutory limit in excess of $500,000 self-insured retention. There have been no settlements in the most recent three fiscal years that have exceeded insurance limits.
Premiums charged to each of the pool participants are based on historical trend information and the pool participant’s estimated share of the CSURMA self-insurance claims liabilities. The University’s allocation of the System’s total self-insurance claims liability as of June 30, 2011 was approximately 4%, or $3,597,000. This allocation reflects the University’s estimated share of the ultimate cost of settling claims relating to events that have occurred on or before June 30, 2011. Any future fluctuations in the University’s estimated share of the self-insurance claims liability will be reflected in subsequent premiums charged to the University for its participation in CSURMA.

There is no amount due to or from CSURMA as of June 30, 2011.

(12) **Commitments and Contingencies**

Federal grant programs are subject to review by the grantor agencies, which could result in requests for reimbursement to grantor agencies for disallowed expenditures. Management believes that it has adhered to the terms of its grants and that any disallowed expenditures resulting from such review would not have a material effect on the financial position of the University.

Authorized but unexpended expenditures for construction projects as of June 30, 2011 totaled $18,387,696. These expenditures will be funded primarily from state appropriations.

As of June 30, 2011, in order to secure access to natural gas and electricity used for normal operation, the University participates in forward purchase contracts of natural gas and electricity operated by the Department of General Services (DGS) and Shell Energy North America (Shell), respectively. The University’s obligation under these special purchase arrangements requires it to purchase an estimated total of $3,526,872 and $4,956,052 of natural gas and electricity at fixed prices through 2017 and 2014, respectively. The University estimates that the special purchase contracts in place represent approximately 44% and 39% of its total annual natural gas and electricity expenses, respectively.
(13) Classification of Operating Expenses

The University has elected to report operating expenses by functional classification in the statement of revenues, expenses, and changes in net assets, and to provide the natural classification of those expenses as an additional disclosure. For the year ended June 30, 2011, operating expenses by natural classification consisted of the following:

<table>
<thead>
<tr>
<th>Functional classification:</th>
<th>2011</th>
<th>Salaries</th>
<th>Benefits</th>
<th>Scholarships and fellowships</th>
<th>Supplies and other services</th>
<th>Depreciation and amortization</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>$ 102,713,370</td>
<td>37,105,553</td>
<td>—</td>
<td>8,027,679</td>
<td>—</td>
<td>—</td>
<td>147,846,602</td>
</tr>
<tr>
<td>Research</td>
<td>7,178,207</td>
<td>1,613,321</td>
<td>—</td>
<td>9,701,997</td>
<td>—</td>
<td>—</td>
<td>18,493,525</td>
</tr>
<tr>
<td>Public service</td>
<td>8,929,565</td>
<td>3,640,832</td>
<td>—</td>
<td>13,294,671</td>
<td>—</td>
<td>—</td>
<td>25,865,068</td>
</tr>
<tr>
<td>Academic support</td>
<td>23,268,049</td>
<td>8,118,261</td>
<td>—</td>
<td>10,399,454</td>
<td>—</td>
<td>—</td>
<td>41,785,764</td>
</tr>
<tr>
<td>Student services</td>
<td>19,646,787</td>
<td>7,800,485</td>
<td>—</td>
<td>4,891,683</td>
<td>—</td>
<td>—</td>
<td>32,338,955</td>
</tr>
<tr>
<td>Institutional support</td>
<td>22,367,385</td>
<td>9,535,219</td>
<td>—</td>
<td>2,636,212</td>
<td>—</td>
<td>—</td>
<td>34,538,816</td>
</tr>
<tr>
<td>Operation and maintenance of plant</td>
<td>11,370,549</td>
<td>5,876,379</td>
<td>—</td>
<td>11,792,503</td>
<td>—</td>
<td>—</td>
<td>29,039,431</td>
</tr>
<tr>
<td>Student grants and scholarships</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>61,992,562</td>
<td>—</td>
<td>—</td>
<td>61,992,562</td>
</tr>
<tr>
<td>Auxiliary enterprise expenses</td>
<td>7,062,322</td>
<td>4,918,891</td>
<td>—</td>
<td>11,606,505</td>
<td>—</td>
<td>—</td>
<td>23,587,718</td>
</tr>
<tr>
<td>Depreciation and amortization</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>24,335,955</td>
</tr>
<tr>
<td>Total</td>
<td>$ 202,536,234</td>
<td>78,608,941</td>
<td>61,992,562</td>
<td>72,350,704</td>
<td>24,335,955</td>
<td>439,824,396</td>
<td></td>
</tr>
</tbody>
</table>

(14) Transactions with Related Entities

State appropriation revenue, both noncapital and capital, allocated to the University through the Office of the Chancellor aggregated $148,847,551 for the year ended June 30, 2011. The University also received lottery fund distributions from the State in the amount of $2.6 million for the year ended June 30, 2011, which is included in other nonoperating revenues (expenses) in the accompanying statement of revenues, expenses, and changes in net assets.

As discussed in notes 6 and 7, the University has recorded capital assets that have been financed by System or State obligations.
The accompanying financial statements also include the following transactions with discretely presented component units and other related parties as of and for the year ended June 30, 2011:

Reimbursements from recognized auxiliary organizations for salaries of University employees working on contracts, grants, and other programs $ 599,455
Reimbursements from recognized auxiliary organizations for other than salaries of University employees 3,579,933
Payments to recognized auxiliary organizations for services, office space rental, and programs 8,111,272
Gifts-in-kind to the University from recognized auxiliary organizations 4,773,523
Payments to Office of the Chancellor for administrative activities 317,587
Payments to the Office of the Chancellor for State pro rata charges 1,098,948
Accounts receivable from campuses (other than CO) 5,094
Amounts receivable from recognized auxiliary organizations 1,900,520
Amounts payable to recognized auxiliary organizations (53,443)
State lottery appropriations received 2,583,635

(15) Subsequent Events

In July 2011, the state legislature created a new investment vehicle at the state level in which the System may invest funds. Senate Bill 79 created the State Agency Investment Fund (SAIF), under new Government Code section 16330, which allows state agencies to invest a minimum of $500 million and earn a higher rate of return than other investment options at the state level. Pursuant to a memorandum of understanding between the System and the State, the System transferred $700 million from the California State University Investment Pool to the SAIF in September 2011. The System will earn interest income at an annual rate of 2.0% through April 2013.

In August 2011, Standard & Poor’s Rating Services lowered the long-term debt rating of the U.S. government and federal agencies from AAA to AA+. The University has $49.5 million and $21.2 million, or 30.4% and 13.0%, of total investment in U.S. agency securities and U.S. Treasury securities, respectively, as of June 30, 2011.

In September 2011, Standard & Poor’s Ratings Services changed its outlook on the Systemwide Revenue Bonds from stable to positive. With the change in outlook, Standard & Poor’s Ratings Services affirmed its A+ rating on the Systemwide Revenue Bonds.

In September 2011, the System issued its Systemwide Revenue Bond Series 2011A in the amount of $429,855,000. In addition to providing funding for projects around the System, proceeds of the Systemwide Revenue Bond Series 2011A were also used to pay off $71,000,000 of BANs and refund $80,710,000 of previously outstanding Systemwide Revenue Bond Series 2002A and $112,350,000 of previously outstanding Systemwide Revenue Bond Series 2003A. The University issued in the amount $3,783,000, which was to provide funding for parking seismic structure project to a Systemwide Revenue Bond Series 2011A.
SAN FRANCISCO STATE UNIVERSITY
CREATIVE ARTS & HOLLOWAY MIXED-USE PROJECT

Name: Aaron Goodman
Organization (if any): SF Pmmorrg.org
Do you represent this Organization? Yes
Address:
City, State, Zip:
E-mail: amgoodman@yahoo.com Telephone: 415-486-6629

Written Comments

• Existing tenants of PADDICO in UPS should not be displaced from the community. Please consider using blocks 42, 2, 5 as faculty/staff/family housing and relocate residents in a less impactful way.
• Please consider the recreation impacts to tenants in the loss of block 41 and gardens in the other blocks.
• Transit -请考虑19th Ave. impacts, especially Holloway/Pont + U-490 Nevada Blvd. Direct connectivity to Bart/City BART is no capacity and CSU needs to contribute robustly to the future TIP/S. Linkage to reduce parking traffic + transit issues in the district.
• Please provide data on housing loss of family units due to CSU. CSU increased enrollment population impacts have been ignored in terms of housing growth + acquisitions of Streetman UPN + UPS. Data needs to be provided in terms of overall cumulative impact in the district.
• Microclimate - please consider solar access + tree location + other land use factors to allow air-flow + sunlight + open - large scale courtyards.
• Public Services: need to address loss of Frederick Burridge + public amenities lost in block 41 which was not addressed for residents

Please either leave this sheet at the "comment table" before you leave today or mail, email, or fax to the address below.

(See Reverse for Additional Information)
Written Comment Form

Please note that your address, phone number, e-mail address, or other personal identifying information in your comment, is part of your entire comment. Including your personal identifying information may be made publicly available at any time. While you can ask us in your comment to withhold your personal identifying information from public review, we cannot guarantee that we will be able to do so.

Mail comments to:
Wendy Bloom
Director of Campus Planning
Capital Planning, Design & Construction
San Francisco State University
1600 Holloway Avenue
San Francisco, California 94132
wbloom@sfsu.edu (subject line of emails: “Creative Arts & Holloway Mixed-Use Project”)

Public Scoping Ends: August 8, 2016

To ensure that comments will be considered during the scoping period, San Francisco State University must receive written comments by the close of the public scoping period (August 8, 2016). There will be additional opportunities to comment on the Draft EIR for the Project during the EIR public review period in the fall of 2016.

* cont’d

- DECISION 4.15. XV. g) This has been documented as an impact of SFSU growth + enrollment increase. It has significantly impacted the pedestrian environment. The community + SFSU CSU UPS blocks, retention area, + other blocks + have occurred due to student impact + increased enrollment on natural areas population increases has affected the environment.

- Block 5 example

- Use as transit + lower scale. With existing buildings as an option. Look at less impactful messaging. Full density for student housing, kitchen, central library, living room, patio, water elements, light wells to prevent grade sensitive!
CalEEMod Outputs

Construction - Annual and Mitigation Report
1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior College (2Yr)</td>
<td>75.00</td>
<td>1000sqft</td>
<td>1.00</td>
<td>75,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>60.00</td>
<td>1000sqft</td>
<td>0.90</td>
<td>60,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>70.00</td>
<td>Space</td>
<td>0.00</td>
<td>28,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>200.00</td>
<td>Dwelling Unit</td>
<td>1.00</td>
<td>111,146.00</td>
<td>550</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>25.00</td>
<td>1000sqft</td>
<td>0.30</td>
<td>25,000.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

Urbanization: Urban
Wind Speed (m/s): 4.6
Precipitation Freq (Days): 64
Climate Zone: 5
Operational Year: 2020
Utility Company: Pacific Gas & Electric Company

CO2 Intensity: 499.66 lb/MWhr
CH4 Intensity: 0.029 lb/MWhr
N2O Intensity: 0.006 lb/MWhr

1.3 User Entered Comments & Non-Default Data

Project Characteristics - PG&E CO2 Intensity Factor adjusted per 33% RPS by 2020
Land Use - Junior College used to represent University (since University doesn't have 1,000 sqft metric). Dwelling units based on assumption of 2.75 people/beds per unit. Acreages adjusted to match respective block
Construction Phase - Expanded construction schedule to match Project Description
Grading - Block 1 cut = 12,000 yd³ phase 1 and 5,000 yd³ phase 2. Block 6 cut = 15,600 yd³
Demolition - Debris tonnage based on CalEEMod factor of 0.046 tons/sf for buildings and CalRecycle factor of 2,400 lbs asphalt debris/yd³
Trips and VMT - Default vehicle trips
Architectural Coating - Adjusted non-residential interior/exterior area based on minimal surfaces to be coated in parking garage
Off-road Equipment - Added a trencher to account for utility installation

Construction Off-road Equipment Mitigation - Basic fugitive dust control measures included

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Exterior</td>
<td>94,000.00</td>
<td>81,680.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Interior</td>
<td>282,000.00</td>
<td>240,000.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>18.00</td>
<td>22.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>230.00</td>
<td>519.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>20.00</td>
<td>30.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>8.00</td>
<td>30.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>18.00</td>
<td>21.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>5.00</td>
<td>10.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>11/1/2019</td>
<td>10/31/2019</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>11/29/2019</td>
<td>11/30/2019</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>11/7/2017</td>
<td>11/6/2017</td>
</tr>
<tr>
<td>tblGrading</td>
<td>MaterialExported</td>
<td>0.00</td>
<td>20,600.00</td>
</tr>
<tr>
<td>tblGrading</td>
<td>MaterialExported</td>
<td>0.00</td>
<td>12,000.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>200,000.00</td>
<td>111,146.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.38</td>
<td>0.90</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.72</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.23</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>5.26</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.57</td>
<td>0.30</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>572.00</td>
<td>550.00</td>
</tr>
<tr>
<td>tblOffRoadEquipment</td>
<td>OffRoadEquipmentType</td>
<td>Trenchers</td>
<td></td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>CO2IntensityFactor</td>
<td>641.35</td>
<td>499.66</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2020</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>7.16</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>11.23</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>42.04</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>6.07</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>1.21</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>20.43</td>
<td>0.00</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>WD_TR</td>
<td>6.59</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>WD_TR</td>
<td>27.49</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>WD_TR</td>
<td>44.32</td>
<td>0.00</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>0.2972</td>
<td>2.7511</td>
<td>2.8037</td>
<td>4.2500e-03</td>
<td>0.3343</td>
<td>0.1261</td>
<td>0.4604</td>
<td>0.1329</td>
<td>0.1171</td>
<td>0.2500</td>
<td>0.0000</td>
<td>374.4246</td>
<td>374.4246</td>
<td>0.0500</td>
<td>0.0000</td>
<td>375.4739</td>
</tr>
<tr>
<td>2018</td>
<td>0.5029</td>
<td>3.8991</td>
<td>4.4809</td>
<td>6.4500e-03</td>
<td>0.3038</td>
<td>0.2049</td>
<td>0.5087</td>
<td>0.0817</td>
<td>0.1925</td>
<td>0.2742</td>
<td>0.0000</td>
<td>666.2873</td>
<td>666.2873</td>
<td>0.0885</td>
<td>0.0000</td>
<td>687.1457</td>
</tr>
<tr>
<td>2019</td>
<td>2.0179</td>
<td>2.3484</td>
<td>3.7755</td>
<td>7.3700e-03</td>
<td>0.2501</td>
<td>0.1569</td>
<td>0.4169</td>
<td>0.0895</td>
<td>0.1473</td>
<td>0.2172</td>
<td>0.0000</td>
<td>566.4299</td>
<td>566.4299</td>
<td>0.0701</td>
<td>0.0000</td>
<td>588.0659</td>
</tr>
<tr>
<td>Total</td>
<td>2.8180</td>
<td>9.3995</td>
<td>11.0700</td>
<td>0.0201</td>
<td>0.8982</td>
<td>0.4879</td>
<td>1.3861</td>
<td>0.2845</td>
<td>0.4568</td>
<td>0.7413</td>
<td>0.0000</td>
<td>1,646.1418</td>
<td>1,646.1418</td>
<td>0.2165</td>
<td>0.0000</td>
<td>1,650.6889</td>
</tr>
</tbody>
</table>

Mitigated Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>0.2972</td>
<td>2.7511</td>
<td>2.8037</td>
<td>4.2500e-03</td>
<td>0.1996</td>
<td>0.1261</td>
<td>0.3257</td>
<td>0.0731</td>
<td>0.1171</td>
<td>0.1902</td>
<td>0.0000</td>
<td>374.4244</td>
<td>374.4244</td>
<td>0.0500</td>
<td>0.0000</td>
<td>375.4737</td>
</tr>
<tr>
<td>2018</td>
<td>0.5029</td>
<td>3.8991</td>
<td>4.4809</td>
<td>6.4500e-03</td>
<td>0.3038</td>
<td>0.2049</td>
<td>0.5087</td>
<td>0.0817</td>
<td>0.1925</td>
<td>0.2742</td>
<td>0.0000</td>
<td>665.2869</td>
<td>665.2869</td>
<td>0.0885</td>
<td>0.0000</td>
<td>687.1454</td>
</tr>
<tr>
<td>2019</td>
<td>2.0179</td>
<td>2.3494</td>
<td>3.7755</td>
<td>7.3700e-03</td>
<td>0.2601</td>
<td>0.1369</td>
<td>0.4169</td>
<td>0.0895</td>
<td>0.1473</td>
<td>0.2172</td>
<td>0.0000</td>
<td>566.4296</td>
<td>566.4296</td>
<td>0.0701</td>
<td>0.0000</td>
<td>586.0665</td>
</tr>
<tr>
<td>Total</td>
<td>2.8180</td>
<td>9.3995</td>
<td>11.0700</td>
<td>0.0201</td>
<td>0.7635</td>
<td>0.4879</td>
<td>1.2514</td>
<td>0.2248</td>
<td>0.4568</td>
<td>0.6816</td>
<td>0.0000</td>
<td>1,646.1409</td>
<td>1,646.1409</td>
<td>0.2165</td>
<td>0.0000</td>
<td>1,650.6876</td>
</tr>
</tbody>
</table>

Percent Reduction:

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Reduction</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>15.00</td>
<td>0.00</td>
<td>9.72</td>
<td>21.01</td>
<td>0.00</td>
<td>8.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
3.0 Construction Detail

Construction Phase

<table>
<thead>
<tr>
<th>Phase Number</th>
<th>Phase Name</th>
<th>Phase Type</th>
<th>Start Date</th>
<th>End Date</th>
<th>Num Days Week</th>
<th>Num Days</th>
<th>Phase Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Demolition</td>
<td>Demolition</td>
<td>8/1/2017</td>
<td>9/11/2017</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Site Preparation</td>
<td>Site Preparation</td>
<td>9/12/2017</td>
<td>9/25/2017</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Grading/Trenching</td>
<td>Grading</td>
<td>9/26/2017</td>
<td>11/6/2017</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Building Construction</td>
<td>Building Construction</td>
<td>11/6/2017</td>
<td>10/31/2019</td>
<td>5</td>
<td>519</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Paving</td>
<td>Paving</td>
<td>11/1/2019</td>
<td>11/30/2019</td>
<td>5</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Architectural Coating</td>
<td>Architectural Coating</td>
<td>12/1/2019</td>
<td>12/31/2019</td>
<td>5</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 225,071; Residential Outdoor: 75,024; Non-Residential Indoor: 240,000; Non-Residential Outdoor: 81,680

OffRoad Equipment

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Type</th>
<th>Amount</th>
<th>Usage Hours</th>
<th>Horse Power</th>
<th>Load Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>Concrete/Industrial Saws</td>
<td>1</td>
<td>8.00</td>
<td>81</td>
<td>0.73</td>
</tr>
<tr>
<td>Demolition</td>
<td>Excavators</td>
<td>3</td>
<td>8.00</td>
<td>162</td>
<td>0.36</td>
</tr>
<tr>
<td>Demolition</td>
<td>Rubber Tired Dozers</td>
<td>2</td>
<td>8.00</td>
<td>255</td>
<td>0.40</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>Tractors/Loaders/Backhoes</td>
<td>4</td>
<td>8.00</td>
<td>97</td>
<td>0.37</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>Excavators</td>
<td>1</td>
<td>8.00</td>
<td>162</td>
<td>0.38</td>
</tr>
<tr>
<td>Grading/Trenching</td>
<td>Graders</td>
<td>1</td>
<td>8.00</td>
<td>174</td>
<td>0.41</td>
</tr>
<tr>
<td>Grading/Trenching</td>
<td>Rubber Tired Dozers</td>
<td>1</td>
<td>8.00</td>
<td>255</td>
<td>0.40</td>
</tr>
<tr>
<td>Paving</td>
<td>Cement and Mortar Mixers</td>
<td>2</td>
<td>6.00</td>
<td>9</td>
<td>0.56</td>
</tr>
<tr>
<td>Grading/Trenching</td>
<td>Tractors/Loaders/Backhoes</td>
<td>3</td>
<td>8.00</td>
<td>97</td>
<td>0.37</td>
</tr>
<tr>
<td>Building Construction</td>
<td>Cranes</td>
<td>1</td>
<td>7.00</td>
<td>226</td>
<td>0.25</td>
</tr>
<tr>
<td>Building Construction</td>
<td>Forklifts</td>
<td>3</td>
<td>8.00</td>
<td>84</td>
<td>0.20</td>
</tr>
<tr>
<td>Building Construction</td>
<td>Generator Sets</td>
<td>1</td>
<td>8.00</td>
<td>84</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Trips and VMT

<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment</th>
<th>Worker Trip Count</th>
<th>Worker Trip Number</th>
<th>Vendor Trip Count</th>
<th>Vendor Trip Number</th>
<th>Hauling Trip Count</th>
<th>Hauling Trip Number</th>
<th>Worker Trip Length</th>
<th>Vendor Trip Length</th>
<th>Hauling Trip Length</th>
<th>Worker Vehicle Class</th>
<th>Vendor Vehicle Class</th>
<th>Hauling Vehicle Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>6</td>
<td>15.00</td>
<td>0.00</td>
<td>440.00</td>
<td>12.40</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Preparation</td>
<td>7</td>
<td>18.00</td>
<td>0.00</td>
<td>1,500.00</td>
<td>12.40</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grading/Trenching</td>
<td>7</td>
<td>18.00</td>
<td>0.00</td>
<td>2,575.00</td>
<td>12.40</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Construction</td>
<td>9</td>
<td>220.00</td>
<td>52.00</td>
<td>0.00</td>
<td>12.40</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>8</td>
<td>20.00</td>
<td>0.00</td>
<td>0.00</td>
<td>12.40</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>1</td>
<td>44.00</td>
<td>0.00</td>
<td>0.00</td>
<td>12.40</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1 Mitigation Measures Construction

Water Exposed Area
- Reduce Vehicle Speed on Unpaved Roads
- Clean Paved Roads

3.2 Demolition - 2017

Unmitigated Construction On-Site
Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0.0232</td>
<td>0.0000</td>
<td>0.0232</td>
<td>3.5100e-003</td>
<td>0.0000</td>
<td>3.5100e-003</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0607</td>
<td>0.6405</td>
<td>0.5084</td>
<td>6.0000e-004</td>
<td>0.0319</td>
<td>0.0319</td>
<td>0.0297</td>
<td>0.0297</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0151</td>
<td>0.0000</td>
<td>55.2437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0607</td>
<td>0.6405</td>
<td>0.5084</td>
<td>6.0000e-004</td>
<td>0.0232</td>
<td>0.0319</td>
<td>0.0551</td>
<td>0.0297</td>
<td>0.0332</td>
<td>0.0000</td>
<td>54.9273</td>
<td>54.9273</td>
<td>0.0151</td>
<td>0.0000</td>
<td>55.2437</td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>5.9000e-003</td>
<td>0.0583</td>
<td>0.0866</td>
<td>1.6000e-004</td>
<td>3.6600e-003</td>
<td>6.9000e-004</td>
<td>4.3400e-003</td>
<td>1.0000e-003</td>
<td>6.3000e-004</td>
<td>1.6300e-003</td>
<td>0.0000</td>
<td>13.8948</td>
<td>13.8948</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>13.8968</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>7.3000e-004</td>
<td>1.0100e-003</td>
<td>0.0101</td>
<td>3.0000e-005</td>
<td>2.0400e-003</td>
<td>2.0000e-005</td>
<td>5.4000e-004</td>
<td>2.0000e-005</td>
<td>5.6000e-004</td>
<td>0.0000</td>
<td>1.9563</td>
<td>1.9563</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>1.9584</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.6300e-003</td>
<td>0.0593</td>
<td>0.0987</td>
<td>1.9000e-004</td>
<td>5.7000e-003</td>
<td>7.1000e-004</td>
<td>6.4000e-003</td>
<td>1.5400e-003</td>
<td>6.5000e-004</td>
<td>2.1900e-003</td>
<td>0.0000</td>
<td>15.8511</td>
<td>15.8511</td>
<td>2.0000e-004</td>
<td>0.0000</td>
<td>15.8553</td>
</tr>
</tbody>
</table>

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>5.9000e-003</td>
<td>0.0583</td>
<td>0.0866</td>
<td>1.6000e-004</td>
<td>3.6600e-003</td>
<td>6.9000e-004</td>
<td>4.3400e-003</td>
<td>1.0000e-003</td>
<td>6.3000e-004</td>
<td>1.6300e-003</td>
<td>0.0000</td>
<td>13.8948</td>
<td>13.8948</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>13.8968</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>7.3000e-004</td>
<td>1.0100e-003</td>
<td>0.0101</td>
<td>3.0000e-005</td>
<td>2.0400e-003</td>
<td>2.0000e-005</td>
<td>5.4000e-004</td>
<td>2.0000e-005</td>
<td>5.6000e-004</td>
<td>0.0000</td>
<td>1.9563</td>
<td>1.9563</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>1.9584</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.6300e-003</td>
<td>0.0593</td>
<td>0.0987</td>
<td>1.9000e-004</td>
<td>5.7000e-003</td>
<td>7.1000e-004</td>
<td>6.4000e-003</td>
<td>1.5400e-003</td>
<td>6.5000e-004</td>
<td>2.1900e-003</td>
<td>0.0000</td>
<td>15.8511</td>
<td>15.8511</td>
<td>2.0000e-004</td>
<td>0.0000</td>
<td>15.8553</td>
</tr>
</tbody>
</table>

Fugitive Dust

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.0607</td>
<td>0.6405</td>
<td>0.5084</td>
<td>6.0000e-004</td>
<td>0.0319</td>
<td>0.0319</td>
<td>0.0297</td>
<td>0.0297</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0151</td>
<td>0.0000</td>
<td>55.2437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0607</td>
<td>0.6405</td>
<td>0.5084</td>
<td>6.0000e-004</td>
<td>0.0232</td>
<td>0.0319</td>
<td>0.0551</td>
<td>0.0297</td>
<td>0.0332</td>
<td>0.0000</td>
<td>54.9273</td>
<td>54.9273</td>
<td>0.0151</td>
<td>0.0000</td>
<td>55.2437</td>
<td></td>
</tr>
</tbody>
</table>
Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>5.9000E-003</td>
<td>0.0583</td>
<td>0.0866</td>
<td>1.6000E-004</td>
<td>3.6000E-003</td>
<td>6.9000E-004</td>
<td>4.3400E-003</td>
<td>1.0000E-003</td>
<td>6.3000E-004</td>
<td>1.8300E-003</td>
<td>0.0000</td>
<td>13.8948</td>
<td>13.8948</td>
<td>1.0000E-004</td>
<td>0.0000</td>
<td>13.8968</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>7.3000E-004</td>
<td>1.0100E-003</td>
<td>0.0101</td>
<td>3.0000E-005</td>
<td>2.0400E-003</td>
<td>2.0000E-005</td>
<td>2.0600E-005</td>
<td>5.4000E-004</td>
<td>2.0000E-005</td>
<td>5.6000E-004</td>
<td>0.0000</td>
<td>1.9563</td>
<td>1.9563</td>
<td>1.0000E-004</td>
<td>1.0000E-004</td>
<td>1.9564</td>
</tr>
<tr>
<td>Total</td>
<td>6.6300E-003</td>
<td>0.0593</td>
<td>0.0987</td>
<td>1.9000E-004</td>
<td>5.7000E-003</td>
<td>7.1000E-004</td>
<td>6.4000E-003</td>
<td>1.5400E-003</td>
<td>6.5000E-004</td>
<td>2.1900E-003</td>
<td>0.0000</td>
<td>15.8511</td>
<td>15.8511</td>
<td>2.0000E-004</td>
<td>0.0000</td>
<td>15.8553</td>
</tr>
</tbody>
</table>

3.3 Site Preparation - 2017

Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0.0921</td>
<td>0.0000</td>
<td>0.0921</td>
<td>0.0499</td>
<td>0.0000</td>
<td>0.0499</td>
<td>0.0000</td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0242</td>
<td>0.2588</td>
<td>0.1970</td>
<td>2.0000E-004</td>
<td>0.0138</td>
<td>0.0138</td>
<td>0.0127</td>
<td>0.0127</td>
<td>0.0000</td>
<td>18.1577</td>
<td>18.1577</td>
<td>5.5600E-003</td>
<td>0.0000</td>
<td>18.2745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0242</td>
<td>0.2588</td>
<td>0.1970</td>
<td>2.0000E-004</td>
<td>0.0921</td>
<td>0.0138</td>
<td>0.1059</td>
<td>0.0127</td>
<td>0.0626</td>
<td>0.0000</td>
<td>18.1577</td>
<td>18.1577</td>
<td>5.5600E-003</td>
<td>0.0000</td>
<td>18.2745</td>
<td></td>
</tr>
</tbody>
</table>

Unmitigated Construction Off-Site
Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0.0415</td>
<td>0.0000</td>
<td>0.0415</td>
<td>0.0225</td>
<td>0.0000</td>
<td>0.0225</td>
<td>0.0000</td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0242</td>
<td>0.0415</td>
<td>0.0138</td>
<td>0.0225</td>
<td>0.0127</td>
<td>0.0127</td>
<td>0.0000</td>
<td>18.1577</td>
<td>18.1577</td>
<td>5.36600e-003</td>
<td>0.0000</td>
<td>18.2745</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0242</td>
<td>0.0415</td>
<td>0.0138</td>
<td>0.0552</td>
<td>0.0127</td>
<td>0.0351</td>
<td>0.0000</td>
<td>18.1577</td>
<td>18.1577</td>
<td>5.36600e-003</td>
<td>0.0000</td>
<td>18.2745</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0201</td>
<td>0.1989</td>
<td>0.3019</td>
<td>5.3000e-004</td>
<td>0.0125</td>
<td>2.3400e-003</td>
<td>0.0148</td>
<td>3.4200e-003</td>
<td>2.1500e-003</td>
<td>5.5600e-003</td>
<td>0.0000</td>
<td>47.3685</td>
<td>47.3685</td>
<td>3.4000e-004</td>
<td>0.0000</td>
<td>47.3756</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>2.9000e-004</td>
<td>4.0000e-004</td>
<td>4.0400e-004</td>
<td>1.0000e-005</td>
<td>8.2000e-004</td>
<td>1.0000e-005</td>
<td>8.2000e-004</td>
<td>2.2000e-004</td>
<td>1.0000e-005</td>
<td>8.2000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.7825</td>
</tr>
<tr>
<td>Total</td>
<td>0.0204</td>
<td>0.1993</td>
<td>0.3060</td>
<td>5.4000e-004</td>
<td>0.0133</td>
<td>2.3500e-003</td>
<td>0.0156</td>
<td>3.6400e-003</td>
<td>2.1600e-003</td>
<td>5.7800e-003</td>
<td>0.0000</td>
<td>48.1511</td>
<td>48.1511</td>
<td>3.8000e-004</td>
<td>0.0000</td>
<td>48.1589</td>
</tr>
</tbody>
</table>
3.4 Grading/Trenching - 2017

Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1013</td>
<td>0.0000</td>
<td>0.1013</td>
<td>0.0510</td>
<td>0.0000</td>
<td>0.0510</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0599</td>
<td>0.0104</td>
<td>0.4227</td>
<td>5.0000e-004</td>
<td>0.0061</td>
<td>0.0061</td>
<td>0.0032</td>
<td>0.0032</td>
<td>0.0000</td>
<td>46.2366</td>
<td>46.2366</td>
<td>0.0142</td>
<td>0.0000</td>
<td>46.5341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0599</td>
<td>0.6104</td>
<td>0.4227</td>
<td>5.0000e-004</td>
<td>0.1013</td>
<td>0.0361</td>
<td>0.1374</td>
<td>0.0510</td>
<td>0.0332</td>
<td>0.0842</td>
<td>0.0000</td>
<td>46.2366</td>
<td>46.2366</td>
<td>0.0142</td>
<td>0.0000</td>
<td>46.5341</td>
</tr>
</tbody>
</table>

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0345</td>
<td>0.3414</td>
<td>0.5183</td>
<td>9.1000e-004</td>
<td>0.0214</td>
<td>4.0100e-003</td>
<td>0.0254</td>
<td>5.8700e-003</td>
<td>3.6800e-003</td>
<td>9.5500e-003</td>
<td>0.0000</td>
<td>81.3160</td>
<td>81.3160</td>
<td>5.8000e-004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>8.8000e-004</td>
<td>1.2100e-003</td>
<td>0.0121</td>
<td>3.0000e-005</td>
<td>2.4500e-003</td>
<td>2.0000e-005</td>
<td>2.4700e-003</td>
<td>6.5000e-004</td>
<td>2.0000e-005</td>
<td>6.7000e-004</td>
<td>0.0000</td>
<td>2.3476</td>
<td>2.3476</td>
<td>1.2000e-004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0354</td>
<td>0.3426</td>
<td>0.5304</td>
<td>9.4000e-004</td>
<td>0.0239</td>
<td>4.0300e-003</td>
<td>0.0279</td>
<td>6.5200e-003</td>
<td>3.7000e-003</td>
<td>0.0102</td>
<td>0.0000</td>
<td>83.6636</td>
<td>83.6636</td>
<td>7.0000e-004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
</table>

Page 10 of 19
<table>
<thead>
<tr>
<th>Category</th>
<th>Fugitive Dust</th>
<th>Off-Road</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tons/yr</td>
<td>MT/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0456</td>
<td>0.0000</td>
<td>0.0456</td>
</tr>
<tr>
<td></td>
<td>0.0229</td>
<td>0.0000</td>
<td>0.0229</td>
</tr>
<tr>
<td></td>
<td>0.0229</td>
<td>0.0000</td>
<td>0.0229</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tons/yr</td>
<td>MT/yr</td>
<td></td>
</tr>
<tr>
<td>Hauling</td>
<td>0.0345</td>
<td>0.3414</td>
<td>0.5183</td>
<td>9.1000e-004</td>
<td>0.0214</td>
<td>4.0100e-003</td>
<td>0.0254</td>
<td>5.8700e-003</td>
<td>3.6800e-003</td>
<td>9.5500e-003</td>
<td>0.0000</td>
<td>81.3160</td>
<td>81.3160</td>
<td>5.8000e-004</td>
<td>0.0000</td>
<td>81.3281</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>0.0354</td>
<td>0.3426</td>
<td>0.5304</td>
<td>9.4000e-004</td>
<td>0.0239</td>
<td>4.0300e-003</td>
<td>0.0279</td>
<td>5.5200e-003</td>
<td>3.7000e-003</td>
<td>0.0102</td>
<td>0.0000</td>
<td>83.6636</td>
<td>83.6636</td>
<td>7.0000e-004</td>
<td>0.0000</td>
<td>83.6782</td>
</tr>
</tbody>
</table>

3.5 Building Construction - 2017

Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tons/yr</td>
<td>MT/yr</td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0599</td>
<td>0.6104</td>
<td>0.4227</td>
<td>5.0000e-004</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0000</td>
<td>47.8958</td>
<td>47.8958</td>
<td>0.0118</td>
<td>0.0000</td>
<td>48.1434</td>
</tr>
<tr>
<td>Total</td>
<td>0.0621</td>
<td>0.5281</td>
<td>0.3626</td>
<td>5.4000e-004</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0000</td>
<td>47.8958</td>
<td>47.8958</td>
<td>0.0118</td>
<td>0.0000</td>
<td>48.1434</td>
</tr>
</tbody>
</table>
Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Tons/yr</th>
<th>Exhaust PM10</th>
<th>Fugitive PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor</td>
<td>0.0136</td>
<td>0.00925</td>
<td>0.1806</td>
<td>6.6500e-004</td>
<td>0.0003</td>
<td>7.8000e-003</td>
<td>1.1800e-003</td>
<td>3.0800e-003</td>
<td>0.0000</td>
<td>21.2841</td>
<td>21.2841</td>
<td>0.0000</td>
<td>21.2875</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.0143</td>
<td>0.0197</td>
<td>0.1173</td>
<td>5.2000e-004</td>
<td>0.0399</td>
<td>0.0403</td>
<td>0.0108</td>
<td>0.0109</td>
<td>0.0000</td>
<td>38.2573</td>
<td>38.2573</td>
<td>0.0000</td>
<td>38.2982</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0279</td>
<td>0.1122</td>
<td>0.3779</td>
<td>7.6000e-004</td>
<td>0.0466</td>
<td>1.6300e-003</td>
<td>0.0482</td>
<td>0.0125</td>
<td>1.5100e-003</td>
<td>0.0140</td>
<td>0.0000</td>
<td>59.5414</td>
<td>59.5414</td>
<td>2.1100e-003</td>
<td>59.5858</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Tons/yr</th>
<th>Exhaust PM10</th>
<th>Fugitive PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.0621</td>
<td>0.5281</td>
<td>0.3626</td>
<td>5.4000e-004</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0335</td>
<td>0.0000</td>
<td>47.8958</td>
<td>47.8958</td>
<td>0.0118</td>
<td>0.0000</td>
<td>48.1433</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0621</td>
<td>0.5281</td>
<td>0.3626</td>
<td>5.4000e-004</td>
<td>0.0356</td>
<td>0.0356</td>
<td>0.0335</td>
<td>0.0000</td>
<td>47.8958</td>
<td>47.8958</td>
<td>0.0118</td>
<td>0.0000</td>
<td>48.1433</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction Off-Site
3.5 Building Construction - 2018

Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.3483</td>
<td>3.0355</td>
<td>2.2880</td>
<td>3.500e-003</td>
<td>0.1950</td>
<td>0.1950</td>
<td>0.1833</td>
<td>0.1833</td>
<td>0.0000</td>
<td>308.9844</td>
<td>308.9844</td>
<td>0.0756</td>
<td>0.0000</td>
<td>310.5723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.3483</td>
<td>3.0355</td>
<td>2.2880</td>
<td>3.500e-003</td>
<td>0.1950</td>
<td>0.1950</td>
<td>0.1833</td>
<td>0.1833</td>
<td>0.0000</td>
<td>308.9844</td>
<td>308.9844</td>
<td>0.0756</td>
<td>0.0000</td>
<td>310.5723</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0583</td>
<td>0.5464</td>
<td>1.0304</td>
<td>1.550e-003</td>
<td>0.0434</td>
<td>7.670e-003</td>
<td>0.0510</td>
<td>0.0124</td>
<td>7.050e-003</td>
<td>0.0195</td>
<td>0.0000</td>
<td>135.9148</td>
<td>135.9148</td>
<td>0.0000</td>
<td>135.9366</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.0853</td>
<td>0.1171</td>
<td>1.1725</td>
<td>3.400e-003</td>
<td>0.2604</td>
<td>2.270e-003</td>
<td>0.2627</td>
<td>0.0893</td>
<td>2.100e-003</td>
<td>0.0714</td>
<td>0.0000</td>
<td>240.3880</td>
<td>240.3880</td>
<td>0.0119</td>
<td>240.6368</td>
<td></td>
</tr>
</tbody>
</table>
Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10 Total</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.3483</td>
<td>3.0355</td>
<td>2.2880</td>
<td>3.5000e-003</td>
<td>0.1950</td>
<td>0.1950</td>
<td>0.1833</td>
<td>0.1833</td>
<td>0.0000</td>
<td>308.9841</td>
<td>308.9841</td>
<td>0.0756</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>0.3483</td>
<td>3.0355</td>
<td>2.2880</td>
<td>3.5000e-003</td>
<td>0.1950</td>
<td>0.1950</td>
<td>0.1833</td>
<td>0.1833</td>
<td>0.0000</td>
<td>308.9841</td>
<td>308.9841</td>
<td>0.0756</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10 Total</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0693</td>
<td>0.5464</td>
<td>1.0304</td>
<td>1.5500e-003</td>
<td>0.0434</td>
<td>7.6700e-003</td>
<td>0.0124</td>
<td>0.0195</td>
<td>0.0000</td>
<td>135.9148</td>
<td>135.9148</td>
<td>1.0400e-003</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0853</td>
<td>0.1171</td>
<td>1.1725</td>
<td>3.4000e-003</td>
<td>0.2504</td>
<td>2.2700e-003</td>
<td>0.0693</td>
<td>0.0714</td>
<td>0.0000</td>
<td>240.3880</td>
<td>240.3880</td>
<td>0.0119</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>0.1546</td>
<td>0.6635</td>
<td>2.2029</td>
<td>4.9500e-003</td>
<td>0.3038</td>
<td>9.9400e-003</td>
<td>0.0817</td>
<td>0.0908</td>
<td>0.0000</td>
<td>376.3028</td>
<td>376.3028</td>
<td>0.0129</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

3.5 Building Construction - 2019

Unmitigated Construction On-Site
<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.2563</td>
<td>2.2852</td>
<td>1.8661</td>
<td>2.9200e-003</td>
<td>0.1401</td>
<td>0.1401</td>
<td>0.1317</td>
<td>0.1317</td>
<td>0.0000</td>
<td>255.1938</td>
<td>255.1938</td>
<td>0.0621</td>
<td>0.0000</td>
<td>256.4977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.2563</td>
<td>2.2852</td>
<td>1.8661</td>
<td>2.9200e-003</td>
<td>0.1401</td>
<td>0.1401</td>
<td>0.1317</td>
<td>0.1317</td>
<td>0.0000</td>
<td>255.1938</td>
<td>255.1938</td>
<td>0.0621</td>
<td>0.0000</td>
<td>256.4977</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0556</td>
<td>0.4195</td>
<td>0.6382</td>
<td>1.3000e-003</td>
<td>0.0362</td>
<td>0.0422</td>
<td>0.0104</td>
<td>5.4900e-003</td>
<td>0.0159</td>
<td>0.0000</td>
<td>111.9921</td>
<td>111.9921</td>
<td>8.5000e-004</td>
<td>0.0000</td>
<td>112.0099</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.0655</td>
<td>0.0897</td>
<td>0.8975</td>
<td>2.8400e-003</td>
<td>0.2175</td>
<td>0.2194</td>
<td>0.0579</td>
<td>1.7300e-003</td>
<td>0.0596</td>
<td>0.0000</td>
<td>193.5338</td>
<td>193.5338</td>
<td>9.2800e-003</td>
<td>0.0000</td>
<td>193.7287</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.1211</td>
<td>0.5092</td>
<td>1.7356</td>
<td>4.1400e-003</td>
<td>0.2538</td>
<td>0.2616</td>
<td>0.0682</td>
<td>7.2200e-003</td>
<td>0.0755</td>
<td>0.0000</td>
<td>305.5259</td>
<td>305.5259</td>
<td>0.0101</td>
<td>0.0000</td>
<td>305.7386</td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.2563</td>
<td>2.2852</td>
<td>1.8661</td>
<td>2.9200e-003</td>
<td>0.1401</td>
<td>0.1401</td>
<td>0.1317</td>
<td>0.1317</td>
<td>0.0000</td>
<td>255.1935</td>
<td>255.1935</td>
<td>0.0621</td>
<td>0.0000</td>
<td>256.4974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.2563</td>
<td>2.2852</td>
<td>1.8661</td>
<td>2.9200e-003</td>
<td>0.1401</td>
<td>0.1401</td>
<td>0.1317</td>
<td>0.1317</td>
<td>0.0000</td>
<td>255.1935</td>
<td>255.1935</td>
<td>0.0621</td>
<td>0.0000</td>
<td>256.4974</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0556</td>
<td>0.4195</td>
<td>0.8382</td>
<td>1.3000</td>
<td>0.0629</td>
<td>0.0706</td>
<td>0.0628</td>
<td>0.0104</td>
<td>5.4000e-003</td>
<td>0.0099</td>
<td>0.0056</td>
<td>111.9421</td>
<td>111.9421</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0555</td>
<td>0.0897</td>
<td>0.8975</td>
<td>2.8400e-003</td>
<td>0.2175</td>
<td>1.8700e-003</td>
<td>0.2164</td>
<td>0.0578</td>
<td>1.7200e-003</td>
<td>0.0096</td>
<td>0.0000</td>
<td>193.5338</td>
<td>193.5338</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>0.1211</td>
<td>0.5989</td>
<td>1.7356</td>
<td>4.1400e-003</td>
<td>0.2538</td>
<td>7.9400e-003</td>
<td>0.2816</td>
<td>0.0882</td>
<td>7.2200e-003</td>
<td>0.0755</td>
<td>0.0000</td>
<td>305.5259</td>
<td>305.5259</td>
<td>0.0101</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

3.6 Paving - 2019

Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Haul</td>
<td>0.0132</td>
<td>0.1322</td>
<td>0.1275</td>
<td>2.0000e-004</td>
<td>7.4700e-003</td>
<td>7.4700e-003</td>
<td>6.8900e-003</td>
<td>6.8900e-003</td>
<td>0.0000</td>
<td>17.3006</td>
<td>5.3200e-003</td>
<td>5.3200e-003</td>
<td>17.4123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>0.0132</td>
<td>0.1322</td>
<td>0.1275</td>
<td>2.0000e-004</td>
<td>7.4700e-003</td>
<td>7.4700e-003</td>
<td>6.8900e-003</td>
<td>6.8900e-003</td>
<td>0.0000</td>
<td>17.3006</td>
<td>5.3200e-003</td>
<td>5.3200e-003</td>
<td>17.4123</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unmitigated Construction Off-Site
<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated Construction On-Site</td>
<td></td>
</tr>
<tr>
<td>Hauling</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>5.7000e-004</td>
<td>7.9000e-004</td>
<td>7.8600e-003</td>
<td>2.0000e-005</td>
<td>1.9000e-003</td>
<td>1.9200e-003</td>
<td>2.0000e-005</td>
<td>5.1000e-004</td>
<td>5.2000e-004</td>
<td>8.0000e-005</td>
<td>1.6948</td>
<td>1.6948</td>
<td>8.0000e-005</td>
<td>1.6965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5.7000e-004</td>
<td>7.9000e-004</td>
<td>7.8600e-003</td>
<td>2.0000e-005</td>
<td>1.9000e-003</td>
<td>1.9200e-003</td>
<td>2.0000e-005</td>
<td>5.1000e-004</td>
<td>5.2000e-004</td>
<td>8.0000e-005</td>
<td>1.6965</td>
<td>1.6965</td>
<td>8.0000e-005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated Construction Off-Site</td>
<td></td>
</tr>
<tr>
<td>Hauling</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.7 Architectural Coating - 2019

Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archit. Coating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.6225</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>0.0000</td>
<td>2.8086</td>
<td>2.8086</td>
<td>2.4000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Off-Road</td>
<td>2.9300e-003</td>
<td>0.0202</td>
<td>0.0203</td>
<td>3.0000e-005</td>
<td>1.9000e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>0.0000</td>
<td>2.8086</td>
<td>2.8086</td>
<td>2.4000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1.6255</td>
<td>0.0202</td>
<td>0.0203</td>
<td>3.0000e-005</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>0.0000</td>
<td>2.8086</td>
<td>2.8086</td>
<td>2.4000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>1.3200e-003</td>
<td>1.8100e-003</td>
<td>0.0181</td>
<td>6.0000e-005</td>
<td>4.3900e-003</td>
<td>4.0000e-005</td>
<td>4.4300e-003</td>
<td>1.1700e-003</td>
<td>4.0000e-005</td>
<td>1.2000e-003</td>
<td>0.0000</td>
<td>3.9062</td>
<td>3.9062</td>
<td>1.9000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1.3200e-003</td>
<td>1.8100e-003</td>
<td>0.0181</td>
<td>6.0000e-005</td>
<td>4.3900e-003</td>
<td>4.0000e-005</td>
<td>4.4300e-003</td>
<td>1.1700e-003</td>
<td>4.0000e-005</td>
<td>1.2000e-003</td>
<td>0.0000</td>
<td>3.9062</td>
<td>3.9062</td>
<td>1.9000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Mitigated Construction On-Site
Mitigated Construction Off-Site

Table: Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archit. Coating</td>
<td>1.6225</td>
<td>0.0000</td>
</tr>
<tr>
<td>Off-Road</td>
<td>2.9300e-003</td>
<td>0.0202</td>
<td>0.0203</td>
<td>3.0000e-005</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>0.0000</td>
<td>2.8086</td>
<td>2.8086</td>
<td>2.4000e-004</td>
<td>0.0000</td>
<td>2.8136</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.6255</td>
<td>0.0202</td>
<td>0.0203</td>
<td>3.0000e-005</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>1.4200e-003</td>
<td>0.0000</td>
<td>2.8086</td>
<td>2.8086</td>
<td>2.4000e-004</td>
<td>0.0000</td>
<td>2.8136</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>1.3200e-003</td>
<td>1.8100e-003</td>
<td>0.0181</td>
<td>6.0000e-005</td>
<td>4.3900e-003</td>
<td>4.0000e-005</td>
<td>4.4300e-003</td>
<td>4.0000e-005</td>
<td>4.1700e-003</td>
<td>0.0000</td>
<td>3.9062</td>
<td>3.9062</td>
<td>1.9000e-004</td>
<td>0.0000</td>
<td>3.9101</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.3200e-003</td>
<td>1.8100e-003</td>
<td>0.0181</td>
<td>6.0000e-005</td>
<td>4.3900e-003</td>
<td>4.0000e-005</td>
<td>4.4300e-003</td>
<td>4.0000e-005</td>
<td>4.1700e-003</td>
<td>0.0000</td>
<td>3.9062</td>
<td>3.9062</td>
<td>1.9000e-004</td>
<td>0.0000</td>
<td>3.9101</td>
<td></td>
</tr>
</tbody>
</table>
Construction Mitigation Summary

SFSU - Creative Arts & Holloway - Construction
San Francisco County, Mitigation Report

Phase

<table>
<thead>
<tr>
<th>Phase</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Exhaust PM10</th>
<th>Exhaust PM2.5</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.00</td>
</tr>
<tr>
<td>Building Construction</td>
<td>0.00</td>
</tr>
<tr>
<td>Demolition</td>
<td>0.00</td>
</tr>
<tr>
<td>Grading/Trenching</td>
<td>0.00</td>
</tr>
<tr>
<td>Paving</td>
<td>0.00</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>0.00</td>
</tr>
</tbody>
</table>

OFFROAD Equipment Mitigation

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Fuel Type</th>
<th>Tier</th>
<th>Number Mitigated</th>
<th>Total Number of Equipment</th>
<th>DPF</th>
<th>Oxidation Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Compressors</td>
<td>Diesel</td>
<td>No Change</td>
<td>0</td>
<td>1</td>
<td>No Change</td>
<td>0.00</td>
</tr>
<tr>
<td>Concrete/Industrial Saws</td>
<td>Diesel</td>
<td>No Change</td>
<td>0</td>
<td>1</td>
<td>No Change</td>
<td>0.00</td>
</tr>
<tr>
<td>Cranes</td>
<td>Diesel</td>
<td>No Change</td>
<td>0</td>
<td>1</td>
<td>No Change</td>
<td>0.00</td>
</tr>
<tr>
<td>Excavators</td>
<td>Diesel</td>
<td>No Change</td>
<td>0</td>
<td>4</td>
<td>No Change</td>
<td>0.00</td>
</tr>
<tr>
<td>Forklifts</td>
<td>Diesel</td>
<td>No Change</td>
<td>0</td>
<td>3</td>
<td>No Change</td>
<td>0.00</td>
</tr>
<tr>
<td>Generator Sets</td>
<td>Diesel</td>
<td>No Change</td>
<td>0</td>
<td>1</td>
<td>No Change</td>
<td>0.00</td>
</tr>
<tr>
<td>Graders</td>
<td>Diesel</td>
<td>No Change</td>
<td>0</td>
<td>1</td>
<td>No Change</td>
<td>0.00</td>
</tr>
<tr>
<td>Pavers</td>
<td>Diesel</td>
<td>No Change</td>
<td>0</td>
<td>1</td>
<td>No Change</td>
<td>0.00</td>
</tr>
<tr>
<td>Equipment Type</td>
<td>ROG</td>
<td>NOx</td>
<td>CO</td>
<td>SO2</td>
<td>Exhaust PM10</td>
<td>Exhaust PM2.5</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Unmitigated tons/yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Compressors</td>
<td>2.93000E-003</td>
<td>2.01900E-002</td>
<td>2.02500E-002</td>
<td>3.00000E-005</td>
<td>1.42000E-003</td>
<td>1.42000E-003</td>
</tr>
<tr>
<td>Cement and Mortar Mixers</td>
<td>9.30000E-004</td>
<td>5.80000E-003</td>
<td>4.86000E-003</td>
<td>1.00000E-005</td>
<td>2.30000E-004</td>
<td>2.30000E-004</td>
</tr>
<tr>
<td>Concrete/Industrial Saws</td>
<td>8.71000E-003</td>
<td>6.39200E-002</td>
<td>5.62400E-002</td>
<td>9.00000E-005</td>
<td>4.80000E-003</td>
<td>4.80000E-003</td>
</tr>
<tr>
<td>Cranes</td>
<td>1.22130E-001</td>
<td>1.45713E+000</td>
<td>5.43930E-001</td>
<td>1.28000E-003</td>
<td>6.27400E-002</td>
<td>5.77200E-002</td>
</tr>
<tr>
<td>Excavators</td>
<td>2.17300E-002</td>
<td>2.41010E-001</td>
<td>2.05260E-001</td>
<td>3.20000E-004</td>
<td>1.18000E-002</td>
<td>1.09100E-002</td>
</tr>
<tr>
<td>Forklifts</td>
<td>1.34700E-001</td>
<td>1.19306E+000</td>
<td>9.39640E-001</td>
<td>1.19000E-003</td>
<td>9.44200E-002</td>
<td>8.86800E-002</td>
</tr>
<tr>
<td>Generator Sets</td>
<td>1.25750E-001</td>
<td>1.02786E-000</td>
<td>9.70300E-001</td>
<td>1.71000E-003</td>
<td>6.48200E-002</td>
<td>6.48200E-002</td>
</tr>
<tr>
<td>Graders</td>
<td>1.42900E-002</td>
<td>1.44628E-001</td>
<td>9.25700E-002</td>
<td>9.00000E-005</td>
<td>8.12000E-003</td>
<td>7.47000E-003</td>
</tr>
<tr>
<td>Paving Equipment</td>
<td>3.30000E-003</td>
<td>3.50000E-002</td>
<td>3.91400E-002</td>
<td>6.00000E-005</td>
<td>1.74000E-003</td>
<td>1.60000E-003</td>
</tr>
<tr>
<td>Rollers</td>
<td>3.57000E-003</td>
<td>3.32900E-002</td>
<td>3.06400E-002</td>
<td>4.00000E-005</td>
<td>2.32000E-002</td>
<td>2.19000E-002</td>
</tr>
<tr>
<td>Rubber Tired Dozers</td>
<td>7.14200E-002</td>
<td>7.91560E-001</td>
<td>5.98435E-001</td>
<td>5.30000E-004</td>
<td>3.87000E-002</td>
<td>3.38000E-002</td>
</tr>
<tr>
<td>Tractors/Loaders/Backhoes</td>
<td>1.97440E-001</td>
<td>1.95162E+000</td>
<td>1.76478E-000</td>
<td>2.35000E-003</td>
<td>1.37000E-001</td>
<td>1.26040E-001</td>
</tr>
<tr>
<td>Trenchers</td>
<td>8.06000E-003</td>
<td>7.06800E-002</td>
<td>4.19900E-002</td>
<td>5.00000E-005</td>
<td>5.54000E-003</td>
<td>5.09000E-003</td>
</tr>
<tr>
<td>Welders</td>
<td>4.31550E-001</td>
<td>4.77840E-001</td>
<td>6.60000E-004</td>
<td>2.82400E-002</td>
<td>2.82400E-002</td>
<td>0.00000E+000</td>
</tr>
<tr>
<td>Equipment Type</td>
<td>ROG</td>
<td>NOx</td>
<td>CO</td>
<td>SO2</td>
<td>Exhaust PM10</td>
<td>Exhaust PM2.5</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Air Compressors</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Cement and Mortar Mixers</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Concrete/Industrial Stonework Cranes</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Excavators</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Forklifts</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Generator Sets</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Graders</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Pavers</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Rollers</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Rubber Tired Dozers</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Tractors/Loaders/BacTiers/Trenchers</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>Welders</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
</tbody>
</table>
Fugitive Dust Mitigation

<table>
<thead>
<tr>
<th>Yes/No</th>
<th>Mitigation Measure</th>
<th>Mitigation Input</th>
<th>Mitigation Input</th>
<th>Mitigation Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Soil Stabilizer for unpaved Roads</td>
<td>PM10 Reduction</td>
<td>0.00</td>
<td>PM2.5 Reduction</td>
</tr>
<tr>
<td>No</td>
<td>Replace Ground Cover of Area Disturbed</td>
<td>PM10 Reduction</td>
<td>0.00</td>
<td>PM2.5 Reduction</td>
</tr>
<tr>
<td>Yes</td>
<td>Water Exposed Area</td>
<td>PM10 Reduction</td>
<td>55.00</td>
<td>PM2.5 Reduction</td>
</tr>
<tr>
<td>Yes</td>
<td>Clean Paved Road</td>
<td>% PM Reduction</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase Source</th>
<th>Unmitigated</th>
<th>Mitigated</th>
<th>Percent Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating Fugitive Dust</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Architectural Coating Roads</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Building Construction Fugitive Dust</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Building Construction Roads</td>
<td>0.00</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Demolition Fugitive Dust</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Demolition Roads</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Grading/Trenching Fugitive Dust</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Grading/Trenching Roads</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Clean Paved Road</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Fugitive Dust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Paving</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Paving Roads</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>0.09</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
</tbody>
</table>
CalEEMod Outputs

Existing Operations - Winter, Summer, Annual, and Mitigation
1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>69.00</td>
<td>Dwelling Unit</td>
<td>1.82</td>
<td>38,295.00</td>
<td>190</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- **Urbanization**: Urban
- **Wind Speed (m/s)**: 4.6
- **Precipitation Freq (Days)**: 64
- **Climate Zone**: 5
- **Operational Year**: 2016
- **Utility Company**: Pacific Gas & Electric Company
- **CO2 Intensity (lb/MWhr)**: 559.32
- **CH4 Intensity (lb/MWhr)**: 0.029
- **N2O Intensity (lb/MWhr)**: 0.006

1.3 User Entered Comments & Non-Default Data

- Project Characteristics - PG&E CO2 Intensity Factor adjusted per 25% RPS by 2016
- Land Use - Dwelling units based on assumption of 2.75 people/beds per unit. SF reduced based on average of 555 SF per unit for Project
- Vehicle Trips - Trip rates were adjusted to match the change in vehicle trips for the housing land use for project vs existing (i.e., 145 daily vehicle trips)
- Woodstoves - No fireplaces assumed
- Energy Use - Using "Historic" energy for Existing uses (based on 2005 factors in model)
- Waste Mitigation - 50% waste diversion by 2016 consistent with AB 939 (not mitigation)

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblFireplaces</td>
<td>NumberGas</td>
<td>37.95</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberNoFireplace</td>
<td>21.39</td>
<td>69.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberWood</td>
<td>9.66</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>69,000.00</td>
<td>38,295.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>197.00</td>
<td>190.00</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>tblOffRoadEquipment</td>
<td>OffRoadEquipmentUnitAmount</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>CO2IntensityFactor</td>
<td>641.35</td>
<td>599.32</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2016</td>
</tr>
<tr>
<td>tblTripsAndVMT</td>
<td>WorkerTripNumber</td>
<td>10.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>7.16</td>
<td>2.10</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>6.07</td>
<td>2.10</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>6.59</td>
<td>2.10</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.566</td>
<td>0.129</td>
<td>9.558</td>
<td>0.0127</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>91.1737</td>
<td>10.2501</td>
<td>101.4238</td>
<td>0.4367</td>
<td>0.0000</td>
<td>110.5938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8000e-003</td>
<td>0.0367</td>
<td>0.0000</td>
<td>210.2170</td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.5291</td>
<td>1.0663</td>
<td>4.9836</td>
<td>9.7100e-003</td>
<td>0.6975</td>
<td>0.0157</td>
<td>0.7132</td>
<td>0.1885</td>
<td>0.0145</td>
<td>0.2029</td>
<td>842.4037</td>
<td>842.4037</td>
<td>0.0367</td>
<td>0.0000</td>
<td>843.1733</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.1142</td>
<td>1.3593</td>
<td>14.6117</td>
<td>0.0234</td>
<td>0.6975</td>
<td>0.6778</td>
<td>1.3753</td>
<td>0.1885</td>
<td>0.6765</td>
<td>0.8650</td>
<td>91.1737</td>
<td>1,061.5992</td>
<td>1,152.7729</td>
<td>0.4773</td>
<td>3.8000e-003</td>
<td>1,163.9840</td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.566</td>
<td>0.129</td>
<td>9.558</td>
<td>0.0127</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>91.1737</td>
<td>10.2501</td>
<td>101.4238</td>
<td>0.4367</td>
<td>0.0000</td>
<td>110.5938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8000e-003</td>
<td>0.0367</td>
<td>0.0000</td>
<td>210.2170</td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.5291</td>
<td>1.0663</td>
<td>4.9836</td>
<td>9.7100e-003</td>
<td>0.6975</td>
<td>0.0157</td>
<td>0.7132</td>
<td>0.1885</td>
<td>0.0145</td>
<td>0.2029</td>
<td>842.4037</td>
<td>842.4037</td>
<td>0.0367</td>
<td>0.0000</td>
<td>843.1733</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.1142</td>
<td>1.3593</td>
<td>14.6117</td>
<td>0.0234</td>
<td>0.6975</td>
<td>0.6778</td>
<td>1.3753</td>
<td>0.1885</td>
<td>0.6765</td>
<td>0.8650</td>
<td>91.1737</td>
<td>1,061.5992</td>
<td>1,152.7729</td>
<td>0.4773</td>
<td>3.8000e-003</td>
<td>1,163.9840</td>
</tr>
</tbody>
</table>

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 3 of 7
4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>144.90</td>
<td>144.90</td>
<td>144.90</td>
</tr>
<tr>
<td>Total</td>
<td>144.90</td>
<td>144.90</td>
<td>144.90</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Miles</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-W or C-W</td>
<td>H-S or C-C</td>
<td>H-O or C-NW</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>12.40</td>
<td>4.30</td>
<td>5.40</td>
</tr>
</tbody>
</table>

5.0 Energy Detail

4.4 Fleet Mix

Historical Energy Use: Y

5.1 Mitigation Measures Energy
5.2 Energy by Land Use - NaturalGas

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>NaturalGas Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>1776.04</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>NaturalGas Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>1.77604</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.0 Area Detail

6.1 Mitigation Measures Area

<table>
<thead>
<tr>
<th>Category</th>
<th>CO2e</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>ROG</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>6.49</td>
<td>0.13</td>
<td>9.55</td>
<td>0.01</td>
<td>0.01</td>
<td>0.65</td>
<td>0.65</td>
<td>91.17</td>
<td>0.01</td>
<td>101.42</td>
<td>0.44</td>
<td>0.00</td>
<td>110.59</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>6.49</td>
<td>0.13</td>
<td>9.55</td>
<td>0.01</td>
<td>0.01</td>
<td>0.65</td>
<td>0.65</td>
<td>91.17</td>
<td>0.01</td>
<td>101.42</td>
<td>0.44</td>
<td>0.00</td>
<td>110.59</td>
</tr>
</tbody>
</table>

6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>CO</th>
<th>SO2</th>
<th>ROG</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
<td>0.15</td>
<td>3.78</td>
<td>0.31</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>91.17</td>
<td>0.01</td>
<td>101.42</td>
<td>0.43</td>
<td>0.00</td>
</tr>
<tr>
<td>Coating</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>91.17</td>
<td>0.01</td>
<td>101.42</td>
<td>0.43</td>
<td>0.00</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>91.17</td>
<td>0.01</td>
<td>101.42</td>
<td>0.43</td>
<td>0.00</td>
</tr>
<tr>
<td>Hearth</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>91.17</td>
<td>0.01</td>
<td>101.42</td>
<td>0.43</td>
<td>0.00</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>91.17</td>
<td>0.01</td>
<td>101.42</td>
<td>0.43</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>1.57</td>
<td>0.13</td>
<td>9.56</td>
<td>0.01</td>
<td>0.01</td>
<td>0.65</td>
<td>0.65</td>
<td>91.17</td>
<td>0.01</td>
<td>101.42</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.1477</td>
<td>0.0000</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.8195</td>
<td>0.0000</td>
</tr>
<tr>
<td>Hearth</td>
<td>0.4170</td>
<td>0.0618</td>
<td>3.7866</td>
<td>0.0124</td>
<td>0.6177</td>
<td>0.6177</td>
<td>0.6177</td>
<td>0.6177</td>
<td>91.1737</td>
<td>0.0000</td>
<td>91.1737</td>
<td>0.4262</td>
<td>0.0000</td>
<td>100.1243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.1818</td>
<td>0.0675</td>
<td>5.7719</td>
<td>3.0000e-004</td>
<td>0.0311</td>
<td>0.0311</td>
<td>0.0311</td>
<td>0.0311</td>
<td>10.2501</td>
<td>0.0105</td>
<td>10.2605</td>
<td>0.4367</td>
<td>0.0000</td>
<td>110.5938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.5659</td>
<td>0.1293</td>
<td>9.5585</td>
<td>0.0127</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>91.1737</td>
<td>10.2501</td>
<td>101.4238</td>
<td>0.4367</td>
<td>0.0000</td>
<td>110.5938</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
</table>

10.0 Vegetation
SFSU - Creative Arts & Holloway - Existing
San Francisco County, Summer

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>69.00</td>
<td>Dwelling</td>
<td>1.82</td>
<td>38,295.00</td>
<td>190</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- Urbanization: Urban
- Wind Speed (m/s): 4.6
- Precipitation Freq (Days): 64
- Climate Zone: 5
- Operational Year: 2016
- Utility Company: Pacific Gas & Electric Company
- CO2 Intensity (lb/MWhr): 559.32
- CH4 Intensity (lb/MWhr): 0.029
- N2O Intensity (lb/MWhr): 0.006

1.3 User Entered Comments & Non-Default Data

- Project Characteristics - PG&E CO2 Intensity Factor adjusted per 25% RPS by 2016
- Land Use - Dwelling units based on assumption of 2.75 people/beds per unit. SF reduced based on average of 555 SF per unit for Project
- Vehicle Trips - Trip rates were adjusted to match the change in vehicle trips for the housing land use for project vs existing (i.e., 145 daily vehicle trips)
- Woodstoves - No fireplaces assumed
- Energy Use - Using "Historic" energy for Existing uses (based on 2005 factors in model)
- Waste Mitigation - 50% waste diversion by 2016 consistent with AB 939 (not mitigation)

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblFireplaces</td>
<td>NumberGas</td>
<td>37.95</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberNoFireplace</td>
<td>21.39</td>
<td>69.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberWood</td>
<td>9.66</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>69,000.00</td>
<td>38,295.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>197.00</td>
<td>190.00</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>tblOffRoadEquipment</td>
<td>OffRoadEquipmentUnitAmount</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>CO2IntensityFactor</td>
<td>641.35</td>
<td>559.32</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2016</td>
</tr>
<tr>
<td>tblTripsAndVMT</td>
<td>WorkerTripNumber</td>
<td>10.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>6.57</td>
<td>2.10</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>6.59</td>
<td>2.10</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.5660</td>
<td>0.1293</td>
<td>9.5585</td>
<td>0.0127</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>91.1737</td>
<td>101.4238</td>
<td>0.4367</td>
<td>0.0000</td>
<td>110.5938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8000e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.4995</td>
<td>0.9576</td>
<td>4.5044</td>
<td>0.0102</td>
<td>0.6975</td>
<td>0.0156</td>
<td>0.7131</td>
<td>0.1885</td>
<td>0.0144</td>
<td>0.2026</td>
<td>884.5826</td>
<td>884.5826</td>
<td>0.0366</td>
<td>885.3519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.0846</td>
<td>1.2505</td>
<td>14.1325</td>
<td>0.0239</td>
<td>0.6975</td>
<td>0.6777</td>
<td>1.3752</td>
<td>0.1885</td>
<td>0.6765</td>
<td>0.8649</td>
<td>91.1737</td>
<td>210.7781</td>
<td>0.4773</td>
<td>3.8300e-003</td>
<td>1,206.162</td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.5660</td>
<td>0.1293</td>
<td>9.5585</td>
<td>0.0127</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>91.1737</td>
<td>101.4238</td>
<td>0.4367</td>
<td>0.0000</td>
<td>110.5938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8000e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.4995</td>
<td>0.9576</td>
<td>4.5044</td>
<td>0.0102</td>
<td>0.6975</td>
<td>0.0156</td>
<td>0.7131</td>
<td>0.1885</td>
<td>0.0144</td>
<td>0.2026</td>
<td>884.5826</td>
<td>884.5826</td>
<td>0.0366</td>
<td>885.3519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.0846</td>
<td>1.2505</td>
<td>14.1325</td>
<td>0.0239</td>
<td>0.6975</td>
<td>0.6777</td>
<td>1.3752</td>
<td>0.1885</td>
<td>0.6765</td>
<td>0.8649</td>
<td>91.1737</td>
<td>1,194.9518</td>
<td>0.4773</td>
<td>3.8300e-003</td>
<td>1,206.162</td>
<td></td>
</tr>
</tbody>
</table>

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile
<table>
<thead>
<tr>
<th>Category</th>
<th>Mitigated</th>
<th>Unmitigated</th>
<th>Mitigated</th>
<th>Unmitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust PM10</td>
<td>0.0102</td>
<td>0.0102</td>
<td>0.0156</td>
<td>0.0156</td>
</tr>
<tr>
<td>Fugitive PM10</td>
<td>0.6975</td>
<td>0.6975</td>
<td>0.0731</td>
<td>0.0731</td>
</tr>
<tr>
<td>PM10 Total</td>
<td>0.7131</td>
<td>0.7131</td>
<td>0.0144</td>
<td>0.0144</td>
</tr>
<tr>
<td>Exhaust PM2.5</td>
<td>0.0144</td>
<td>0.0144</td>
<td>0.2028</td>
<td>0.2028</td>
</tr>
<tr>
<td>Fugitive PM2.5</td>
<td>0.1885</td>
<td>0.1885</td>
<td>0.0366</td>
<td>0.0366</td>
</tr>
<tr>
<td>PM2.5 Total</td>
<td>0.2031</td>
<td>0.2031</td>
<td>0.2394</td>
<td>0.2394</td>
</tr>
<tr>
<td>Bio-CO2</td>
<td>0.6975</td>
<td>0.6975</td>
<td>0.0156</td>
<td>0.0156</td>
</tr>
<tr>
<td>NBio-CO2</td>
<td>0.0156</td>
<td>0.0156</td>
<td>0.2028</td>
<td>0.2028</td>
</tr>
<tr>
<td>Total CO2</td>
<td>0.7131</td>
<td>0.7131</td>
<td>0.2394</td>
<td>0.2394</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0144</td>
<td>0.0144</td>
<td>0.0366</td>
<td>0.0366</td>
</tr>
<tr>
<td>N2O</td>
<td>0.2031</td>
<td>0.2031</td>
<td>0.2394</td>
<td>0.2394</td>
</tr>
<tr>
<td>CO2e</td>
<td>0.7131</td>
<td>0.7131</td>
<td>0.2394</td>
<td>0.2394</td>
</tr>
</tbody>
</table>

4.2 Trip Summary Information

Average Daily Trip Rate

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Weekday</th>
<th>Saturday</th>
<th>Sunday</th>
<th>Annual VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>144.90</td>
<td>144.90</td>
<td>144.90</td>
<td>323,470</td>
</tr>
<tr>
<td>Total</td>
<td>144.90</td>
<td>144.90</td>
<td>144.90</td>
<td>323,470</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Miles</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-W or C-W</td>
<td>12.40</td>
<td>4.30</td>
<td>86</td>
</tr>
<tr>
<td>H-S or C-C</td>
<td>4.30</td>
<td>5.40</td>
<td>11</td>
</tr>
<tr>
<td>H-O or C-NW</td>
<td>26.10</td>
<td>29.10</td>
<td>3</td>
</tr>
<tr>
<td>H-W or C</td>
<td>44.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-S or C-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-O or C-NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diverted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass-by</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.0 Energy Detail

4.4 Fleet Mix

Historical Energy Use: Y

5.1 Mitigation Measures Energy
<table>
<thead>
<tr>
<th>Category</th>
<th>lb/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaturalGas Mitigated</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaturalGas Unmitigated</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 Energy by Land Use - NaturalGas

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>kBTU/yr</th>
<th>lb/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>1776.04</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>kBTU/yr</th>
<th>lb/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>1.77604</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0192</td>
<td>0.1637</td>
<td>0.0697</td>
<td>1.0400e-003</td>
<td>0.0132</td>
<td>0.0132</td>
<td>0.0132</td>
<td>208.9453</td>
<td>4.0000e-003</td>
<td>3.8300e-003</td>
<td>210.2170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.0 Area Detail

6.1 Mitigation Measures Area

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>1.5660</td>
<td>0.1293</td>
<td>9.5585</td>
<td>0.0127</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>91.1737</td>
<td>10.2501</td>
<td>101.4238</td>
<td>0.4367</td>
<td>0.0000</td>
<td>110.5938</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmitigated</td>
<td>1.5660</td>
<td>0.1293</td>
<td>9.5585</td>
<td>0.0127</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>91.1737</td>
<td>10.2501</td>
<td>101.4238</td>
<td>0.4367</td>
<td>0.0000</td>
<td>110.5938</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.1477</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.8195</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>0.4170</td>
<td>0.0618</td>
<td>3.7888</td>
<td>0.0124</td>
<td>0.6177</td>
<td>0.6177</td>
<td>0.6177</td>
<td>91.1737</td>
<td>0.0000</td>
<td>91.1737</td>
<td>0.4262</td>
<td>0.0000</td>
<td>100.1243</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.1818</td>
<td>0.0675</td>
<td>5.7719</td>
<td>3.0000e-004</td>
<td>0.0311</td>
<td>0.0311</td>
<td>0.0311</td>
<td>10.2501</td>
<td>10.2501</td>
<td>10.2501</td>
<td>0.0105</td>
<td>0.0000</td>
<td>10.4695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.5659</td>
<td>0.1293</td>
<td>9.5585</td>
<td>0.0127</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>91.1737</td>
<td>10.2501</td>
<td>101.4238</td>
<td>0.4367</td>
<td>0.0000</td>
<td>110.5938</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG lb/day</th>
<th>NOx lb/day</th>
<th>CO lb/day</th>
<th>SO2 lb/day</th>
<th>Fugitive PM10 lb/day</th>
<th>Exhaust PM10 lb/day</th>
<th>PM10 Total lb/day</th>
<th>Fugitive PM2.5 lb/day</th>
<th>Exhaust PM2.5 lb/day</th>
<th>PM2.5 Total lb/day</th>
<th>Bio-CO2 lb/day</th>
<th>NBio-CO2 lb/day</th>
<th>Total CO2 lb/day</th>
<th>CH4 lb/day</th>
<th>N2O lb/day</th>
<th>CO2e lb/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.1477</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.8195</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>0.4170</td>
<td>0.0618</td>
<td>3.7866</td>
<td>0.0124</td>
<td>0.6177</td>
<td>0.6177</td>
<td>0.6177</td>
<td>0.6177</td>
<td>91.1737</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.1818</td>
<td>0.0675</td>
<td>5.7719</td>
<td>3.0000e-004</td>
<td>0.0311</td>
<td>0.0311</td>
<td>0.0311</td>
<td>0.0311</td>
<td>10.2501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.5659</td>
<td>0.1293</td>
<td>9.5585</td>
<td>0.0127</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>0.6489</td>
<td>91.1737</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
</table>

10.0 Vegetation
1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>69.00</td>
<td>Dwelling</td>
<td>1.82</td>
<td>38,295.00</td>
<td>190</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- **Urbanization**: Urban
- **Wind Speed (m/s)**: 4.6
- **Precipitation Freq (Days)**: 64
- **Climate Zone**: 5
- **Operational Year**: 2016
- **Utility Company**: Pacific Gas & Electric Company
- **CO2 Intensity (lb/MWhr)**: 559.32
- **CH4 Intensity (lb/MWhr)**: 0.029
- **N2O Intensity (lb/MWhr)**: 0.006

1.3 User Entered Comments & Non-Default Data

- **Project Characteristics**: PG&E CO2 Intensity Factor adjusted per 25% RPS by 2016
- **Land Use**: Dwelling units based on assumption of 2.75 people/beds per unit. SF reduced based on average of 555 SF per unit for Project
- **Vehicle Trips**: Trip rates were adjusted to match the change in vehicle trips for the housing land use for project vs existing (i.e., 145 daily vehicle trips)
- **Energy Use**: Using "Historic" energy for Existing uses (based on 2005 factors in model)
- **Woodstoves**: No fireplaces assumed
- **Waste Mitigation**: 50% waste diversion by 2016 consistent with AB 939 (not mitigation)

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblFireplaces</td>
<td>NumberGas</td>
<td>37.95</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberNoFireplace</td>
<td>21.39</td>
<td>69.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberWood</td>
<td>9.66</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>69,000.00</td>
<td>38,295.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>197.00</td>
<td>190.00</td>
</tr>
<tr>
<td>tblOffRoadEquipment</td>
<td>OffRoadEquipmentUnitAmount</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>CO2IntensityFactor</td>
<td>641.35</td>
<td>559.32</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2016</td>
</tr>
<tr>
<td>tblTripsAndVMT</td>
<td>WorkerTripNumber</td>
<td>10.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>7.16</td>
<td>2.10</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>6.07</td>
<td>2.10</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>6.59</td>
<td>2.10</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10 Total</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>0.1951</td>
<td>6.4100e-003</td>
<td>0.5400</td>
<td>9.0000e-005</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>0.4475</td>
<td>0.8369</td>
<td>1.2844</td>
<td>2.9400e-003</td>
<td>0.0000</td>
<td>1.3462</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>3.5000e-003</td>
<td>0.0299</td>
<td>0.0127</td>
<td>1.9000e-004</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>0.0000</td>
<td>99.2221</td>
<td>99.2221</td>
<td>4.0100e-003</td>
<td>1.3300e-003</td>
<td>99.7179</td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.0900</td>
<td>0.1874</td>
<td>0.8486</td>
<td>1.7700e-003</td>
<td>0.1223</td>
<td>2.6800e-003</td>
<td>0.1251</td>
<td>0.0332</td>
<td>2.6500e-003</td>
<td>0.0358</td>
<td>0.0000</td>
<td>139.2392</td>
<td>139.2392</td>
<td>6.0400e-003</td>
<td>0.0000</td>
</tr>
<tr>
<td>Waste</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4263</td>
<td>8.6882</td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.5500e-003</td>
<td>14.3014</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4263</td>
<td>8.6882</td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.5500e-003</td>
<td>14.3014</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.2886</td>
<td>0.2237</td>
<td>1.4013</td>
<td>2.0500e-003</td>
<td>0.1223</td>
<td>0.1237</td>
<td>0.0332</td>
<td>0.0112</td>
<td>0.0443</td>
<td>8.3167</td>
<td>247.9864</td>
<td>256.3031</td>
<td>0.5407</td>
<td>4.8800e-003</td>
<td>269.1706</td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10 Total</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>0.1951</td>
<td>6.4100e-003</td>
<td>0.5400</td>
<td>9.0000e-005</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>0.4475</td>
<td>0.8369</td>
<td>1.2844</td>
<td>2.9400e-003</td>
<td>0.0000</td>
<td>1.3462</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>3.5000e-003</td>
<td>0.0299</td>
<td>0.0127</td>
<td>1.9000e-004</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>0.0000</td>
<td>99.2221</td>
<td>99.2221</td>
<td>4.0100e-003</td>
<td>1.3300e-003</td>
<td>99.7179</td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.0900</td>
<td>0.1874</td>
<td>0.8486</td>
<td>1.7700e-003</td>
<td>0.1223</td>
<td>2.6500e-003</td>
<td>0.1251</td>
<td>0.0332</td>
<td>2.6500e-003</td>
<td>0.0358</td>
<td>0.0000</td>
<td>139.2392</td>
<td>139.2392</td>
<td>6.0400e-003</td>
<td>0.0000</td>
</tr>
<tr>
<td>Waste</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4263</td>
<td>8.6882</td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.5500e-003</td>
<td>14.3014</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.4263</td>
<td>8.6882</td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.5500e-003</td>
<td>14.3014</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.2886</td>
<td>0.2237</td>
<td>1.4013</td>
<td>2.0500e-003</td>
<td>0.1223</td>
<td>0.1337</td>
<td>0.0332</td>
<td>0.0112</td>
<td>0.0443</td>
<td>8.3167</td>
<td>247.9864</td>
<td>253.0816</td>
<td>0.3503</td>
<td>4.8800e-003</td>
<td>261.9488</td>
</tr>
</tbody>
</table>
4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>0.0900</td>
<td>0.1874</td>
<td>0.8486</td>
<td>1.7700e-003</td>
<td>0.1223</td>
<td>2.8500e-003</td>
<td>0.1251</td>
<td>0.0332</td>
<td>2.6200e-003</td>
<td>0.0358</td>
<td>0.0000</td>
<td>139.2392</td>
<td>6.0400e-003</td>
<td>0.0000</td>
<td>139.3661</td>
<td></td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0.0900</td>
<td>0.1874</td>
<td>0.8486</td>
<td>1.7700e-003</td>
<td>0.1223</td>
<td>2.8500e-003</td>
<td>0.1251</td>
<td>0.0332</td>
<td>2.6200e-003</td>
<td>0.0358</td>
<td>0.0000</td>
<td>139.2392</td>
<td>6.0400e-003</td>
<td>0.0000</td>
<td>139.3661</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>144.90</td>
<td>144.90</td>
<td>144.90</td>
</tr>
<tr>
<td>Total</td>
<td>144.90</td>
<td>144.90</td>
<td>144.90</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>H-W or C-W</th>
<th>H-S or C-C</th>
<th>H-O or C-NW</th>
<th>H-W or C</th>
<th>H-S or C-C</th>
<th>H-O or C-NW</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>12.40</td>
<td>4.30</td>
<td>5.40</td>
<td>26.10</td>
<td>29.10</td>
<td>44.80</td>
<td>86</td>
<td>11</td>
</tr>
</tbody>
</table>

5.0 Energy Detail

4.4 Fleet Mix

<table>
<thead>
<tr>
<th>LDA</th>
<th>LDT1</th>
<th>LDT2</th>
<th>MDV</th>
<th>LHD1</th>
<th>LHD2</th>
<th>MHD</th>
<th>HHG</th>
<th>OBUS</th>
<th>UBUS</th>
<th>MCY</th>
<th>SBUS</th>
<th>MH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.628026</td>
<td>0.058431</td>
<td>0.149152</td>
<td>0.079214</td>
<td>0.026557</td>
<td>0.003351</td>
<td>0.026114</td>
<td>0.003803</td>
<td>0.003113</td>
<td>0.011024</td>
<td>0.010157</td>
<td>0.000551</td>
<td>0.000507</td>
</tr>
</tbody>
</table>
5.1 Mitigation Measures Energy

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Mitigated</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>64.6288</td>
<td>64.6288</td>
<td>3.3500e-003</td>
<td>6.9000e-004</td>
<td>64.9141</td>
<td>64.6288</td>
<td>64.6288</td>
<td>3.3500e-003</td>
<td>6.9000e-004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity Unmitigated</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>64.6288</td>
<td>64.6288</td>
<td>3.3500e-003</td>
<td>6.9000e-004</td>
<td>64.9141</td>
<td>64.6288</td>
<td>64.6288</td>
<td>3.3500e-003</td>
<td>6.9000e-004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas Mitigated</td>
<td>3.5000e-003</td>
<td>0.0299</td>
<td>0.0127</td>
<td>1.9000e-004</td>
<td>2.4200e-003</td>
<td>0.0000</td>
<td>34.5933</td>
</tr>
<tr>
<td>Natural Gas Unmitigated</td>
<td>3.5000e-003</td>
<td>0.0299</td>
<td>0.0127</td>
<td>1.9000e-004</td>
<td>2.4200e-003</td>
<td>0.0000</td>
<td>34.5933</td>
</tr>
</tbody>
</table>

5.2 Energy by Land Use - Natural Gas

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Natural Gas Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>648253</td>
<td>3.5000e-003</td>
<td>0.0299</td>
<td>0.0127</td>
<td>1.9000e-004</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>0.0000</td>
<td>34.5933</td>
<td>34.5933</td>
<td>6.6000e-004</td>
</tr>
<tr>
<td>Total</td>
<td>3.5000e-003</td>
<td>0.0299</td>
<td>0.0127</td>
<td>1.9000e-004</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>2.4200e-003</td>
<td>0.0000</td>
<td>34.5933</td>
<td>34.5933</td>
<td>6.6000e-004</td>
</tr>
</tbody>
</table>

Mitigated
5.3 Energy by Land Use - Electricity

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Electricity Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>254742 kWh/yr</td>
<td>64.6288</td>
<td>6.9000e-004</td>
<td>64.9141</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>64.6288</td>
<td>3.3500e-003</td>
<td>6.9000e-004</td>
<td>64.9141</td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Electricity Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>254742 kWh/yr</td>
<td>64.6288</td>
<td>6.9000e-004</td>
<td>64.9141</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>64.6288</td>
<td>3.3500e-003</td>
<td>6.9000e-004</td>
<td>64.9141</td>
</tr>
</tbody>
</table>
6.0 Area Detail

6.1 Mitigation Measures Area

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>0.1951</td>
<td>6.4100e-003</td>
<td>0.5400</td>
<td>9.0000e-005</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>0.4475</td>
<td>0.8369</td>
<td>1.2844</td>
<td>2.9400e-003</td>
<td>0.0000</td>
<td>1.3462</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0.1951</td>
<td>6.4100e-003</td>
<td>0.5400</td>
<td>9.0000e-005</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>0.4475</td>
<td>0.8369</td>
<td>1.2844</td>
<td>2.9400e-003</td>
<td>0.0000</td>
<td>1.3462</td>
</tr>
</tbody>
</table>

6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
<td>0.0270</td>
<td></td>
</tr>
<tr>
<td>Costing</td>
<td>0.1496</td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>2.2600e-003</td>
<td>3.3000e-004</td>
<td>0.0205</td>
<td>7.0000e-005</td>
<td>3.3400e-003</td>
<td>3.3400e-003</td>
<td>3.3400e-003</td>
<td>3.3400e-003</td>
<td>3.3400e-003</td>
<td>3.3400e-003</td>
<td>0.4475</td>
<td>0.4475</td>
<td>0.4475</td>
<td>2.0900e-003</td>
<td>0.0000</td>
<td>0.4914</td>
</tr>
<tr>
<td>Hearth</td>
<td>0.0164</td>
<td>6.0800e-003</td>
<td>0.5195</td>
<td>3.0000e-005</td>
<td>2.8000e-003</td>
<td>2.8000e-003</td>
<td>2.8000e-003</td>
<td>2.8000e-003</td>
<td>2.8000e-003</td>
<td>2.8000e-003</td>
<td>0.0000</td>
<td>0.8369</td>
<td>0.8369</td>
<td>8.5000e-004</td>
<td>0.0000</td>
<td>0.8548</td>
</tr>
<tr>
<td>Landscaping</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.1951</td>
<td>6.4100e-003</td>
<td>0.5400</td>
<td>1.0000e-004</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>0.4475</td>
<td>0.8369</td>
<td>1.2844</td>
<td>2.9400e-003</td>
<td>0.0000</td>
<td>1.3462</td>
</tr>
</tbody>
</table>
Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROx</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.0270</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.1496</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>2.2600e-003</td>
<td>3.3000e-004</td>
<td>0.0205</td>
<td>7.0000e-005</td>
<td>3.3400e-005</td>
<td>3.3400e-005</td>
<td>0.0303</td>
<td>7.0000e-005</td>
<td>3.3400e-005</td>
<td>3.3400e-005</td>
<td>0.0303</td>
<td>0.0303</td>
<td>0.0303</td>
<td>0.4475</td>
<td>0.0000</td>
<td>0.4475</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.0164</td>
<td>6.0800e-003</td>
<td>0.5185</td>
<td>3.0000e-003</td>
<td>2.8000e-003</td>
<td>2.8000e-003</td>
<td>0.0303</td>
<td>2.8000e-003</td>
<td>2.8000e-003</td>
<td>2.8000e-003</td>
<td>0.0303</td>
<td>0.0303</td>
<td>0.0303</td>
<td>0.8369</td>
<td>0.0000</td>
<td>0.8369</td>
</tr>
<tr>
<td>Total</td>
<td>0.1951</td>
<td>6.4100e-003</td>
<td>0.5400</td>
<td>1.0000e-004</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>6.1400e-003</td>
<td>0.4475</td>
<td>0.8369</td>
<td>1.2844</td>
<td>2.9400e-003</td>
<td>0.0000</td>
<td>1.3462</td>
</tr>
</tbody>
</table>

7.0 Water Detail

7.1 Mitigation Measures Water

<table>
<thead>
<tr>
<th>Category</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.3500e-003</td>
<td>14.2991</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.3500e-003</td>
<td>14.3014</td>
</tr>
</tbody>
</table>

7.2 Water by Land Use

Unmitigated
Indoor/Outdoor Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Indoor/Outdoor Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>4.49563 / 2.8342</td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.5500e-003</td>
<td>14.3014</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.5500e-003</td>
<td>14.3014</td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Indoor/Outdoor Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>4.49563 / 2.8342</td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.5500e-003</td>
<td>14.2991</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10.1145</td>
<td>0.1469</td>
<td>3.5500e-003</td>
<td>14.2991</td>
</tr>
</tbody>
</table>

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Category/Year

<table>
<thead>
<tr>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 9 of 10
8.2 Waste by Land Use

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>31.74</td>
<td>6.4429</td>
<td>0.3808</td>
<td>0.0000</td>
<td>14.4390</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6.4429</td>
<td>0.3808</td>
<td>0.0000</td>
<td>14.4390</td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>15.87</td>
<td>3.2215</td>
<td>0.1904</td>
<td>0.0000</td>
<td>7.2195</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3.2215</td>
<td>0.1904</td>
<td>0.0000</td>
<td>7.2195</td>
</tr>
</tbody>
</table>

9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
</table>

10.0 Vegetation
Operational Percent Reduction Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Exhaust PM10</th>
<th>Exhaust PM2.5</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.00</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.00</td>
</tr>
<tr>
<td>Electricity</td>
<td>0.00</td>
</tr>
<tr>
<td>Hearth</td>
<td>0.00</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.00</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.00</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>0.00</td>
</tr>
<tr>
<td>Water Indoor</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Water Outdoor</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Project Setting:

<table>
<thead>
<tr>
<th>Mitigation</th>
<th>Category</th>
<th>Measure</th>
<th>% Reduction</th>
<th>Input Value 1</th>
<th>Input Value 2</th>
<th>Input Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Increase Density</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Increase Diversity</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Improve Walkability Design</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 1 of 4
<table>
<thead>
<tr>
<th>No</th>
<th>Land Use</th>
<th>Improve Destination Accessibility</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Increase Transit Accessibility</td>
<td>0.25</td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Integrate Below Market Rate Housing</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Land Use SubTotal</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Neighborhood Enhancements</td>
<td>Improve Pedestrian Network</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Neighborhood Enhancements</td>
<td>Provide Traffic Calming Measures</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Neighborhood Enhancements</td>
<td>Implement NEV Network</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Neighborhood Enhancements</td>
<td>Neighborhood Enhancements Subtotal</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Parking Policy Pricing</td>
<td>Limit Parking Supply</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Parking Policy Pricing</td>
<td>Unbundle Parking Costs</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Parking Policy Pricing</td>
<td>On-street Market Pricing</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Parking Policy Pricing</td>
<td>Parking Policy Pricing Subtotal</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Transit Improvements</td>
<td>Provide BRT System</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Transit Improvements</td>
<td>Expand Transit Network</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Transit Improvements</td>
<td>Increase Transit Frequency</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Transit Improvements</td>
<td>Transit Improvements Subtotal</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Land Use and Site Enhancement Subtotal</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Implement Trip Reduction Program</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Transit Subsidy</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Implement Employee Parking "Cash Out"</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Workplace Parking Charge</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Encourage Telecommuting and Alternative Work Schedules</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Market Commute Trip Reduction Option</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Employee Vanpool/Shuttle</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Provide Ride Sharing Program</td>
<td>2.00</td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Page 2 of 4</td>
<td></td>
</tr>
<tr>
<td>Measure Implemented</td>
<td>Mitigation Measure</td>
<td>Input Value</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Only Natural Gas Hearth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No Hearth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Cleaning Supplies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Residential Interior)</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Residential Exterior)</td>
<td>150.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Non-residential Interior)</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Non-residential Exterior)</td>
<td>150.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>% Electric Lawnmower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>% Electric Leafblower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>% Electric Chainsaw</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure Implemented</th>
<th>Mitigation Measure</th>
<th>Input Value 1</th>
<th>Input Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Exceed Title 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install High Efficiency Lighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>On-site Renewable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appliance Type</th>
<th>Land Use Subtype</th>
<th>% Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClothWasher</td>
<td></td>
<td>30.00</td>
</tr>
<tr>
<td>DishWasher</td>
<td></td>
<td>15.00</td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td>50.00</td>
</tr>
<tr>
<td>Measure Implemented</td>
<td>Mitigation Measure</td>
<td>Input Value 1</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>No</td>
<td>Apply Water Conservation on Strategy</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Reclaimed Water</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Grey Water</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow bathroom faucet</td>
<td>32.00</td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow Kitchen faucet</td>
<td>18.00</td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow Toilet</td>
<td>20.00</td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow Shower</td>
<td>20.00</td>
</tr>
<tr>
<td>No</td>
<td>Turf Reduction</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Water Efficient Irrigation Systems</td>
<td>6.10</td>
</tr>
<tr>
<td>No</td>
<td>Water Efficient Landscape</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Solid Waste Mitigation

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Input Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute Recycling and Composting Services</td>
<td>50.00</td>
</tr>
<tr>
<td>Percent Reduction in Waste Disposed</td>
<td></td>
</tr>
</tbody>
</table>
CalEEMod Outputs

Project Operations Event Days - Winter, Summer, Annual, and Mitigation
SFSU - Creative Arts & Holloway - Event Day
San Francisco County, Winter

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior College (2Yr)</td>
<td>75.00</td>
<td>1000sqft</td>
<td>1.00</td>
<td>75,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>60.00</td>
<td>1000sqft</td>
<td>0.90</td>
<td>60,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>70.00</td>
<td>Space</td>
<td>0.00</td>
<td>28,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>200.00</td>
<td>Dwelling Unit</td>
<td>1.00</td>
<td>111,146.00</td>
<td>550</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>25.00</td>
<td>1000sqft</td>
<td>0.30</td>
<td>25,000.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- Urbanization: Urban
- Wind Speed (m/s): 4.6
- Precipitation Freq (Days): 64
- Climate Zone: 5
- Operational Year: 2020
- Utility Company: Pacific Gas & Electric Company
- CO2 Intensity (lb/MWhr): 499.66
- CH4 Intensity (lb/MWhr): 0.029
- N2O Intensity (lb/MWhr): 0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics - PG&E CO2 Intensity Factor adjusted per 33% RPS by 2020

Land Use - Junior College used to represent University (since University doesn't have 1,000 sqft metric). Dwelling units based on assumption of 2.75 people/beds per unit. Acreages adjusted to match respective block

Vehicle Trips - For an Event day, trip rates were adjusted to match the increase in vehicle trips with the project creative arts building/concert hall

Woodstoves - No fireplaces assumed

Area Coating - Adjusted non-residential interior/exterior area based on minimal surfaces to be coated in parking garage

Energy Use - Default energy

Energy Mitigation - Exceed Title 24: 25% improvement is based on compliance with 2013 Title 24 (versus 2008 Title 24) + project design guidelines note 20% improvement beyond that
Waste Mitigation - 75% waste diversion consistent with AB 341 (not mitigation)

Water Mitigation - 20% indoor and 20% outdoor water reduction by 2020

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>75,024.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>220,071.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Residential_Interior</td>
<td>94000</td>
<td>81680</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Residential_Outer</td>
<td>282000</td>
<td>240000</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberGas</td>
<td>110.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberOfFireplace</td>
<td>62.00</td>
<td>200.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberOfWood</td>
<td>26.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>200,000.00</td>
<td>111,146.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.38</td>
<td>0.90</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.72</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.53</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>5.26</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.57</td>
<td>0.30</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>572.00</td>
<td>550.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>641.35</td>
<td>499.66</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>2014</td>
<td>2020</td>
</tr>
<tr>
<td>tblTripsAndVMT</td>
<td>WorkerTripNumber</td>
<td>44.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>7.16</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>11.23</td>
<td>1.86</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>42.04</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>8.49</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>1.21</td>
<td>1.86</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>20.43</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>6.59</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>27.18</td>
<td>1.86</td>
</tr>
</tbody>
</table>
2.0 Emissions Vehicle Trips

2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.1993</td>
<td>1.7629</td>
<td>1.3123</td>
<td>0.0109</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>1.3429</td>
<td>0.0399</td>
<td>1.3746</td>
<td>2.0180</td>
<td>3.3926</td>
<td>3.3926</td>
<td>0.0660</td>
<td>3.9024</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.7197</td>
<td>1.5049</td>
<td>6.8267</td>
<td>0.0190</td>
<td>1.3746</td>
<td>0.0243</td>
<td>1.3989</td>
<td>0.3938</td>
<td>1.3989</td>
<td>0.0225</td>
<td>1.3746</td>
<td>2.0180</td>
<td>3.3926</td>
<td>3.3926</td>
<td>0.0660</td>
<td>3.9024</td>
</tr>
<tr>
<td>Total</td>
<td>9.9074</td>
<td>3.6559</td>
<td>35.5365</td>
<td>0.0660</td>
<td>1.3746</td>
<td>2.0180</td>
<td>3.3926</td>
<td>0.3938</td>
<td>1.3989</td>
<td>0.0225</td>
<td>1.3746</td>
<td>2.0180</td>
<td>3.3926</td>
<td>3.3926</td>
<td>0.0660</td>
<td>3.9024</td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.1249</td>
<td>1.1159</td>
<td>0.8123</td>
<td>0.0000</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.7197</td>
<td>1.5049</td>
<td>6.8267</td>
<td>0.0190</td>
<td>1.3746</td>
<td>0.0243</td>
<td>1.3989</td>
<td>0.3938</td>
<td>1.3989</td>
<td>0.0225</td>
<td>1.3746</td>
<td>2.0180</td>
<td>3.3926</td>
<td>3.3926</td>
<td>0.0660</td>
<td>3.9024</td>
</tr>
<tr>
<td>Total</td>
<td>9.8330</td>
<td>2.0896</td>
<td>35.0364</td>
<td>0.0660</td>
<td>1.3746</td>
<td>1.9666</td>
<td>3.3412</td>
<td>0.3938</td>
<td>1.3989</td>
<td>0.0225</td>
<td>1.3746</td>
<td>2.0180</td>
<td>3.3926</td>
<td>3.3926</td>
<td>0.0660</td>
<td>3.9024</td>
</tr>
</tbody>
</table>

Percent Reduction

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td>0.75</td>
<td>18.24</td>
<td>14.1</td>
<td>6.15</td>
<td>0.00</td>
<td>2.55</td>
<td>1.52</td>
<td>0.00</td>
<td>2.55</td>
<td>2.15</td>
<td>0.00</td>
<td>22.28</td>
<td>20.79</td>
<td>1.16</td>
<td>37.34</td>
<td>20.71</td>
</tr>
</tbody>
</table>

4.0 Operational Detail - Mobile

Page 3 of 8
4.1 Mitigation Measures Mobile

| Category | RO3 | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | Nbio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|---------------------------|-----|-----|----|-----|---------------|--------------|------------|---------------|--------------|------------|----------|----------|----------|--------|-----|-----|-----|
| Mitigated | 0.7197 | 1.5049 | 6.8267 | 0.0190 | 1.3746 | 0.0243 | 1.3989 | 0.3714 | 0.0225 | 0.3938 | 1,438.509 | 9 | 1,438.5099 | 0.0543 | 1,439.651 | 0 |
| Unmitigated | 0.7197 | 1.5049 | 6.8267 | 0.0190 | 1.3746 | 0.0243 | 1.3989 | 0.3714 | 0.0225 | 0.3938 | 1,438.509 | 9 | 1,438.5099 | 0.0543 | 1,439.651 | 0 |

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>139.50</td>
<td>139.50</td>
<td>139.50</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>111.60</td>
<td>111.60</td>
<td>111.60</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>251.10</td>
<td>251.10</td>
<td>251.10</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Miles</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-W or C-W</td>
<td>H-S or C-C</td>
<td>H-O or C-NW</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>12.40</td>
<td>4.30</td>
<td>5.40</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LDA</th>
<th>LDT1</th>
<th>LDT2</th>
<th>MDV</th>
<th>LHD1</th>
<th>LHD2</th>
<th>MHD</th>
<th>HHD</th>
<th>OBUS</th>
<th>UBUS</th>
<th>MCY</th>
<th>SBUS</th>
<th>MH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.631289</td>
<td>0.058518</td>
<td>0.148045</td>
<td>0.077273</td>
<td>0.026007</td>
<td>0.003276</td>
<td>0.026188</td>
<td>0.004043</td>
<td>0.003129</td>
<td>0.010899</td>
<td>0.010305</td>
<td>0.000529</td>
<td>0.000500</td>
</tr>
</tbody>
</table>
5.0 Energy Detail

4.4 Fleet Mix

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

<table>
<thead>
<tr>
<th>Category</th>
<th>RO3</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaturalGas Mitigated</td>
<td>0.1249</td>
<td>1.1159</td>
<td>0.8123</td>
<td>6.8100e-003</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>1.3622274</td>
<td>4</td>
<td>1.3622274</td>
<td>0.0261</td>
<td>0.0250</td>
<td>1.3705177</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaturalGas Unmitigated</td>
<td>0.1993</td>
<td>1.7829</td>
<td>1.3123</td>
<td>0.0109</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>2.1737257</td>
<td>7</td>
<td>2.1737257</td>
<td>0.0417</td>
<td>0.0399</td>
<td>2.1869546</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 Energy by Land Use - NaturalGas

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>NaturalGas Use</th>
<th>RO3</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>4851.33</td>
<td>0.0523</td>
<td>0.4471</td>
<td>0.1903</td>
<td>2.8500e-003</td>
<td>0.0362</td>
<td>0.0362</td>
<td>0.0362</td>
<td>570.7442</td>
<td>0.0169</td>
<td>0.0105</td>
<td>574.2177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosed Parking</td>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>595.2458</td>
<td>0.0313</td>
<td>0.0128</td>
<td>599.4769</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>3909.59</td>
<td>0.0837</td>
<td>0.5704</td>
<td>0.4667</td>
<td>3.4800e-003</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>698.2943</td>
<td>0.0269</td>
<td>0.0159</td>
<td>694.3482</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>7386.99</td>
<td>0.0797</td>
<td>0.7242</td>
<td>0.6683</td>
<td>4.3500e-003</td>
<td>0.0550</td>
<td>0.0550</td>
<td>0.0550</td>
<td>868.0572</td>
<td>0.0167</td>
<td>0.0159</td>
<td>874.3482</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Mall</td>
<td>328.767</td>
<td>0.0500</td>
<td>0.0322</td>
<td>0.0271</td>
<td>7.0000e-004</td>
<td>2.4500e-003</td>
<td>7.0000e-004</td>
<td>2.4500e-003</td>
<td>38.5785</td>
<td>0.0549</td>
<td>0.0549</td>
<td>38.5785</td>
<td>0.0549</td>
<td>0.0549</td>
<td>38.5785</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Natural Gas Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.0000</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>3.39441</td>
<td>0.0368</td>
<td>0.3524</td>
<td>0.2960</td>
<td>2.1100e-003</td>
<td>0.0288</td>
<td>0.0288</td>
<td>0.0288</td>
<td>0.0288</td>
<td>422.8719</td>
<td>422.8719</td>
<td>8.1100e-003</td>
<td>7.5000e-003</td>
<td>425.4834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>4.45501</td>
<td>0.0485</td>
<td>0.4405</td>
<td>0.3700</td>
<td>2.5400e-003</td>
<td>0.0335</td>
<td>0.0335</td>
<td>0.0335</td>
<td>0.0335</td>
<td>528.5899</td>
<td>528.5899</td>
<td>0.0101</td>
<td>9.6900e-003</td>
<td>531.8866</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.216438</td>
<td>2.3000e-003</td>
<td>0.0212</td>
<td>0.0176</td>
<td>1.3000e-004</td>
<td>1.6100e-003</td>
<td>1.8100e-003</td>
<td>1.8100e-003</td>
<td>25.4633</td>
<td>25.4633</td>
<td>4.9000e-004</td>
<td>4.7000e-004</td>
<td>25.6182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>3.27507</td>
<td>0.0353</td>
<td>0.3018</td>
<td>0.1284</td>
<td>1.9300e-003</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>385.3023</td>
<td>385.3023</td>
<td>7.3800e-003</td>
<td>7.0600e-003</td>
<td>387.4772</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.1249</td>
<td>1.1159</td>
<td>0.8123</td>
<td>6.8100e-003</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>1,362.2274</td>
<td>1,362.2274</td>
<td>0.0261</td>
<td>0.0250</td>
<td>1,370.5177</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.0 Area Detail

6.1 Mitigation Measures Area

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmitigated</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.8891</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>2.4017</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1913</td>
<td>0.1765</td>
<td>10.8187</td>
<td>0.0353</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>280.4963</td>
<td>0.0000</td>
<td>280.4963</td>
<td>1.2178</td>
<td>0.0000</td>
<td>286.0894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.5063</td>
<td>0.1917</td>
<td>16.5767</td>
<td>8.7000e-004</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>28.7604</td>
<td>0.0911</td>
<td>28.7604</td>
<td>0.0291</td>
<td>30.3720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.8891</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>2.4017</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1913</td>
<td>0.1765</td>
<td>10.8187</td>
<td>0.0353</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>280.4963</td>
<td>0.0000</td>
<td>280.4963</td>
<td>1.2178</td>
<td>0.0000</td>
<td>286.0894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.5063</td>
<td>0.1917</td>
<td>16.5767</td>
<td>8.7000e-004</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>28.7604</td>
<td>0.0911</td>
<td>28.7604</td>
<td>0.0291</td>
<td>30.3720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.0 Water Detail

7.1 Mitigation Measures Water
Apply Water Conservation Strategy

8.0 Waste Detail

8.1 Mitigation Measures Waste
Institute Recycling and Composting Services

9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
</table>

10.0 Vegetation
SFSU - Creative Arts & Holloway - Event Day
San Francisco County, Summer

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior College (2Yr)</td>
<td>75.00</td>
<td>1000sqft</td>
<td>1.00</td>
<td>75,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>60.00</td>
<td>1000sqft</td>
<td>0.90</td>
<td>60,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>70.00</td>
<td>Space</td>
<td>0.00</td>
<td>28,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>200.00</td>
<td>Dwelling Unit</td>
<td>1.00</td>
<td>111,146.00</td>
<td>550</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>25.00</td>
<td>1000sqft</td>
<td>0.30</td>
<td>25,000.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

<table>
<thead>
<tr>
<th>Urbanization</th>
<th>Urban</th>
<th>Wind Speed (m/s)</th>
<th>4.6</th>
<th>Precipitation Freq (Days)</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Zone</td>
<td>5</td>
<td></td>
<td></td>
<td>Operational Year</td>
<td>2020</td>
</tr>
<tr>
<td>Utility Company</td>
<td>Pacific Gas & Electric Company</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CO2 Intensity (lb/MWhr)	499.66
CH4 Intensity (lb/MWhr)	0.029
N2O Intensity (lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics - PG&E CO2 Intensity Factor adjusted per 33% RPS by 2020
Land Use - Junior College used to represent University (since University doesn't have 1,000 sqft metric). Dwelling units based on assumption of 2.75 people/beds per unit. Acreages adjusted to match respective block
Vehicle Trips - For an Event day, trip rates were adjusted to match the increase in vehicle trips with the project creative arts building/concert hall
Woodstoves - No fireplaces assumed
Area Coating - Adjusted non-residential interior/exterior area based on minimal surfaces to be coated in parking garage
Energy Use - Default energy
Energy Mitigation - Exceed Title 24: 25% improvement is based on compliance with 2013 Title 24 (versus 2008 Title 24) + project design guidelines note 20% improvement beyond that
Waste Mitigation - 75% waste diversion consistent with AB 341 (not mitigation)
Water Mitigation - 20% indoor and 20% outdoor water reduction by 2020

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Exterior</td>
<td>94,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Interior</td>
<td>282,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>ConstArea_Residential_Exterior</td>
<td>75,024.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>225,071.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>ConstArea_Residential_Exterior</td>
<td>94,000.00</td>
<td>81,880.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Nonresidential_Exterior</td>
<td>282,000.00</td>
<td>240,000.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberGas</td>
<td>40.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberNoFireplace</td>
<td>62.00</td>
<td>200.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberWood</td>
<td>28.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>200,000.00</td>
<td>111,146.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.38</td>
<td>0.90</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.72</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>572.00</td>
<td>550.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>572.00</td>
<td>550.00</td>
</tr>
<tr>
<td>tblOffRoadEquipment</td>
<td>OffRoadEquipmentUnitAmount</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2020</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WorkerTripNumber</td>
<td>54.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>7.56</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>11.23</td>
<td>1.86</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>42.04</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>8.07</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>1.21</td>
<td>1.86</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>20.43</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>6.59</td>
<td>0.00</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>27.49</td>
<td>1.86</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>44.32</td>
<td>0.00</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
</tr>
<tr>
<td>Energy</td>
<td>0.1993</td>
<td>1.7829</td>
<td>1.3123</td>
<td>0.0109</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>2,173.7257</td>
<td>7</td>
<td>2,173.7257</td>
<td>0.0417</td>
<td>0.0399</td>
<td>2,186.9546</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.6909</td>
<td>1.3510</td>
<td>6.2973</td>
<td>0.0200</td>
<td>1.3746</td>
<td>0.0242</td>
<td>1.3989</td>
<td>0.3714</td>
<td>0.0224</td>
<td>0.3938</td>
<td>1,509.6724</td>
<td>4</td>
<td>1,509.6724</td>
<td>0.0543</td>
<td>1,510.812</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.8786</td>
<td>3.5021</td>
<td>35.0071</td>
<td>0.0670</td>
<td>1.3746</td>
<td>2.0179</td>
<td>3.3925</td>
<td>0.3714</td>
<td>2.0160</td>
<td>2.3874</td>
<td>260.4963</td>
<td>3,713.1581</td>
<td>9</td>
<td>3,973.6551</td>
<td>1.3428</td>
<td>0.0399</td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
</tr>
<tr>
<td>Energy</td>
<td>0.1249</td>
<td>1.1159</td>
<td>0.8123</td>
<td>6.8100e-003</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>1,362.2274</td>
<td>4</td>
<td>1,362.2274</td>
<td>0.0261</td>
<td>0.0250</td>
<td>1,370.517</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.6909</td>
<td>1.3510</td>
<td>6.2973</td>
<td>0.0200</td>
<td>1.3746</td>
<td>0.0242</td>
<td>1.3989</td>
<td>0.3714</td>
<td>0.0224</td>
<td>0.3938</td>
<td>1,509.6724</td>
<td>4</td>
<td>1,509.6724</td>
<td>0.0543</td>
<td>1,510.812</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.8042</td>
<td>2.8351</td>
<td>34.5070</td>
<td>0.0630</td>
<td>1.3746</td>
<td>1.9665</td>
<td>3.3411</td>
<td>0.3714</td>
<td>1.9646</td>
<td>2.3360</td>
<td>260.4963</td>
<td>2,901.6605</td>
<td>5</td>
<td>3,162.1568</td>
<td>1.3273</td>
<td>0.0250</td>
</tr>
</tbody>
</table>

Percent Reduction

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNMITIGATED</td>
<td>0.75</td>
<td>19.65</td>
<td>1.43</td>
<td>6.06</td>
<td>0.00</td>
<td>2.55</td>
<td>1.52</td>
<td>0.00</td>
<td>2.55</td>
<td>2.15</td>
<td>0.00</td>
<td>21.85</td>
<td>20.42</td>
<td>1.16</td>
<td>37.34</td>
<td>20.34</td>
</tr>
</tbody>
</table>

2.2 Overall Emissions Summary

- **Fugitive PM10**: Emissions from fugitive dust such as road dust and construction dust.
- **Exhaust PM10**: Emissions from engine exhaust.
- **PM10 Total**: Total emissions of PM10 from all sources.
- **Fugitive PM2.5**: Emissions from fugitive dust.
- **Exhaust PM2.5**: Emissions from engine exhaust.
- **PM2.5 Total**: Total emissions of PM2.5 from all sources.
- **Bio-CO2**: Emissions of bio-based carbon dioxide.
- **NBio-CO2**: Emissions of non-bio-based carbon dioxide.
- **Total CO2**: Total emissions of carbon dioxide.
- **CH4**: Methane emissions.
- **N2O**: Nitrous oxide emissions.
- **CO2e**: Carbon dioxide equivalent emissions.

Area: Emissions from area sources such as buildings and streets.

Energy: Emissions from energy sources such as power plants.

Mobile: Emissions from mobile sources such as vehicles and equipment.

Percent Reduction: Percentage reduction in emissions compared to baseline.

Total: Total emissions across all categories.
4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Exhaust PM10</th>
<th>Fugitive PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>0.6909</td>
<td>1.3510</td>
<td>6.2973</td>
<td>0.0200</td>
<td>1.3746</td>
<td>0.0242</td>
<td>1.3989</td>
<td>0.3714</td>
<td>0.0224</td>
<td>0.3938</td>
<td>1.509.6724</td>
<td>0.0543</td>
<td>1.510.8129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0.6909</td>
<td>1.3510</td>
<td>6.2973</td>
<td>0.0200</td>
<td>1.3746</td>
<td>0.0242</td>
<td>1.3989</td>
<td>0.3714</td>
<td>0.0224</td>
<td>0.3938</td>
<td>1.509.6724</td>
<td>0.0543</td>
<td>1.510.8129</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>139.50</td>
<td>139.50</td>
<td>139.50</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>111.60</td>
<td>111.60</td>
<td>111.60</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>251.10</td>
<td>251.10</td>
<td>251.10</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Exhaust PM10</th>
<th>Fugitive PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>0.6909</td>
<td>1.3510</td>
<td>6.2973</td>
<td>0.0200</td>
<td>1.3746</td>
<td>0.0242</td>
<td>1.3989</td>
<td>0.3714</td>
<td>0.0224</td>
<td>0.3938</td>
<td>1.509.6724</td>
<td>0.0543</td>
<td>1.510.8129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.6909</td>
<td>1.3510</td>
<td>6.2973</td>
<td>0.0200</td>
<td>1.3746</td>
<td>0.0242</td>
<td>1.3989</td>
<td>0.3714</td>
<td>0.0224</td>
<td>0.3938</td>
<td>1.509.6724</td>
<td>0.0543</td>
<td>1.510.8129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>0.6909</td>
<td>1.3510</td>
<td>6.2973</td>
<td>0.0200</td>
<td>1.3746</td>
<td>0.0242</td>
<td>1.3989</td>
<td>0.3714</td>
<td>0.0224</td>
<td>0.3938</td>
<td>1.509.6724</td>
<td>0.0543</td>
<td>1.510.8129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.6909</td>
<td>1.3510</td>
<td>6.2973</td>
<td>0.0200</td>
<td>1.3746</td>
<td>0.0242</td>
<td>1.3989</td>
<td>0.3714</td>
<td>0.0224</td>
<td>0.3938</td>
<td>1.509.6724</td>
<td>0.0543</td>
<td>1.510.8129</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-W or C-W</td>
<td>H-S or C-C</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>12.40</td>
<td>4.30</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>9.50</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>9.50</td>
<td>7.30</td>
</tr>
</tbody>
</table>
5.0 Energy Detail

4.4 Fleet Mix

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

5.2 Energy by Land Use - NaturalGas

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Energy Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>5909.59</td>
<td>0.0837</td>
<td>0.5794</td>
<td>0.4867</td>
<td>3.4800e-003</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>695.2458</td>
<td>695.2458</td>
<td>0.0133</td>
<td>0.0128</td>
<td>699.4769</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mitigated

<table>
<thead>
<tr>
<th>Natural Gas Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>3.5944</td>
<td>0.0388</td>
<td>0.3524</td>
<td>0.2963</td>
<td>0.0268</td>
<td>0.0268</td>
<td>0.0268</td>
<td>0.0268</td>
<td>0.0268</td>
<td>422.8719</td>
<td>422.8719</td>
<td>6.1100e-003</td>
<td>7.5000e-003</td>
<td>425.4454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>4.4930</td>
<td>0.0485</td>
<td>0.4405</td>
<td>0.3700</td>
<td>0.0335</td>
<td>0.0335</td>
<td>0.0335</td>
<td>0.0335</td>
<td>0.0335</td>
<td>528.5899</td>
<td>528.5899</td>
<td>9.6000e-003</td>
<td>9.6000e-003</td>
<td>531.8068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.2164</td>
<td>0.0500</td>
<td>0.2212</td>
<td>0.1710</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>585.3023</td>
<td>585.3023</td>
<td>7.8000e-003</td>
<td>7.8000e-003</td>
<td>587.6472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>3.2750</td>
<td>0.0353</td>
<td>0.3018</td>
<td>0.1284</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>1,362.2274</td>
<td>1,362.2274</td>
<td>4.0000e-003</td>
<td>4.0000e-003</td>
<td>1,370.5177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.1249</td>
<td>1.1159</td>
<td>0.8123</td>
<td>6.8100e-003</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>1,362.2274</td>
<td>1,362.2274</td>
<td>4.0000e-003</td>
<td>4.0000e-003</td>
<td>1,370.5177</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.0 Area Detail

6.1 Mitigation Measures Area

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.8891</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>6.4017</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1913</td>
<td>0.1765</td>
<td>10.6167</td>
<td>0.0353</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>260.4963</td>
<td>0.0000</td>
<td>260.4963</td>
<td>1.2178</td>
<td>0.0000</td>
<td>1.8560</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.5063</td>
<td>0.1917</td>
<td>16.5787</td>
<td>8.7000e-004</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>29.7608</td>
<td>29.7608</td>
<td>29.7608</td>
<td>0.0291</td>
<td>30.3720</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.8891</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>6.4017</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1913</td>
<td>0.1765</td>
<td>10.6167</td>
<td>0.0353</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>260.4963</td>
<td>0.0000</td>
<td>260.4963</td>
<td>1.2178</td>
<td>0.0000</td>
<td>1.8560</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.5063</td>
<td>0.1917</td>
<td>16.5787</td>
<td>8.7000e-004</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>29.7608</td>
<td>29.7608</td>
<td>29.7608</td>
<td>0.0291</td>
<td>30.3720</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.0 Water Detail

7.1 Mitigation Measures Water

Apply Water Conservation Strategy

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
</tr>
</tbody>
</table>

10.0 Vegetation
SFSU - Creative Arts & Holloway - Event Day
San Francisco County, Annual

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior College (2YR)</td>
<td>75.00</td>
<td>1000sqft</td>
<td>1.00</td>
<td>75,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Junior College (2YR)</td>
<td>60.00</td>
<td>1000sqft</td>
<td>0.90</td>
<td>60,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>70.00</td>
<td>Space</td>
<td>0.00</td>
<td>28,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>200.00</td>
<td>Dwelling Unit</td>
<td>1.00</td>
<td>111,146.00</td>
<td>550</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>25.00</td>
<td>1000sqft</td>
<td>0.30</td>
<td>25,000.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- **Urbanization**: Urban
- **Wind Speed (m/s)**: 4.6
- **Precipitation Freq (Days)**: 64
- **Climate Zone**: 5
- **Operational Year**: 2020
- **Utility Company**: Pacific Gas & Electric Company
- **CO2 Intensity (lb/MWhr)**: 499.66
- **CH4 Intensity (lb/MWhr)**: 0.029
- **N2O Intensity (lb/MWhr)**: 0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics - PG&E CO2 Intensity Factor adjusted per 33% RPS by 2020

Land Use - Junior College used to represent University (since University doesn't have 1,000 sqft metric). Dwelling units based on assumption of 2.75 people/beds per unit. Acreages adjusted to match respective block

Vehicle Trips - For an Event day, trip rates were adjusted to match the increase in vehicle trips with the project creative arts building/concert hall

Woodstoves - No fireplaces assumed

Area Coating - Adjusted non-residential interior/exterior area based on minimal surfaces to be coated in parking garage

Energy Use - Default energy
Energy Mitigation - Exceed Title 24: 25% improvement is based on compliance with 2013 Title 24 (versus 2008 Title 24) + project design guidelines
note 20% improvement beyond that
Waste Mitigation - 75% waste diversion consistent with AB 341 (not mitigation)
Water Mitigation - 20% indoor and 20% outdoor water reduction by 2020

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Exterior</td>
<td>94,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Inside</td>
<td>282,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Exterior</td>
<td>75,024.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Inside</td>
<td>225,071.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Nonresidential_Exterior</td>
<td>284000</td>
<td>87600</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Residential_Exterior</td>
<td>284000</td>
<td>87600</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberGas</td>
<td>10.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberNoFireplace</td>
<td>62.00</td>
<td>200.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberWood</td>
<td>28.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>260,000.00</td>
<td>111,146.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.38</td>
<td>0.90</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.72</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>5.36</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.57</td>
<td>0.30</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>572.00</td>
<td>550.00</td>
</tr>
<tr>
<td>tblOffRoadEquipment</td>
<td>OffRoadEquipmentUnitAmount</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2020</td>
</tr>
<tr>
<td>tblTripsAndVMT</td>
<td>WorkerTripNumber</td>
<td>33.00</td>
<td>34.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>6.07</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>1.21</td>
<td>1.86</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>20.43</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>6.99</td>
<td>0.00</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>27.49</td>
<td>1.86</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>44.32</td>
<td>0.00</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.3826</td>
<td>0.0182</td>
<td>1.5506</td>
<td>2.7000e-004</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>1.2785</td>
<td>2.4299</td>
<td>3.7084</td>
<td>8.3500e-003</td>
<td>0.0000</td>
<td>3.8838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0364</td>
<td>0.3254</td>
<td>0.2395</td>
<td>1.9800e-009</td>
<td>0.0251</td>
<td>0.0251</td>
<td>0.0251</td>
<td>0.0251</td>
<td>0.0000</td>
<td>986.3208</td>
<td>986.3208</td>
<td>0.0433</td>
<td>0.0141</td>
<td>991.6064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.1234</td>
<td>0.2844</td>
<td>1.1694</td>
<td>3.4600e-003</td>
<td>0.2409</td>
<td>0.2454</td>
<td>0.0853</td>
<td>0.0694</td>
<td>0.0000</td>
<td>237.7586</td>
<td>237.7586</td>
<td>8.9600e-003</td>
<td>0.0000</td>
<td>237.9468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>59.6286</td>
<td>0.0000</td>
<td>59.6286</td>
<td>3.5240</td>
<td>0.0000</td>
<td>133.6315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>6.8223</td>
<td>42.0044</td>
<td>48.8267</td>
<td>0.7032</td>
<td>0.0171</td>
<td>68.8784</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.5423</td>
<td>0.6080</td>
<td>2.9595</td>
<td>5.7100e-003</td>
<td>0.2409</td>
<td>0.2882</td>
<td>0.0653</td>
<td>0.0469</td>
<td>0.1123</td>
<td>67.7294</td>
<td>1,268.513</td>
<td>1,336.243</td>
<td>7</td>
<td>4.2877</td>
<td>0.0312</td>
<td>1,435.946</td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.3826</td>
<td>0.0182</td>
<td>1.5506</td>
<td>2.7000e-004</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>1.2785</td>
<td>2.4299</td>
<td>3.7084</td>
<td>8.3500e-003</td>
<td>0.0000</td>
<td>3.8838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0228</td>
<td>0.2037</td>
<td>0.1482</td>
<td>1.2400e-003</td>
<td>0.0158</td>
<td>0.0158</td>
<td>0.0158</td>
<td>0.0158</td>
<td>0.0000</td>
<td>768.2221</td>
<td>768.2221</td>
<td>0.0358</td>
<td>0.0107</td>
<td>772.2763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.1234</td>
<td>0.2844</td>
<td>1.1694</td>
<td>3.4600e-003</td>
<td>0.2409</td>
<td>0.2454</td>
<td>0.0853</td>
<td>0.0694</td>
<td>0.0000</td>
<td>237.7586</td>
<td>237.7586</td>
<td>8.9600e-003</td>
<td>0.0000</td>
<td>237.9468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>14.9072</td>
<td>0.0000</td>
<td>0.0000</td>
<td>14.9072</td>
<td>0.8810</td>
<td>0.0000</td>
<td>33.4079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>5.4578</td>
<td>31.8414</td>
<td>37.2993</td>
<td>0.5624</td>
<td>0.0136</td>
<td>53.3319</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.5287</td>
<td>0.4863</td>
<td>2.8683</td>
<td>4.9700e-003</td>
<td>0.2409</td>
<td>0.2789</td>
<td>0.0653</td>
<td>0.0376</td>
<td>0.1029</td>
<td>21.6435</td>
<td>1,040.252</td>
<td>1,061.8955</td>
<td>0</td>
<td>1.4965</td>
<td>0.0243</td>
<td>1,100.846</td>
</tr>
</tbody>
</table>

| Percent Reduction | 0.88 | 20.02 | 3.08 | 12.96 | 0.00 | 19.96 | 3.25 | 0.00 | 19.96 | 8.35 | 68.04 | 17.99 | 20.53 | 65.10 | 22.14 | 23.34 |

Page 4 of 12
4.1 Mitigation Measures Mobile

| Category | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|---------------------------|------|--------|-------|-------|---------------|--------------|------------|---------------|---------------|------------|-----------|----------|-----------|--------|-----|------|------|
| Mitigated | 0.1234 | 0.2644 | 1.1694 | 3.4600e-003 | 0.2409 | 4.4100e-003 | 0.2464 | 0.0053 | 4.0700e-003 | 0.0694 | 0.0000 | 237.7586 | 237.7586 | 8.9600e-003 | 0.0000 | 237.9468 |
| Unmitigated | 0.1234 | 0.2644 | 1.1694 | 3.4600e-003 | 0.2409 | 4.4100e-003 | 0.2464 | 0.0053 | 4.0700e-003 | 0.0694 | 0.0000 | 237.7586 | 237.7586 | 8.9600e-003 | 0.0000 | 237.9468 |

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>111.60</td>
<td>111.60</td>
<td>111.60</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>111.60</td>
<td>111.60</td>
<td>111.60</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>251.10</td>
<td>251.10</td>
<td>251.10</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Miles</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-W or C-W</td>
<td>H-S or C-C</td>
<td>H-O or C-NW</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>12.40</td>
<td>4.30</td>
<td>5.40</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
</tbody>
</table>
5.0 Energy Detail

4.4 Fleet Mix

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

5.2 Energy by Land Use - NaturalGas

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

4.3 Total Emissions

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Mitigated</td>
<td>0.0000</td>
<td>542.6901</td>
<td>542.6901</td>
<td>0.0315</td>
<td>6.5200e-003</td>
<td>545.3717</td>
<td></td>
</tr>
<tr>
<td>Electricity Unmitigated</td>
<td>0.0000</td>
<td>626.4361</td>
<td>626.4361</td>
<td>0.0364</td>
<td>7.5200e-003</td>
<td>629.5316</td>
<td></td>
</tr>
<tr>
<td>NaturalGas Mitigated</td>
<td>0.0228</td>
<td>0.2037</td>
<td>0.1482</td>
<td>1.2400e-003</td>
<td>0.0158</td>
<td>0.0158</td>
<td>0.0158</td>
<td>0.0000</td>
<td>225.5320</td>
<td>225.5320</td>
<td>4.3200e-003</td>
<td>4.1300e-003</td>
<td>226.6646</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaturalGas Unmitigated</td>
<td>0.0364</td>
<td>0.3254</td>
<td>0.2395</td>
<td>1.9800e-003</td>
<td>0.0251</td>
<td>0.0251</td>
<td>0.0251</td>
<td>0.0000</td>
<td>359.8847</td>
<td>359.8847</td>
<td>6.9000e-003</td>
<td>6.6000e-003</td>
<td>362.0749</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Energy by Land Use - Electricity

Mitigated

| Land Use | NaturalGas Use | ROG | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|---------------------------------------|----------------|-----|-----|----|-----|---------------|--------------|------------|----------------|---------------|-------------|----------|--------|---------|----------|-----|-----|------|
| Enclosed Parking with Elevator | 1.3199e+005 | 0.0551 | 0.0234 | 3.5000e-003 | 4.4500e-003 | 4.4500e-003 | 4.4500e-003 | 0.0000 | 63.7911 | 0.0000 | 63.7911 | 1.7300e-003 | 144.7578 | 7.9000e-004 | 0.0100 | 0.0000 | 115.8065 |
| Junior College (2Yr) | 8.4900e+004 | 0.0551 | 0.0234 | 3.5000e-003 | 4.4500e-003 | 4.4500e-003 | 4.4500e-003 | 0.0000 | 63.7911 | 0.0000 | 63.7911 | 1.7300e-003 | 144.7578 | 7.9000e-004 | 0.0100 | 0.0000 | 115.8065 |
| Strip Mall | 8.0000 | 0.0551 | 0.0234 | 3.5000e-003 | 4.4500e-003 | 4.4500e-003 | 4.4500e-003 | 0.0000 | 63.7911 | 0.0000 | 63.7911 | 1.7300e-003 | 144.7578 | 7.9000e-004 | 0.0100 | 0.0000 | 115.8065 |
| Apartments Mid Rise | 1.1954e+005 | 0.0551 | 0.0234 | 3.5000e-003 | 4.4500e-003 | 4.4500e-003 | 4.4500e-003 | 0.0000 | 63.7911 | 0.0000 | 63.7911 | 1.7300e-003 | 144.7578 | 7.9000e-004 | 0.0100 | 0.0000 | 115.8065 |

Total

- **CO2e**: 143.8822
- **CH4**: 87.5140
- **N2O**: 1.6800e-003

5.3 Energy by Land Use - Electricity

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Electricity Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>723070</td>
<td>163.6780</td>
<td>9.5100e-003</td>
<td>1.9700e-003</td>
<td>164.6878</td>
</tr>
</tbody>
</table>

Page 7 of 12
Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>kWh/yr</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>698106</td>
<td>158.2201</td>
<td>9.1800e-003</td>
<td>1.9000e-003</td>
<td>159.0019</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>144816</td>
<td>32.8214</td>
<td>1.9000e-003</td>
<td>3.9000e-004</td>
<td>32.9536</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>57260</td>
<td>129.6115</td>
<td>7.5300e-003</td>
<td>1.5600e-003</td>
<td>130.4529</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>715950</td>
<td>162.2643</td>
<td>9.4200e-003</td>
<td>1.9500e-003</td>
<td>163.0661</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>262850</td>
<td>59.5728</td>
<td>3.4600e-003</td>
<td>7.2000e-004</td>
<td>59.8672</td>
</tr>
<tr>
<td>Total</td>
<td>542.6901</td>
<td>0.0315</td>
<td>6.5200e-003</td>
<td>545.3717</td>
<td></td>
</tr>
</tbody>
</table>

6.0 Area Detail

6.1 Mitigation Measures Area
6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>RO3</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10 Total</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.1623</td>
<td>0.0000</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>1.1683</td>
<td>0.0000</td>
</tr>
<tr>
<td>Hearth</td>
<td>6.4400e-003</td>
<td>9.5000e-004</td>
<td>0.0585</td>
<td>1.9000e-004</td>
<td>9.5500e-003</td>
<td>9.5500e-003</td>
<td>9.5500e-003</td>
<td>1.2785</td>
<td>0.0000</td>
<td>1.2785</td>
<td>5.9800e-003</td>
<td>0.0000</td>
<td>1.4040</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.0456</td>
<td>0.0173</td>
<td>1.4921</td>
<td>8.0000e-005</td>
<td>8.2000e-003</td>
<td>8.2000e-003</td>
<td>8.2000e-003</td>
<td>0.0000</td>
<td>2.4299</td>
<td>2.4299</td>
<td>2.3800e-003</td>
<td>0.0000</td>
<td>2.4798</td>
</tr>
<tr>
<td>Total</td>
<td>1.3826</td>
<td>0.0182</td>
<td>1.5506</td>
<td>2.7000e-004</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>1.2785</td>
<td>2.4299</td>
<td>3.7084</td>
<td>8.3500e-003</td>
<td>0.0000</td>
<td>3.8838</td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>RO3</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10 Total</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.1623</td>
<td>0.0000</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>1.1683</td>
<td>0.0000</td>
</tr>
<tr>
<td>Hearth</td>
<td>6.4400e-003</td>
<td>9.5000e-004</td>
<td>0.0585</td>
<td>1.9000e-004</td>
<td>9.5500e-003</td>
<td>9.5500e-003</td>
<td>9.5500e-003</td>
<td>1.2785</td>
<td>0.0000</td>
<td>1.2785</td>
<td>5.9800e-003</td>
<td>0.0000</td>
<td>1.4040</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.0456</td>
<td>0.0173</td>
<td>1.4921</td>
<td>8.0000e-005</td>
<td>8.2000e-003</td>
<td>8.2000e-003</td>
<td>8.2000e-003</td>
<td>0.0000</td>
<td>2.4299</td>
<td>2.4299</td>
<td>2.3800e-003</td>
<td>0.0000</td>
<td>2.4798</td>
</tr>
</tbody>
</table>
7.0 Water Detail

7.1 Mitigation Measures Water

Apply Water Conservation Strategy

<table>
<thead>
<tr>
<th>Category</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>37.2993</td>
<td>0.5624</td>
<td>0.0136</td>
<td>53.3319</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>48.8267</td>
<td>0.7032</td>
<td>0.0171</td>
<td>68.8784</td>
</tr>
</tbody>
</table>

7.2 Water by Land Use

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Indoor/Outdoor Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>13.0308 / 8.21507</td>
<td>26.6311</td>
<td>0.4259</td>
<td>0.0103</td>
<td>38.7671</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0 / 0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>6.62162 / 10.3569</td>
<td>18.4368</td>
<td>0.2167</td>
<td>0.0605</td>
<td>24.6280</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>1.85181 / 1.13498</td>
<td>3.7588</td>
<td>0.0605</td>
<td>0.0605</td>
<td>5.4833</td>
</tr>
<tr>
<td>Total</td>
<td>48.8267</td>
<td>0.7032</td>
<td>0.0171</td>
<td>68.8784</td>
<td></td>
</tr>
</tbody>
</table>
Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Total CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor/Outdoor Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Mall</td>
<td>1.48145</td>
<td>2.8533</td>
<td>0.0484</td>
<td>4.2342</td>
</tr>
<tr>
<td>Land Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>10.4246 / 6.57206</td>
<td>20.2371</td>
<td>0.3407</td>
<td>8.2200e-003</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0 / 0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>37.2993</td>
<td>0.5624</td>
<td>0.0136</td>
<td>53.3319</td>
</tr>
</tbody>
</table>

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Category/Year

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Total CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor/Outdoor Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Mall</td>
<td>1.48145</td>
<td>2.8533</td>
<td>0.0484</td>
<td>4.2342</td>
</tr>
<tr>
<td>Land Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmitigated</td>
<td>59.6286</td>
<td>3.5240</td>
<td>0.0000</td>
<td>133.6315</td>
</tr>
<tr>
<td>Mitigated</td>
<td>14.9072</td>
<td>0.8810</td>
<td>0.0000</td>
<td>33.4079</td>
</tr>
</tbody>
</table>

8.2 Waste by Land Use
Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>92</td>
<td>18.6752</td>
<td>1.1037</td>
<td>0.0000</td>
<td>41.8523</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>175.5</td>
<td>35.6249</td>
<td>2.1054</td>
<td>0.0000</td>
<td>79.8377</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>26.25</td>
<td>5.3285</td>
<td>0.3149</td>
<td>0.0000</td>
<td>11.9415</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>59.6286</td>
<td>3.5240</td>
<td>0.0000</td>
<td>133.6315</td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>23</td>
<td>4.6688</td>
<td>0.2759</td>
<td>0.0000</td>
<td>10.4631</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>43.875</td>
<td>8.9562</td>
<td>0.5263</td>
<td>0.0000</td>
<td>19.8594</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>8.5625</td>
<td>1.3321</td>
<td>0.0787</td>
<td>0.0000</td>
<td>2.9854</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14.9072</td>
<td>0.8810</td>
<td>0.0000</td>
<td>33.4079</td>
</tr>
</tbody>
</table>

9.0 Operational Offroad

10.0 Vegetation
SFSU - Creative Arts & Holloway - Event Day
San Francisco County, Mitigation Report

Operational Percent Reduction Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Exhaust PM10</th>
<th>Exhaust PM2.5</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.00</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.00</td>
</tr>
<tr>
<td>Electricity</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>13.37</td>
<td>13.37</td>
<td>13.37</td>
<td>13.30</td>
<td>13.37</td>
</tr>
<tr>
<td>Hearth</td>
<td>0.00</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.00</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.00</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>37.34</td>
<td>37.41</td>
<td>38.10</td>
<td>37.37</td>
<td>37.37</td>
<td>37.37</td>
<td>0.00</td>
<td>37.33</td>
<td>37.33</td>
<td>37.39</td>
<td>37.42</td>
<td>37.33</td>
</tr>
<tr>
<td>Water Indoor</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>20.00</td>
<td>24.20</td>
<td>23.61</td>
<td>20.01</td>
<td>20.12</td>
</tr>
<tr>
<td>Water Outdoor</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Operational Mobile Mitigation

Project Setting:

<table>
<thead>
<tr>
<th>Mitigation</th>
<th>Category</th>
<th>Measure</th>
<th>% Reduction</th>
<th>Input Value 1</th>
<th>Input Value 2</th>
<th>Input Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Increase Density</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Increase Diversity</td>
<td>0.27</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Improve Walkability Design</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Action</td>
<td>Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>Improve Destination Accessibility</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>Integrate Below Market Rate Housing</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>Increase Transit Accessibility</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>Improve Pedestrian Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood Enhancements</td>
<td>Provide Traffic Calming Measures</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood Enhancements</td>
<td>Implement NEV Network</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood Enhancements</td>
<td>Neighborhood Enhancements Subtotal</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Policy Pricing</td>
<td>Limit Parking Supply</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Policy Pricing</td>
<td>Unbundle Parking Costs</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Policy Pricing</td>
<td>On-street Market Pricing</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Policy Pricing</td>
<td>Parking Policy Pricing Subtotal</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Improvements</td>
<td>Provide BRT System</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Improvements</td>
<td>Expand Transit Network</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Improvements</td>
<td>Increase Transit Frequency</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Improvements</td>
<td>Transit Improvements Subtotal</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commute</td>
<td>Implement Trip Reduction Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commute</td>
<td>Transit Subsidy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commute</td>
<td>Implement Employee Parking "Cash Out"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commute</td>
<td>Workplace Parking Charge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commute</td>
<td>Encourage Telecommuting and Alternative Work Schedules</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commute</td>
<td>Market Commute Trip Reduction Option</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commute</td>
<td>Employee Vanpool/Shuttle</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commute</td>
<td>Provide Ride Sharing Program</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Costs: 0.00
<table>
<thead>
<tr>
<th>Measure Implemented</th>
<th>Mitigation Measure</th>
<th>Input Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Only Natural Gas Hearth</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No Hearth</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Cleaning Supplies</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Residential Interior)</td>
<td>100.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Residential Exterior)</td>
<td>150.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Non-residential Interior)</td>
<td>100.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Non-residential Exterior)</td>
<td>150.00</td>
</tr>
<tr>
<td>No</td>
<td>% Electric Lawnmower</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>% Electric Leafblower</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>% Electric Chainsaw</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure Implemented</th>
<th>Mitigation Measure</th>
<th>Input Value 1</th>
<th>Input Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Exceed Title 24</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install High Efficiency Lighting</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>On-site Renewable</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appliance Type</th>
<th>Land Use Subtype</th>
<th>% Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClothWasher</td>
<td></td>
<td>30.00</td>
</tr>
<tr>
<td>DishWasher</td>
<td></td>
<td>15.00</td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td>50.00</td>
</tr>
</tbody>
</table>
Water Mitigation Measures

<table>
<thead>
<tr>
<th>Measure Implemented</th>
<th>Mitigation Measure</th>
<th>Input Value 1</th>
<th>Input Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Apply Water Conservation on Strategy</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Reclaimed Water</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Grey Water</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow bathroom faucet</td>
<td>32.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow Kitchen faucet</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow Toilet</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow Shower</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Turf Reduction</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Water Efficient Irrigation Systems</td>
<td>6.10</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Water Efficient Landscape</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Solid Waste Mitigation

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Input Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute Recycling and Composting Services</td>
<td>75.00</td>
</tr>
<tr>
<td>Percent Reduction in Waste Disposed</td>
<td></td>
</tr>
</tbody>
</table>
CalEEMod Outputs

Project Operations Non-Event Days - Winter, Summer, Annual, and Mitigation
SFSU - Creative Arts & Holloway - Non-Event Day
San Francisco County, Winter

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior College (2Yr)</td>
<td>75.00</td>
<td>1000sqft</td>
<td>1.00</td>
<td>75,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>70.00</td>
<td>Space</td>
<td>0.00</td>
<td>28,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>200.00</td>
<td>Dwelling Unit</td>
<td>1.00</td>
<td>111,146.00</td>
<td>550</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>25.00</td>
<td>1000sqft</td>
<td>0.30</td>
<td>25,000.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

<table>
<thead>
<tr>
<th>Urbanization</th>
<th>Wind Speed (m/s)</th>
<th>Precipitation Freq (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>4.6</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>Operational Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utility Company</th>
<th>CO2 Intensity (lb/MWhr)</th>
<th>CH4 Intensity (lb/MWhr)</th>
<th>N2O Intensity (lb/MWhr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Gas & Electric Company</td>
<td>499.66</td>
<td>0.029</td>
<td>0.006</td>
</tr>
</tbody>
</table>

1.3 User Entered Comments & Non-Default Data

- Project Characteristics - PG&E CO2 Intensity Factor adjusted per 33% RPS by 2020
- Land Use - Junior College used to represent University (since University doesn't have 1,000 sqft metric). Dwelling units based on assumption of 2.75 people/beds per unit. Acreages adjusted to match respective block
- Off-road Equipment - Added a trencher to account for utility installation
- Vehicle Trips - For a non-event day, trip rates were adjusted to zero trips
- Woodstoves - No fireplaces assumed
- Area Coating - Adjusted non-residential interior/exterior area based on minimal surfaces to be coated in parking garage
- Energy Use - Default energy
Construction Off-road Equipment Mitigation -

Energy Mitigation - Exceed Title 24: 25% improvement is based on compliance with 2013 Title 24 (versus 2008 Title 24) + project design guidelines note 20% improvement beyond that

Water Mitigation - 20% indoor and 20% outdoor water reduction by 2020

Waste Mitigation - 75% waste diversion consistent with AB 341 (not mitigation)

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Exterior</td>
<td>94,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>282,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Exterior</td>
<td>75,024.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>225,071.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Exterior</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Residential_Exterior</td>
<td>94000</td>
<td>24000</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Residential_Interior</td>
<td>282000</td>
<td>24000</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberGas</td>
<td>110.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberNoFireplace</td>
<td>62.00</td>
<td>200.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberWood</td>
<td>28.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>200,000.00</td>
<td>111,146.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.38</td>
<td>0.90</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.72</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>5.26</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.57</td>
<td>0.30</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>550.00</td>
<td>550.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>OffRoadEquipmentUnitAmount</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2020</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>CO2IntensityFactor</td>
<td>641.35</td>
<td>499.66</td>
</tr>
<tr>
<td>tblTripsAndVMT</td>
<td>WorkerTripNumber</td>
<td>44.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>7.16</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>11.23</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>42.04</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>6.07</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>1.21</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>20.43</td>
<td>0.00</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>6.59</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>27.49</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>44.32</td>
<td>0.00</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
</tr>
<tr>
<td>Energy</td>
<td>0.1993</td>
<td>1.7829</td>
<td>1.3123</td>
<td>0.0109</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>2,173.7257</td>
<td>2,173.7257</td>
<td>2,173.7257</td>
<td>0.0417</td>
<td>0.0399</td>
<td>2,186.9546</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.1877</td>
<td>2.1511</td>
<td>28.7098</td>
<td>0.0470</td>
<td>0.0000</td>
<td>1.9937</td>
<td>1.9937</td>
<td>0.0000</td>
<td>1.9937</td>
<td>1.9937</td>
<td>260.4963</td>
<td>2,203.4865</td>
<td>2,463.9828</td>
<td>1.2885</td>
<td>0.0399</td>
<td>2,503.3960</td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
</tr>
<tr>
<td>Energy</td>
<td>0.1249</td>
<td>1.1159</td>
<td>0.8123</td>
<td>6.8100e-003</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>1,362.2274</td>
<td>1,362.2274</td>
<td>1,362.2274</td>
<td>0.0261</td>
<td>0.0250</td>
<td>1,370.5177</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.1133</td>
<td>1.4841</td>
<td>28.2097</td>
<td>0.0430</td>
<td>0.0000</td>
<td>1.9423</td>
<td>1.9423</td>
<td>0.0000</td>
<td>1.9423</td>
<td>1.9423</td>
<td>260.4963</td>
<td>1,391.9882</td>
<td>1,652.4844</td>
<td>1.2730</td>
<td>0.0250</td>
<td>1,686.9591</td>
</tr>
</tbody>
</table>

Percent Reduction

<table>
<thead>
<tr>
<th>Percent Reduction</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>31.01</td>
<td>1.74</td>
<td>8.63</td>
<td>0.00</td>
<td>2.58</td>
<td>2.58</td>
<td>2.58</td>
<td>2.58</td>
<td>2.58</td>
<td>0.00</td>
<td>36.63</td>
<td>32.93</td>
<td>1.21</td>
<td>37.34</td>
<td>32.61</td>
<td></td>
</tr>
</tbody>
</table>
4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>0.00</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0.00</td>
</tr>
</tbody>
</table>

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Miles</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-W or C-W</td>
<td>H-S or C-C</td>
<td>H-O or C-NW</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>12.40</td>
<td>4.30</td>
<td>5.40</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
</tbody>
</table>
5.0 Energy Detail

4.4 Fleet Mix

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

5.2 Energy by Land Use - NaturalGas

<table>
<thead>
<tr>
<th>Land Use</th>
<th>NaturalGas Use</th>
<th>kBTU/yr</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>4851.33</td>
<td>0.0523</td>
<td>0.4471</td>
<td>0.1903</td>
<td>2.8500e-003</td>
<td>0.0382</td>
<td>0.0382</td>
<td>0.0382</td>
<td>0.0382</td>
<td>0.0382</td>
<td>0.0382</td>
<td>570.7442</td>
<td>570.7442</td>
<td>0.0105</td>
<td>0.0105</td>
<td>574.2177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>5909.59</td>
<td>0.0637</td>
<td>0.5794</td>
<td>0.4867</td>
<td>3.4800e-003</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>695.2458</td>
<td>695.2458</td>
<td>0.0133</td>
<td>0.0128</td>
<td>699.4769</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>7396.99</td>
<td>0.0797</td>
<td>0.7242</td>
<td>0.6083</td>
<td>4.3500e-003</td>
<td>0.0550</td>
<td>0.0550</td>
<td>0.0550</td>
<td>0.0550</td>
<td>0.0550</td>
<td>0.0550</td>
<td>869.0572</td>
<td>869.0572</td>
<td>0.0167</td>
<td>0.0159</td>
<td>874.3462</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mitigated

Natural Gas Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>Exhaust PM2.5</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>3.59441</td>
<td>0.0388</td>
<td>0.3524</td>
<td>0.2960</td>
<td>2.1100e-003</td>
<td>0.0268</td>
<td>0.0268</td>
<td>0.0268</td>
<td>422.8719</td>
<td>422.8719</td>
<td>6.1100e-003</td>
<td>9.7900e-003</td>
<td>425.4454</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>4.49301</td>
<td>0.4405</td>
<td>0.3700</td>
<td>2.5400e-003</td>
<td>0.0335</td>
<td>0.0335</td>
<td>0.0335</td>
<td>0.0335</td>
<td>528.5999</td>
<td>528.5999</td>
<td>7.3500e-003</td>
<td>4.9000e-003</td>
<td>531.8866</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.216438</td>
<td>2.3300e-003</td>
<td>0.0212</td>
<td>0.0178</td>
<td>1.3000e-004</td>
<td>1.6100e-003</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>25.4633</td>
<td>25.4633</td>
<td>4.7000e-004</td>
<td>4.7000e-004</td>
</tr>
<tr>
<td>Apartments Mdl Rise</td>
<td>3.27507</td>
<td>0.3018</td>
<td>0.1284</td>
<td>1.9300e-003</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>385.3023</td>
<td>385.3023</td>
<td>7.3800e-003</td>
<td>7.3800e-003</td>
<td>387.6472</td>
</tr>
<tr>
<td>Total</td>
<td>0.1249</td>
<td>1.1159</td>
<td>0.8123</td>
<td>6.8100e-003</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>1,362.2274</td>
<td>1,362.2274</td>
<td>7.1300e-003</td>
<td>7.1300e-003</td>
<td>1,370.5177</td>
</tr>
</tbody>
</table>

6.0 Area Detail

6.1 Mitigation Measures Area

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
</tr>
</tbody>
</table>
6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.8891</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>6.4017</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1913</td>
<td>0.1765</td>
<td>10.8187</td>
<td>0.0353</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>260.4963</td>
<td>0.0000</td>
<td>260.4963</td>
<td>1.2178</td>
<td>0.0000</td>
<td>286.6894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.5063</td>
<td>0.1917</td>
<td>16.5787</td>
<td>8.7000e-004</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>29.7608</td>
<td>0.0291</td>
<td>29.7608</td>
<td>0.0291</td>
<td>30.3720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>0.0000</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.8891</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>6.4017</td>
<td></td>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1913</td>
<td>0.1765</td>
<td>10.8187</td>
<td>0.0353</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>260.4963</td>
<td>0.0000</td>
<td>260.4963</td>
<td>1.2178</td>
<td>0.0000</td>
<td>286.6894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.5063</td>
<td>0.1917</td>
<td>16.5787</td>
<td>8.7000e-004</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>29.7608</td>
<td>0.0291</td>
<td>29.7608</td>
<td>0.0291</td>
<td>30.3720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>0.0000</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.0 Water Detail
7.1 Mitigation Measures Water

Apply Water Conservation Strategy

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
</table>

10.0 Vegetation
SFSU - Creative Arts & Holloway - Non-Event Day
San Francisco County, Summer

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior College (2Yr)</td>
<td>75.00</td>
<td>1000sqft</td>
<td>1.00</td>
<td>75,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>60.00</td>
<td>1000sqft</td>
<td>0.90</td>
<td>60,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>70.00</td>
<td>Space</td>
<td>0.00</td>
<td>28,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>200.00</td>
<td>Dwelling Unit</td>
<td>1.00</td>
<td>111,146.00</td>
<td>550</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>25.00</td>
<td>1000sqft</td>
<td>0.30</td>
<td>25,000.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- Urbanization: Urban
- Wind Speed (m/s): 4.6
- Precipitation Freq (Days): 64
- Climate Zone: 5
- Operational Year: 2020
- Utility Company: Pacific Gas & Electric Company
- CO2 Intensity: 499.66 (lb/MWhr)
- CH4 Intensity: 0.029 (lb/MWhr)
- N2O Intensity: 0.006 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics - PG&E CO2 Intensity Factor adjusted per 33% RPS by 2020
Land Use - Junior College used to represent University (since University doesn't have 1,000 sqft metric). Dwelling units based on assumption of 2.75 people/beds per unit. Acreages adjusted to match respective block
Off-road Equipment - Added a trencher to account for utility installation
Vehicle Trips - For a non-event day, trip rates were adjusted to zero trips
Woodstoves - No fireplaces assumed
Area Coating - Adjusted non-residential interior/exterior area based on minimal surfaces to be coated in parking garage
Energy Use - Default energy
Construction Off-road Equipment Mitigation -

Energy Mitigation - Exceed Title 24: 25% improvement is based on compliance with 2013 Title 24 (versus 2008 Title 24) + project design guidelines note
20% improvement beyond that.

Water Mitigation - 20% indoor and 20% outdoor water reduction by 2020

Waste Mitigation - 75% waste diversion consistent with AB 341 (not mitigation)

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Exterior</td>
<td>94,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Interior</td>
<td>282,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Exterior</td>
<td>75,024.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>225,071.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Nonresidential_Exterior</td>
<td>94,000</td>
<td>0.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Nonresidential_Interior</td>
<td>282,000</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Exterior</td>
<td>94,000</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Exterior</td>
<td>94,000</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Interior</td>
<td>282,000</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Exterior</td>
<td>75,024</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>225,071</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberGas</td>
<td>110.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberNoFireplace</td>
<td>62.00</td>
<td>200.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberWood</td>
<td>28.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>200,000</td>
<td>111,146.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.38</td>
<td>0.90</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.72</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>5.26</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.57</td>
<td>0.30</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>522.00</td>
<td>550.00</td>
</tr>
<tr>
<td>tblOffRoadEquipment</td>
<td>OffRoadEquipmentUnitAmount</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>CO2IntensityFactor</td>
<td>641.35</td>
<td>499.66</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2020</td>
</tr>
<tr>
<td>tblTripsAndVMT</td>
<td>WorkerTripNumber</td>
<td>44.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>7.16</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>42.04</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>8.07</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>1.21</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>20.43</td>
<td>0.00</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>6.59</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>27.49</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>44.32</td>
<td>0.00</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10 Exhaust</th>
<th>PM10 Total</th>
<th>Fugitive PM10</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.1993</td>
<td>1.7829</td>
<td>1.3123</td>
<td>0.0109</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>2,173.725</td>
<td>7</td>
<td>2,173.7257</td>
<td>0.0417</td>
<td>0.0399</td>
<td>2,186.9546</td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.1877</td>
<td>2.1511</td>
<td>28.7098</td>
<td>0.0470</td>
<td>0.0000</td>
<td>1.9937</td>
<td>1.9937</td>
<td>0.0000</td>
<td>1.9937</td>
<td>1.9937</td>
<td>260.4963</td>
<td>2,203.4865</td>
<td>2,463.9828</td>
<td>1.2885</td>
<td>0.0399</td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10 Exhaust</th>
<th>PM10 Total</th>
<th>Fugitive PM10</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.1249</td>
<td>1.1199</td>
<td>0.8123</td>
<td>6.8100e-003</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>1,362.2274</td>
<td>4</td>
<td>1,362.22744</td>
<td>0.0261</td>
<td>0.0250</td>
<td>1,370.5177</td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.1133</td>
<td>1.4841</td>
<td>28.2097</td>
<td>0.0430</td>
<td>0.0000</td>
<td>1.9423</td>
<td>1.9423</td>
<td>0.0000</td>
<td>1.9423</td>
<td>1.9423</td>
<td>260.4963</td>
<td>1,391.9882</td>
<td>1,652.4844</td>
<td>1.2730</td>
<td>0.0250</td>
</tr>
</tbody>
</table>

| Percent Reduction | 0.81 | 31.01 | 1.74 | 8.63 | 0.00 | 2.58 | 2.58 | 0.00 | 2.58 | 2.58 | 0.00 | 36.83 | 32.93 | 1.21 | 37.34 | 32.61 |
4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>CO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>0.0000</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Miles</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-W or C-W</td>
<td>H-S or C-C</td>
<td>H-O or C-NW</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>12.40</td>
<td>4.30</td>
<td>5.40</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
</tbody>
</table>
5.0 Energy Detail

4.4 Fleet Mix

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaturalGas Mitigated</td>
<td>0.1249</td>
<td>1.1159</td>
<td>0.8123</td>
<td>6.8100e-003</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>1,362.227</td>
<td>4</td>
<td>1,362.2274</td>
<td>0.0261</td>
<td>0.0250</td>
<td>1,370.517</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaturalGas Unmitigated</td>
<td>0.1993</td>
<td>1.7829</td>
<td>1.3123</td>
<td>0.0109</td>
<td>0.1377</td>
<td>0.1377</td>
<td>0.1377</td>
<td>2,173.725</td>
<td>7</td>
<td>2,173.7257</td>
<td>0.0417</td>
<td>0.0399</td>
<td>2,186.954</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 Energy by Land Use - NaturalGas

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>NaturalGas Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>5909.59</td>
<td>0.0837</td>
<td>0.5794</td>
<td>0.4867</td>
<td>3.48506e-003</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>695.2488</td>
<td>695.2488</td>
<td>0.0133</td>
<td>0.0128</td>
<td>699.4769</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>7386.99</td>
<td>0.0797</td>
<td>0.7242</td>
<td>0.6083</td>
<td>4.35506e-003</td>
<td>0.0550</td>
<td>0.0550</td>
<td>0.0550</td>
<td>869.0572</td>
<td>869.0572</td>
<td>0.0167</td>
<td>0.0159</td>
<td>874.3462</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Mall</td>
<td>328.767</td>
<td>3.35006e-003</td>
<td>0.0322</td>
<td>0.0271</td>
<td>1.9096e-004</td>
<td>2.45006e-003</td>
<td>2.45006e-003</td>
<td>2.45006e-003</td>
<td>38.6785</td>
<td>38.6785</td>
<td>7.4000e-004</td>
<td>7.1000e-004</td>
<td>38.9139</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mitigated

<table>
<thead>
<tr>
<th>NaturalGas Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/day</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>3.39441</td>
<td>0.0388</td>
<td>0.3524</td>
<td>0.2960</td>
<td>2.1100e-003</td>
<td>0.0268</td>
<td>0.0268</td>
<td>0.0268</td>
<td>0.0268</td>
<td>422.8719</td>
<td>422.8719</td>
<td>4.1100e-003</td>
<td>7.6900e-003</td>
<td>425.4454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>4.49301</td>
<td>0.0485</td>
<td>0.4405</td>
<td>0.3700</td>
<td>2.9400e-003</td>
<td>0.0335</td>
<td>0.0335</td>
<td>0.0335</td>
<td>0.0335</td>
<td>528.5899</td>
<td>528.5899</td>
<td>0.0101</td>
<td>9.6900e-003</td>
<td>531.6066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.216438</td>
<td>2.3300e-003</td>
<td>0.0212</td>
<td>0.0178</td>
<td>1.3000e-004</td>
<td>1.6100e-003</td>
<td>1.6100e-003</td>
<td>1.6100e-003</td>
<td>25.4633</td>
<td>25.4633</td>
<td>4.9000e-004</td>
<td>4.7000e-004</td>
<td>25.6183</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>3.27507</td>
<td>0.0353</td>
<td>0.3018</td>
<td>0.1284</td>
<td>1.9300e-003</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>0.0244</td>
<td>385.3023</td>
<td>385.3023</td>
<td>7.3800e-003</td>
<td>7.0600e-003</td>
<td>387.6472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.1249</td>
<td>1.1159</td>
<td>0.8123</td>
<td>6.8100e-003</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>0.0863</td>
<td>1,362.2274</td>
<td>1,362.2274</td>
<td>4.0261</td>
<td>0.0250</td>
<td>1,370.517</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.0 Area Detail

6.1 Mitigation Measures Area

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0382</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmitigated</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0382</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.8891</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>6.4017</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1913</td>
<td>0.1765</td>
<td>10.8187</td>
<td>0.0353</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2178</td>
<td>0.0000</td>
<td>286.0694</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.5063</td>
<td>0.1917</td>
<td>16.5787</td>
<td>8.7000e-004</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>29.7608</td>
<td>29.7608</td>
<td>57.5216</td>
<td>0.0291</td>
<td>0.0000</td>
<td>30.3720</td>
</tr>
<tr>
<td>Total</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.8891</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>6.4017</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1913</td>
<td>0.1765</td>
<td>10.8187</td>
<td>0.0353</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>1.7649</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2178</td>
<td>0.0000</td>
<td>286.0694</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.5063</td>
<td>0.1917</td>
<td>16.5787</td>
<td>8.7000e-004</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>0.0911</td>
<td>29.7608</td>
<td>29.7608</td>
<td>57.5216</td>
<td>0.0291</td>
<td>0.0000</td>
<td>30.3720</td>
</tr>
<tr>
<td>Total</td>
<td>8.9884</td>
<td>0.3682</td>
<td>27.3975</td>
<td>0.0362</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>1.8560</td>
<td>260.4963</td>
<td>29.7608</td>
<td>290.2571</td>
<td>1.2469</td>
<td>0.0000</td>
<td>316.4414</td>
</tr>
</tbody>
</table>

7.0 Water Detail
7.1 Mitigation Measures Water

Apply Water Conservation Strategy

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
</table>

10.0 Vegetation
SFSU - Creative Arts & Holloway - Non-Event Day
San Francisco County, Annual

1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior College (2Yr)</td>
<td>75.00</td>
<td>1000sqft</td>
<td>1.00</td>
<td>75,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>60.00</td>
<td>1000sqft</td>
<td>0.90</td>
<td>60,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>70.00</td>
<td>Space</td>
<td>0.00</td>
<td>28,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>200.00</td>
<td>Dwelling Unit</td>
<td>1.00</td>
<td>111,146.00</td>
<td>550</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>25.00</td>
<td>1000sqft</td>
<td>0.30</td>
<td>25,000.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

<table>
<thead>
<tr>
<th>Urbanization</th>
<th>Urban</th>
<th>Wind Speed (m/s)</th>
<th>4.6</th>
<th>Precipitation Freq (Days)</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Zone</td>
<td>5</td>
<td>Operational Year</td>
<td>2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Utility Company | Pacific Gas & Electric Company | CO2 Intensity (lb/MWhr) | 499.66 | CH4 Intensity (lb/MWhr) | 0.029 | N2O Intensity (lb/MWhr) | 0.006 |

1.3 User Entered Comments & Non-Default Data

Project Characteristics - PG&E CO2 Intensity Factor adjusted per 33% RPS by 2020
Land Use - Junior College used to represent University (since University doesn't have 1,000 sqft metric). Dwelling units based on assumption of 2.75 people/beds per unit. Acreages adjusted to match respective block
Off-road Equipment - Added a trencher to account for utility installation
Vehicle Trips - For a non-event day, trip rates were adjusted to zero trips
Woodstoves - No fireplaces assumed
Area Coating - Adjusted non-residential interior/exterior area based on minimal surfaces to be coated in parking garage
Energy Use - Default energy
Construction Off-road Equipment Mitigation -

Energy Mitigation - Exceed Title 24: 25% improvement is based on compliance with 2013 Title 24 (versus 2008 Title 24) + project design guidelines

note 20% improvement beyond that

Water Mitigation - 20% indoor and 20% outdoor water reduction by 2020

Waste Mitigation - 75% waste diversion consistent with AB 341 (not mitigation)

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Exterior</td>
<td>94,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Nonresidential_Interior</td>
<td>282,000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Exterior</td>
<td>75,024.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Residential_Interior</td>
<td>225,071.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Nonresidential_Exterior</td>
<td>94,000.00</td>
<td>81,680.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Nonresidential_Interior</td>
<td>282,000.00</td>
<td>240,000.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberGas</td>
<td>110.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberNoFireplace</td>
<td>62.00</td>
<td>200.00</td>
</tr>
<tr>
<td>tblFireplaces</td>
<td>NumberWood</td>
<td>28.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LandUseSquareFeet</td>
<td>200,000.00</td>
<td>111,146.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.38</td>
<td>0.90</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.72</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>5.26</td>
<td>1.00</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.57</td>
<td>0.30</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>Population</td>
<td>572.00</td>
<td>550.00</td>
</tr>
<tr>
<td>tblOffRoadEquipment</td>
<td>OffRoadEquipmentUnitAmount</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>CO2IntensityFactor</td>
<td>641.35</td>
<td>499.66</td>
</tr>
<tr>
<td>tblProjectCharacteristics</td>
<td>OperationalYear</td>
<td>2014</td>
<td>2020</td>
</tr>
<tr>
<td>tblTripsAndVMT</td>
<td>WorkerTripNumber</td>
<td>44.00</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>7.16</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>11.23</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>42.04</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>6.07</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>1.21</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>20.43</td>
<td>0.00</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>6.59</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>27.49</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>44.32</td>
<td>0.00</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.3826</td>
<td>0.0182</td>
<td>1.5506</td>
<td>2.7000e-004</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>1.2785</td>
<td>2.4299</td>
<td>3.7084</td>
<td>8.3500e-003</td>
<td>0.0000</td>
<td>3.8838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0364</td>
<td>0.3254</td>
<td>0.2395</td>
<td>1.9800e-003</td>
<td>0.0251</td>
<td>0.0251</td>
<td>0.0251</td>
<td>0.0251</td>
<td>0.0000</td>
<td>986.3208</td>
<td>986.3208</td>
<td>0.0433</td>
<td>0.0141</td>
<td>991.6064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>6.8223</td>
<td>42.0044</td>
<td>48.8267</td>
<td>0.7032</td>
<td>0.0171</td>
<td>68.8784</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.3826</td>
<td>0.0182</td>
<td>1.5506</td>
<td>2.7000e-004</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>1.2785</td>
<td>2.4299</td>
<td>3.7084</td>
<td>8.3500e-003</td>
<td>0.0000</td>
<td>3.8838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0228</td>
<td>0.2037</td>
<td>0.1482</td>
<td>1.2400e-003</td>
<td>0.0158</td>
<td>0.0158</td>
<td>0.0158</td>
<td>0.0158</td>
<td>0.0000</td>
<td>768.2221</td>
<td>768.2221</td>
<td>0.0358</td>
<td>0.0107</td>
<td>772.2763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>5.4578</td>
<td>31.8414</td>
<td>37.2993</td>
<td>0.5624</td>
<td>0.0136</td>
<td>53.3319</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent Reduction

<table>
<thead>
<tr>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.96</td>
<td>35.43</td>
<td>5.10</td>
<td>32.89</td>
<td>0.00</td>
<td>21.86</td>
<td>21.86</td>
<td>0.00</td>
<td>21.86</td>
<td>21.86</td>
<td>68.04</td>
<td>22.15</td>
<td>24.98</td>
<td>65.23</td>
<td>22.14</td>
<td>27.97</td>
</tr>
</tbody>
</table>

Page 4 of 12
4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>0.0000</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Miles</th>
<th>Trip %</th>
<th>Trip Purpose %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-W or C-W</td>
<td>H-S or C-C</td>
<td>H-O or C-NW</td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>12.40</td>
<td>4.30</td>
<td>5.40</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>9.50</td>
<td>7.30</td>
<td>7.30</td>
</tr>
</tbody>
</table>
5.0 Energy Detail

4.4 Fleet Mix

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

5.2 Energy by Land Use - NaturalGas

<table>
<thead>
<tr>
<th>Land Use</th>
<th>kBTU/yr</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosed Parking</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Page 6 of 12
Mitigated

<table>
<thead>
<tr>
<th>NaturalGas Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>kBTU/yr</td>
<td>tons/yr</td>
<td>M/yr</td>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>1.3196e+006</td>
<td>7.0760e-003</td>
<td>0.0643</td>
<td>0.0540</td>
<td>3.9000e-004</td>
<td>7.9000e-004</td>
<td>1.1400e-003</td>
<td>4.8900e-004</td>
<td>4.8900e-004</td>
<td>4.8900e-004</td>
<td>4.8900e-004</td>
<td>70.0112</td>
<td>70.0112</td>
<td>1.3400e-003</td>
<td>1.2800e-003</td>
<td>70.4375</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>1.63995e+006</td>
<td>8.8400e-003</td>
<td>0.0804</td>
<td>0.0675</td>
<td>4.8000e-004</td>
<td>6.1100e-004</td>
<td>6.1100e-003</td>
<td>6.1100e-004</td>
<td>6.1100e-004</td>
<td>6.1100e-004</td>
<td>6.1100e-004</td>
<td>87.5140</td>
<td>87.5140</td>
<td>1.6800e-003</td>
<td>1.6000e-003</td>
<td>88.0466</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>0.790000</td>
<td>4.3000e-003</td>
<td>3.8700e-003</td>
<td>2.3250e-003</td>
<td>2.9000e-004</td>
<td>2.9000e-004</td>
<td>4.8900e-004</td>
<td>2.9000e-004</td>
<td>2.9000e-004</td>
<td>2.9000e-004</td>
<td>4.2157</td>
<td>4.2157</td>
<td>8.0000e-005</td>
<td>8.0000e-005</td>
<td>4.2414</td>
<td></td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>1.1954e+006</td>
<td>6.4500e-003</td>
<td>0.0551</td>
<td>0.0254</td>
<td>3.5000e-004</td>
<td>4.4500e-004</td>
<td>4.4500e-003</td>
<td>4.4500e-004</td>
<td>4.4500e-004</td>
<td>4.4500e-004</td>
<td>63.7911</td>
<td>63.7911</td>
<td>1.2200e-003</td>
<td>1.1700e-003</td>
<td>64.1793</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0228</td>
<td>0.2037</td>
<td>0.1482</td>
<td>1.2400e-003</td>
<td>0.0157</td>
<td>0.0157</td>
<td>0.0157</td>
<td>0.0157</td>
<td>0.0000</td>
<td>225.5320</td>
<td>225.5320</td>
<td>4.3200e-003</td>
</tr>
</tbody>
</table>

5.3 Energy by Land Use - Electricity

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Use</td>
<td>kWh/yr</td>
<td>M/yr</td>
<td>Apartments Mid Rise</td>
<td>723070</td>
</tr>
</tbody>
</table>

Page 7 of 12
<table>
<thead>
<tr>
<th>Land Use</th>
<th>kWh/yr</th>
<th>M1/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>698106</td>
<td></td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>144816</td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>572760</td>
<td>129.8115</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>715950</td>
<td>162.2643</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>262850</td>
<td>59.5728</td>
</tr>
<tr>
<td>Total</td>
<td>542.6901</td>
<td>0.0315</td>
</tr>
</tbody>
</table>

6.0 Area Detail

6.1 Mitigation Measures Area

| ROx3 | NOx | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio-CO2 | Nbio-CO2 | Total CO2 | CH4 | N2O | CO2e |
|------|-----|----|-----|--------------|--------------|------------|---------------|---------------|-------------|------------|---------|---------|-----------|-----|-----|------|

Page 8 of 12
<table>
<thead>
<tr>
<th>Category</th>
<th>tons/yr</th>
<th>MT/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3826</td>
<td>0.0182</td>
</tr>
<tr>
<td></td>
<td>1.5506</td>
<td>0.0178</td>
</tr>
<tr>
<td></td>
<td>2.7000e-004</td>
<td>0.0178</td>
</tr>
<tr>
<td></td>
<td>0.0178</td>
<td>0.0178</td>
</tr>
<tr>
<td></td>
<td>1.2785</td>
<td>2.4299</td>
</tr>
<tr>
<td></td>
<td>3.7084</td>
<td>8.3500e-003</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>3.8838</td>
</tr>
<tr>
<td>Unmitigated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3826</td>
<td>0.0182</td>
</tr>
<tr>
<td></td>
<td>1.5506</td>
<td>0.0178</td>
</tr>
<tr>
<td></td>
<td>2.7000e-004</td>
<td>0.0178</td>
</tr>
<tr>
<td></td>
<td>0.0178</td>
<td>0.0178</td>
</tr>
<tr>
<td></td>
<td>1.2785</td>
<td>2.4299</td>
</tr>
<tr>
<td></td>
<td>3.7084</td>
<td>8.3500e-003</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>3.8838</td>
</tr>
</tbody>
</table>

6.2 Area by SubCategory

Unmitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.1623</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1683</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0456</td>
<td>0.0173</td>
<td>1.4921</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.3826</td>
<td>0.0182</td>
<td>1.5506</td>
<td>2.7000e-004</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>0.0178</td>
<td>1.2785</td>
<td>2.4299</td>
<td>3.7084</td>
<td>8.3500e-003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.1623</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>1.1683</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0456</td>
<td>0.0173</td>
<td>1.4921</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.1623</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.0 Water Detail

7.1 Mitigation Measures Water

Apply Water Conservation Strategy

<table>
<thead>
<tr>
<th>Category</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>37.2993</td>
<td>0.5624</td>
<td>0.0136</td>
<td>53.3319</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>48.3267</td>
<td>0.7032</td>
<td>0.0171</td>
<td>68.8784</td>
</tr>
</tbody>
</table>

7.2 Water by Land Use

Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Indoor/Outdoor Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>13.0308 / 8.21507</td>
<td>26.6311</td>
<td>0.4259</td>
<td>0.0103</td>
<td>38.7671</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0.70</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>6.62162 / 10.3569</td>
<td>18.4386</td>
<td>0.2167</td>
<td>0.0605</td>
<td>24.6280</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>1.85181 / 1.13498</td>
<td>3.7588</td>
<td>0.0605</td>
<td>0.0000</td>
<td>5.4833</td>
</tr>
<tr>
<td>Total</td>
<td>48.8267</td>
<td>0.7032</td>
<td>0.0171</td>
<td>68.8784</td>
<td></td>
</tr>
</tbody>
</table>
Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Indoor/Outdoor Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments Mid Rise</td>
<td>Mgal</td>
<td>M1/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosed Parking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with Elevator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip Mall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Category/Year

<table>
<thead>
<tr>
<th>Category/Year</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmitigated</td>
<td>59.8286</td>
<td>3.5240</td>
<td>0.0000</td>
<td>133.8315</td>
</tr>
<tr>
<td>Mitigated</td>
<td>14.9072</td>
<td>0.8810</td>
<td>0.0000</td>
<td>33.4079</td>
</tr>
</tbody>
</table>

8.2 Waste by Land Use

Unmitigated
<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tons</td>
<td>MT/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>92</td>
<td>18.6752</td>
<td>1.1037</td>
<td>0.0000</td>
<td>41.8523</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>175.5</td>
<td>33.0240</td>
<td>2.1054</td>
<td>0.0000</td>
<td>79.6377</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>26.25</td>
<td>5.3285</td>
<td>0.3149</td>
<td>0.0000</td>
<td>11.9415</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>59.6286</td>
<td>3.5240</td>
<td>0.0000</td>
<td>133.6315</td>
</tr>
</tbody>
</table>

Mitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tons</td>
<td>MT/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartments Mid Rise</td>
<td>23</td>
<td>4.6688</td>
<td>0.2759</td>
<td>0.0000</td>
<td>10.4631</td>
</tr>
<tr>
<td>Enclosed Parking with Elevator</td>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>43.375</td>
<td>8.9062</td>
<td>0.5263</td>
<td>0.0000</td>
<td>19.8894</td>
</tr>
<tr>
<td>Strip Mall</td>
<td>6.5625</td>
<td>1.3321</td>
<td>0.0787</td>
<td>0.0000</td>
<td>2.9854</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14.9072</td>
<td>0.8610</td>
<td>0.0000</td>
<td>33.4079</td>
</tr>
</tbody>
</table>

9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
</table>

10.0 Vegetation
Operational Percent Reduction Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Exhaust PM10</th>
<th>Exhaust PM2.5</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.00</td>
</tr>
<tr>
<td>Consumer Products</td>
<td>0.00</td>
</tr>
<tr>
<td>Electricity</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>13.37</td>
<td>13.37</td>
<td>13.37</td>
<td>13.30</td>
<td>13.37</td>
<td>13.37</td>
</tr>
<tr>
<td>Hearth</td>
<td>0.00</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.00</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.00</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>37.34</td>
<td>37.41</td>
<td>38.10</td>
<td>37.37</td>
<td>37.37</td>
<td>37.37</td>
<td>0.00</td>
<td>37.33</td>
<td>37.33</td>
<td>37.39</td>
<td>37.42</td>
<td>37.33</td>
</tr>
<tr>
<td>Water Indoor</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>20.00</td>
<td>24.20</td>
<td>26.81</td>
<td>20.01</td>
<td>20.12</td>
<td>22.57</td>
</tr>
<tr>
<td>Water Outdoor</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>20.00</td>
<td>24.20</td>
<td>26.81</td>
<td>20.01</td>
<td>20.12</td>
</tr>
</tbody>
</table>

Operational Mobile Mitigation

Project Setting:

<table>
<thead>
<tr>
<th>Mitigation</th>
<th>Category</th>
<th>Measure</th>
<th>% Reduction</th>
<th>Input Value 1</th>
<th>Input Value 2</th>
<th>Input Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Increase Density</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Increase Diversity</td>
<td>0.27</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Improve Walkability Design</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Improve Destination Accessibility</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----------------------------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Increase Transit Accessibility</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Integrate Below Market Rate Housing</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Land Use</td>
<td>Land Use Subtotal</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Neighborhood Enhancements</td>
<td>Improve Pedestrian Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Neighborhood Enhancements</td>
<td>Provide Traffic Calming Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Neighborhood Enhancements</td>
<td>Implement NEV Network</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Neighborhood Enhancements</td>
<td>Neighborhood Enhancements Subtotal</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Parking Policy Pricing</td>
<td>Limit Parking Supply</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Parking Policy Pricing</td>
<td>Unbundle Parking Costs</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Parking Policy Pricing</td>
<td>On-street Market Pricing</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Parking Policy Pricing</td>
<td>Parking Policy Pricing Subtotal</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Transit Improvements</td>
<td>Provide BRT System</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Transit Improvements</td>
<td>Expand Transit Network</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Transit Improvements</td>
<td>Increase Transit Frequency</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Transit Improvements</td>
<td>Transit Improvements Subtotal</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Implement Trip Reduction Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Transit Subsidy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Implement Employee Parking "Cash Out"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Workplace Parking Charge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Encourage Telecommuting and Alternative Work Schedules</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Market Commute Trip Reduction Option</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Employee Vanpool/Shuttle</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Commute</td>
<td>Provide Ride Sharing Program</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Area Mitigation

<table>
<thead>
<tr>
<th>Measure Implemented</th>
<th>Mitigation Measure</th>
<th>Input Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Only Natural Gas Hearth</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No Hearth</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Cleaning Supplies</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Residential Interior)</td>
<td>100.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Residential Exterior)</td>
<td>150.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Non-residential Interior)</td>
<td>100.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Low VOC Paint (Non-residential Exterior)</td>
<td>150.00</td>
</tr>
<tr>
<td>No</td>
<td>% Electric Lawnmower</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>% Electric Leafblower</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>% Electric Chainsaw</td>
<td></td>
</tr>
</tbody>
</table>

Energy Mitigation Measures

<table>
<thead>
<tr>
<th>Measure Implemented</th>
<th>Mitigation Measure</th>
<th>Input Value 1</th>
<th>Input Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Exceed Title 24</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install High Efficiency Lighting</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>On-site Renewable</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Appliance Type

<table>
<thead>
<tr>
<th>Appliance Type</th>
<th>Land Use Subtype</th>
<th>% Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClothWasher</td>
<td></td>
<td>30.00</td>
</tr>
<tr>
<td>DishWasher</td>
<td></td>
<td>15.00</td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td>50.00</td>
</tr>
</tbody>
</table>
Water Mitigation Measures

<table>
<thead>
<tr>
<th>Measure Implemented</th>
<th>Mitigation Measure</th>
<th>Input Value 1</th>
<th>Input Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Apply Water Conservation on Strategy</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Reclaimed Water</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Grey Water</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow bathroom faucet</td>
<td>32.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow Kitchen faucet</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow Toilet</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Install low-flow Shower</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Turf Reduction</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>No</td>
<td>Use Water Efficient Irrigation Systems</td>
<td>6.10</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Water Efficient Landscape</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Solid Waste Mitigation

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Input Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute Recycling and Composting Services</td>
<td>75.00</td>
</tr>
<tr>
<td>Percent Reduction in Waste Disposed</td>
<td></td>
</tr>
</tbody>
</table>
Modeling Calculations

Average Emissions; Demolition; Architectural Coatings; Traffic
SFSU - Creative Arts & Holloway Mixed-Use Project

Average Pollutant Emissions

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>Nox</th>
<th>PM10 exh</th>
<th>PM2.5 exh</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-2019</td>
<td>2.818</td>
<td>9.3995</td>
<td>0.4879</td>
<td>0.4568</td>
</tr>
</tbody>
</table>

Construction Duration: **632 days**

Project Operations - GHGs

Project Annual GHGs (MT/year)

<table>
<thead>
<tr>
<th></th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>MT CO2E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Event</td>
<td>824.1369</td>
<td>1.4876</td>
<td>0.0243</td>
<td>862.8998</td>
</tr>
<tr>
<td>Event</td>
<td>1061.896</td>
<td>1.4965</td>
<td>0.0243</td>
<td>1,100.85</td>
</tr>
<tr>
<td>Wtd Avg</td>
<td>876.44</td>
<td>1.49</td>
<td>0.02</td>
<td>915.25</td>
</tr>
<tr>
<td>Const</td>
<td>55.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing Annual GHGs (MT/year)

<table>
<thead>
<tr>
<th></th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>MT CO2E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>253.08</td>
<td>0.35</td>
<td>0.00</td>
<td>261.95</td>
</tr>
</tbody>
</table>

Project Operations

Lbs/day

<table>
<thead>
<tr>
<th>Non-Event -- 265 days per year (assuming 80 events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
</tr>
<tr>
<td>Non-Event</td>
</tr>
<tr>
<td>Subtotal (Daily*285/2)</td>
</tr>
<tr>
<td>Winter</td>
</tr>
<tr>
<td>Non-Event</td>
</tr>
<tr>
<td>Subtotal (Daily*285/2)</td>
</tr>
<tr>
<td>Event -- 80 days per year</td>
</tr>
<tr>
<td>Summer</td>
</tr>
<tr>
<td>Event</td>
</tr>
<tr>
<td>Subtotal (Daily*80/2)</td>
</tr>
<tr>
<td>Winter</td>
</tr>
<tr>
<td>Event</td>
</tr>
<tr>
<td>Subtotal (Daily*80/2)</td>
</tr>
<tr>
<td>Project Summary</td>
</tr>
<tr>
<td>Total pounds per year</td>
</tr>
<tr>
<td>Total tons per year</td>
</tr>
<tr>
<td>Average pounds/day</td>
</tr>
</tbody>
</table>

Existing Operations

<table>
<thead>
<tr>
<th></th>
<th>ROG</th>
<th>Nox</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total tons per year</td>
<td>0.29</td>
<td>0.22</td>
<td>0.13</td>
<td>0.04</td>
</tr>
<tr>
<td>Average pounds/day</td>
<td>1.58</td>
<td>1.23</td>
<td>0.73</td>
<td>0.24</td>
</tr>
</tbody>
</table>
SFSU - Creative Arts & Holloway Mixed-Use Project

Demolition

<table>
<thead>
<tr>
<th>Buildings</th>
<th>52,982.00 sf</th>
<th>Block 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32,023.00 sf</td>
<td>Block 6</td>
</tr>
<tr>
<td>Tonnage debris</td>
<td>3,910.23 tons</td>
<td>Building debris based on CalEEMod assumption of 0.046 tons/sf</td>
</tr>
</tbody>
</table>

Asphalt Demo

depth	4 inches	=	0.111 yd
area	0.83 ac	=	4017.169 sq yd
volume		=	445.9057912 yd³
Tonnage debris	535.0869494	Paved Area debris: assuming 2,400 lbs/cy debris (CalRecycle 2004)	

Total Demo Offhaul 4,445.32 tons

Proposed Project

<table>
<thead>
<tr>
<th></th>
<th>INPUT VALUES</th>
<th>Assumed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential SF</td>
<td>111,146</td>
<td></td>
</tr>
<tr>
<td>Residential Interior</td>
<td>225,071</td>
<td></td>
</tr>
<tr>
<td>Residential Exterior</td>
<td>75,024</td>
<td></td>
</tr>
<tr>
<td>Non-Residential SF</td>
<td>160,000</td>
<td></td>
</tr>
<tr>
<td>Non-Residential Interior</td>
<td>240,000</td>
<td></td>
</tr>
<tr>
<td>Non-Residential Exterior</td>
<td>80,000</td>
<td></td>
</tr>
<tr>
<td>Parking SF</td>
<td>28,000</td>
<td></td>
</tr>
<tr>
<td>Parking Exterior * 6%</td>
<td>1,680.00</td>
<td></td>
</tr>
<tr>
<td>Non-Residential Exterior</td>
<td>81,680</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LandUseSubType</th>
<th>LandUseUnit</th>
<th>LandUseSize</th>
<th>LandUseSquareFeet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Housing</td>
<td>550 beds</td>
<td>111,146</td>
<td>200 dwelling units (based on 2.75 beds per unit)</td>
</tr>
<tr>
<td>Retail</td>
<td>25 ksF</td>
<td>25,000</td>
<td>555.73 sf/du</td>
</tr>
<tr>
<td>Creative Arts</td>
<td>75 ksF</td>
<td>75,000</td>
<td></td>
</tr>
<tr>
<td>Concert Hall</td>
<td>60 ksF</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>Parking Garage</td>
<td>70 spaces</td>
<td>28,000</td>
<td></td>
</tr>
</tbody>
</table>
SF State PM Peak Hour Net New Trips by Land Use

<table>
<thead>
<tr>
<th></th>
<th>Housing</th>
<th>Retail</th>
<th>Academic</th>
<th>Concert Hall</th>
<th>Total Net New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>-20</td>
<td>0</td>
<td>0</td>
<td>251</td>
<td>231</td>
</tr>
<tr>
<td>Transit</td>
<td>-41</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>68</td>
</tr>
<tr>
<td>Active</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>-12</td>
<td>0</td>
<td>0</td>
<td>412</td>
<td>400</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2016

Notes: Vehicle trips includes drive alone, motorcycle, carpool, TNC, taxi and drop off/pick ups.

SF State Daily Net New Trips by Land Use

<table>
<thead>
<tr>
<th></th>
<th>Housing</th>
<th>Retail</th>
<th>Academic</th>
<th>Concert Hall</th>
<th>Total Net New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>-145</td>
<td>0</td>
<td>0</td>
<td>251</td>
<td>106</td>
</tr>
<tr>
<td>Transit</td>
<td>-289</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>-180</td>
</tr>
<tr>
<td>Active</td>
<td>631</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>683</td>
</tr>
<tr>
<td></td>
<td>197</td>
<td>0</td>
<td>0</td>
<td>412</td>
<td>609</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2016

Notes: Vehicle trips includes drive alone, motorcycle, carpool, TNC, taxi and drop off/pick ups.

Daily Trip Generation

<table>
<thead>
<tr>
<th></th>
<th>Existing</th>
<th>Project</th>
<th>Existing</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>145</td>
<td>0</td>
<td>145</td>
<td>251</td>
</tr>
</tbody>
</table>

Daily Trip Gen

- **Existing**
 - 190 beds
 - 69 dwelling units (per 2.75 beds/unit)
 - 2.10 trips/du

- **Normal Day**
 - 550 beds
 - 200 dwelling units (per 2.75 beds/unit)
 - 0 trips/du

- **Event Day**
 - 550 beds
 - 200 dwelling units (per 2.75 beds/unit)
 - 0.00 trip/du
 - 1.86 trips/ksf concert hall
APPENDIX D

Historic Resources Technical Report
TABLE OF CONTENTS

I. INTRODUCTION .. 1
 SUMMARY OF HISTORIC SIGNIFICANCE DETERMINATION ... 1
 METHODOLOGY AND LITERATURE REVIEW .. 2

II. CURRENT HISTORIC STATUS .. 5
 NATIONAL REGISTER OF HISTORIC PLACES ... 5
 CALIFORNIA REGISTER OF HISTORICAL RESOURCES ... 5
 CALIFORNIA HISTORICAL RESOURCE STATUS CODE ... 6
 SAN FRANCISCO STATE UNIVERSITY CAMPUS MASTER PLAN ENVIRONMENTAL
 IMPACT REPORT (2007) ... 6
 PARKMERCED HISTORIC RESOURCE EVALUATION AND CULTURAL LANDSCAPE
 ASSESSMENT (2009) ... 6
 PARKMERCED ENVIRONMENTAL IMPACT REPORT (2010) .. 7

III. CULTURAL LANDSCAPE DESCRIPTIONS ... 9
 SITE ... 9
 SUBJECT BLOCKS .. 10

IV. HISTORIC CONTEXT .. 25
 PARKMERCED HISTORIC CONTEXT .. 25
 SAN FRANCISCO STATE UNIVERSITY HISTORIC CONTEXT 28

V. DISCUSSION OF ELIGIBILITY ... 30

VI. EVALUATION OF PROJECT IMPACTS .. 34
 CALIFORNIA ENVIRONMENTAL QUALITY ACT .. 34
 STATUS OF EXISTING BUILDINGS AS HISTORIC RESOURCES 34
 PROPOSED PROJECT DESCRIPTION ... 35
 PROPOSED PROJECT ANALYSIS .. 38

VII. MITIGATION MEASURES ... 42
 DOCUMENTATION .. 42
 VIDEO RECORDATION .. 43

VIII. CONCLUSION ... 44

IX. REFERENCES CITED ... 45
 PUBLISHED WORKS ... 45
 NEWSPAPERS AND PERIODICALS .. 45
 INTERNET SOURCES ... 45
 OTHER SOURCES .. 45
I. INTRODUCTION

This Historic Resource Technical Report (HRTR) has been prepared at the request of Dudek for the San Francisco State University’s (SF State) Creative Arts & Holloway Mixed-Use Project at the former Parkmerced Blocks 1 and 6 in San Francisco, California. The HRTR will support the forthcoming Focused Tiered Environmental Impact Report (EIR) for the project.

Parkmerced is a designed residential community located in the Lake Merced District of San Francisco, California. It is a rental housing complex consisting of two-story garden apartments and mid-rise apartment towers totaling 3,483 units. The complex was constructed between 1941 and 1951 as a response to the continued demand for housing in the United States during and after World War II. The full extent of the original Parkmerced development, now divided amongst several owners, was 192 acres.

The area of Parkmerced blocks owned by SF State includes building Blocks 1, 2, 5, 6, 41, 42, the former Parkmerced recreation area (now the site of SF State’s Mashouf Wellness Center), and the medians and traffic circles on a stretch of Font Boulevard between Lake Merced Boulevard and Serrano Drive. The original Parkmerced block numbers listed above are used to discuss the buildings in this report, as that is the identification used in previous historic documentation, and SF State also uses these terms. However, the Parkmerced block numbers correspond to the following Assessor Parcel Numbers (APN) and other SF State names (see Figure 2 for locations):

<table>
<thead>
<tr>
<th>Parkmerced Block #</th>
<th>APN*</th>
<th>SF State Name</th>
<th>Other Names</th>
<th>Date of Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1</td>
<td>7306-001</td>
<td>University Park South Building E</td>
<td>Tapia Triangle</td>
<td>1949</td>
</tr>
<tr>
<td>Block 2</td>
<td>7312-001</td>
<td>University Park South Building C</td>
<td>N/A</td>
<td>1944</td>
</tr>
<tr>
<td>Block 5</td>
<td>7313-001</td>
<td>University Park South Building B</td>
<td>N/A</td>
<td>1944</td>
</tr>
<tr>
<td>Block 6</td>
<td>7314-001</td>
<td>University Park South Building A</td>
<td>N/A</td>
<td>1944</td>
</tr>
<tr>
<td>Block 41</td>
<td>7304-001^</td>
<td>University Park South Building F</td>
<td>N/A</td>
<td>1949</td>
</tr>
<tr>
<td>Block 42</td>
<td>7307-001</td>
<td>University Park South Building D</td>
<td>N/A</td>
<td>1944</td>
</tr>
</tbody>
</table>

* Each block is also one large parcel.
^ This APN also includes the recreation area site, though the Parkmerced Block number only references the building.

This report includes architectural descriptions and summary historic context and significance statements derived from Page & Turnbull’s “Parkmerced Historic Resource Evaluation and Cultural Landscape Assessment” (April 2009) and Page & Turnbull’s ‘HABS-HALS Written Report” (January 2016).1 It also includes a Proposed Project Analysis, which analyzes the potential project and cumulative impacts of the new development at the subject blocks.

SUMMARY OF HISTORIC SIGNIFICANCE DETERMINATION

At the time that SF State undertook and completed its Campus Master Plan and Environmental Impact Report (EIR) in 2006/2007, Parkmerced had not previously been surveyed and evaluated for historic significance. The EIR assumed that the University Park South buildings and any other buildings that would turn 50 years old by 2020 could be a potential historic resource. In 2009, a Historic Resource Evaluation and Cultural Landscape Assessment and EIR were produced for a

1 HABS stands for Historic American Building Survey and HALS stands for Historic American Landscape Survey, both of which are historic documentation processes used as CEQA mitigation for demolition of historic resources.
private developer for the entire Parkmerced development, including Blocks 1, 2, 5, 6, 41, and 42 and the recreation area located on the SF State campus. The entire Parkmerced development was determined to be a National Register-eligible historic district, and therefore also eligible for listing in the California Register.

Much of the Parkmerced property owned by Parkmerced Investors LLC, located south of the SF State blocks, is entitled to be redeveloped over a 20- to 30-year period beginning in 2016 by demolishing the garden apartment blocks and building new multi-story residential buildings and other amenities on site. The nine towers, meadow, and Common will remain. If implemented, this project, which was approved by the City and County of San Francisco Board of Supervisors in May 2011, has been shown to create a significant unavoidable impact on the eligible Parkmerced Historic District, wherein the historic district in its entirety will no longer be eligible for listing due to loss of integrity (see Current Historic Status section for more information).

Page & Turnbull has determined that, assuming Parkmerced Investors LLC demolishes the rest of the garden apartments in the upcoming years, the six blocks owned by SF State, plus the two nearest towers, would comprise a smaller but still representative eligible Parkmerced Remnant Historic District, and therefore would be considered historic resources for the purposes of review under the California Environmental Quality Act (CEQA) (see Evaluation section for more information). The eligible historic district under consideration depends on the future demolition of most of Parkmerced, as entitled.

METHODOLOGY AND LITERATURE REVIEW

This report provides building descriptions, an abbreviated historic context statement, and an examination of the current historic status of the former Parkmerced blocks owned by SF State. The report includes a summary significance statement of the blocks’ eligibility for listing in the National Register of Historic Places and the California Register of Historical Resources. It includes CEQA assessments for project-specific and cumulative impacts, taking into consideration both existing conditions and the assumption that the entitled redevelopment at the Parkmerced Investors LLC site will be implemented. Lastly, the report recommends mitigation measures.

Page & Turnbull visited the site in May 2016. All site photographs in this report were taken by Page & Turnbull in May 2016, unless otherwise noted.

No primary historic research was conducted for this report, as the blocks have previously been researched and evaluated in Page & Turnbull’s “Parkmerced Historic Resource Evaluation and Cultural Landscape Assessment” (2009) and “HABS-HALS Written Report” (2016). A records request was sent to the Northwest Information Center of the California Historical Resources Information System in May 2016. The record search results are summarized in the Current Historic Status section along with information from other sources. There was no new information provided by the Northwest Information Center that had not been included in previous documentation about the site or the SF State campus.
Figure 1. SF State Campus map showing blocks from original Parkmerced development outlined in red at the south end of the campus.
Source: SF State, edited by Page & Turnbull.
Figure 2. Close view of SF State University Park South with original Parkmerced block numbers indicated in red. Note that the parking garage to the east (right) of Block 41 has been demolished, and the Mashouf Wellness Center is under construction at the recreation area site adjacent to Block 41.

Source: SF State, edited by Page & Turnbull.
II. CURRENT HISTORIC STATUS

The following section examines the national, state and local historic ratings currently assigned to the former Parkmerced blocks at SF State’s University Park South and the previous historic evaluations that have been done for the property.

NATIONAL REGISTER OF HISTORIC PLACES

The National Register of Historic Places (National Register) is the nation’s most comprehensive inventory of historic resources. The National Register is administered by the National Park Service and includes buildings, structures, sites, objects, and districts that possess historic, architectural, engineering, archaeological, or cultural significance at the national, state, or local level. National Register criteria are defined in depth in National Register Bulletin Number 15: How to Apply the National Register Criteria for Evaluation. There are four basic criteria under which a structure, site, building, district, or object can be considered eligible for listing in the National Register. These criteria are:

Criteria A (Event): Properties associated with events that have made a significant contribution to the broad patterns of our history;

Criteria B (Person): Properties associated with the lives of persons significant in our past;

Criteria C (Design/Construction): Properties that embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant distinguishable entity whose components lack individual distinction; and

Criteria D (Information Potential): Properties that have yielded, or may be likely to yield, information important in prehistory or history.

The University Park South blocks are not listed in the National Register of Historic Places, though the Historic Resource Evaluation and Cultural Landscape Assessment (see following) determined the entire Parkmerced development to be a National Register-eligible historic district in 2009.

CALIFORNIA REGISTER OF HISTORICAL RESOURCES

The California Register of Historical Resources (California Register) is an inventory of significant architectural, archaeological, and historical resources in the State of California. Resources can be listed in the California Register through a number of methods. State Historical Landmarks and National Register-listed properties are automatically listed in the California Register. Properties can also be nominated to the California Register by local governments, private organizations, or citizens. The evaluative criteria used by the California Register for determining eligibility are closely based on those developed by the National Park Service for the National Register of Historic Places.

The University Park South blocks are not listed in the California Register of Historical Resources, though the Historic Resource Evaluation and Cultural Landscape Assessment (see following) determined the entire Parkmerced development to be a California Register-eligible historic district in 2009.
CALIFORNIA HISTORICAL RESOURCE STATUS CODE

Properties listed or under review by the State of California Office of Historic Preservation are assigned a California Historical Resource Status Code (CHRS Code) of “1” to “7” to establish their historical significance in relation to the National Register or California Register. Properties with a Status Code of “1” or “2” are either eligible for listing in the California Register or the National Register, or are already listed in one or both of the registers. Properties assigned Status Codes of “3” or “4” appear to be eligible for listing in either register, but normally require more research to support this rating. Properties assigned a Status Code of “5” have typically been determined to be locally significant or to have contextual importance. Properties with a Status Code of “6” are not eligible for listing in either register. Finally, a Status Code of “7” means that the resource has not been evaluated for the National Register or the California Register, or needs reevaluation.

None of the subject blocks (or the rest of Parkmerced) appear to have been formally submitted to the California Office of Historic Preservation; they are not listed in the California Historical Resource Information System’s database (most updated version from 2012) with a CHRS Code.

SAN FRANCISCO STATE UNIVERSITY CAMPUS MASTER PLAN ENVIRONMENTAL IMPACT REPORT (2007)

The California State University Board of Trustees adopted the SF State Campus Master Plan (CMP) and certified the CMP Environmental Impact Report (EIR) (SCH#2006102050) in 2007. During the preparation of these documents in 2006/2007, the only building evaluated for historic significance was Mary Ward Hall (1960), which was found not to be an individually eligible historic resource. The EIR acknowledged that 22 buildings on the SF State campus would be 50 years or older by 2020, the planning horizon of the CMP, and could be considered historic resources as defined by CEQA. This included the University Park South buildings of the former Parkmerced, although these six blocks were listed as one building in the EIR and therefore counted as one in the above number. The Parkmerced development was not considered or specifically evaluated for the Campus Master Plan EIR, and the master plan pre-dated the Parkmerced Historic Resource Evaluation and Cultural Landscape Assessment, described below.

The EIR provides a process for the review of historic resources as individual projects under the CMP are pursued, and provides mitigation measures in the case of their demolition.

PARKMERCED HISTORIC RESOURCE EVALUATION AND CULTURAL LANDSCAPE ASSESSMENT (2009)

Page & Turnbull authored the Historic Resource Evaluation and Cultural Landscape Assessment for Parkmerced in 2009. The findings in this document were concurred upon by the San Francisco Planning Department and were the basis of the Cultural Resource chapter of the Parkmerced EIR (see following). The report included an extensive historic context with historic photographs and drawings, architectural and landscape descriptions, and an evaluation of significance using cultural landscape methodology.

The entire Parkmerced development was found to be significant as a historic district for its association with community planning and for its mid-century design, with a period of significance from 1941 to 1951. The property was constructed by Metropolitan Life Insurance Company (MetLife), and the majority of the features at Parkmerced retain integrity to MetLife’s period of ownership. Together the buildings, landscapes, and associated features of Parkmerced form a historic district and cultural landscape that reflects the original design and functionality of this planned residential community. This conclusion was reached through comprehensive research of the
property’s history, associated historic contexts, an existing conditions survey, and cultural landscape evaluation.

Parkmerced was determined eligible for the National Register of Historic Places under the following criteria:

- Parkmerced is significant under Criterion A (Events) as a resource that is associated with events that have made a significant contribution to the broad pattern of local history. Specifically, Parkmerced is significant for its association with MetLife’s nationwide housing effort during and after World War II, and for its association with development and growth of middle-income rental housing in San Francisco.

- Parkmerced is also significant under Criterion C (Design/Construction) as a resource that embodies the distinctive characteristics of a type and period, and as a resource that represents the work of a master. Specifically, Parkmerced is significant as one of the last large-scale residential complexes completed by master architect Leonard Schultz and landscape architect Thomas Church. The property is also significant as a mid-century planned community in San Francisco.

If a property is determined eligible for listing in the National Register, it is automatically eligible for listing in the California Register of Historical Places.

PARKMERCED ENVIRONMENTAL IMPACT REPORT (2010)

Much of Parkmerced will be redeveloped beginning in 2016 over a span of 20 or 30 years by demolishing the garden apartment blocks and building new multi-story residential buildings and other amenities on the site owned by Parkmerced Investors, LLC (Figure 3). The Parkmerced project, which was approved by the City and County of San Francisco Board of Supervisors in May 2011, has been shown to create a significant and unavoidable impact on the eligibility of the historic district for the purposes of CEQA review due to loss of integrity. That project was also found to contribute to a cumulative impact on the historic significance of the Parkmerced Historic District because the owners of the other three properties in the original Parkmerced complex, including SF State, are planning for future redevelopment of their respective properties.

Of the alternatives, all caused impacts to historic resources except for “A. No Project Alternative” and “C. Retention of Historic District Central Core Alternative.” The latter retained 2,567 existing residential units in garden apartments located around the inner core of the site and the 11 tower buildings, while approximately 3,000 new units would be constructed around the western and southern portions of the site.

The alternative that most closely aligns with the anticipated future condition of Parkmerced that is studied in this report is “D. Partial Historic District Alternative,” which spared two garden apartment blocks (Blocks 43 and 44) in the northwest corner of the Parkmerced project site and six tower buildings that would remain unchanged while the rest of the site would be demolished and

2 A full description of the project is located on the San Francisco Planning Department’s website at this link: http://sf-planning.org/parkmerced-project
redeveloped. In addition to these blocks and towers, the garden apartments owned by SF State were factored into this alternative. With consideration of the full historic district, this alternative was found to cause a significant adverse impact.
III. CULTURAL LANDSCAPE DESCRIPTIONS

SITE

SF State’s University Park South blocks are located at the south border of the university campus at what was originally the northern border of Parkmerced (see Figures 1 and 3). Large university buildings, including the Humanities Building (1994), Creative Arts Building (1953), J. Paul Leonard Library (1953; renovation and addition 2012), and Administration Building (1989) are located immediately northeast of Block 1 and across Holloway Avenue from Blocks 2, 5, and 6. The former Parkmerced recreation area is located immediately north of Block 41, and is currently a construction zone where the Mashouf Wellness Center is under construction. The parking garage that was located east of Block 41 and was part of the original Parkmerced development was demolished in August 2015 and is now within the construction zone. Across Vidal Drive to the south of Block 41 and across Arballo Drive to the west of Block 42 are Parkmerced towers 39 and 40.

Natural landscape features include a relatively flat topography and vegetation. Designed landscape features include radial vehicular circulation with traffic circles and planting medians; street and carport parking; pedestrian pathway circulation; the public, semi-private, and private open spaces; views and vistas to the SF State buildings, Parkmerced garden apartments, and Parkmerced towers;
and small scale features, such as decorative and functional landscape walls, steps, privacy screens, railings, etc.

While the Parkmerced garden apartments owned by Parkmerced Investors, LLC will be demolished and new multi-story housing will be constructed with a new street pattern, the towers will remain within the viewshed of the SF State University Park South blocks.

Figure 3. Block map of Parkmerced. The blocks outlined in red are SF State’s University Park South and the proposed project site. Source: Parkmerced Investors, LLC, edited by Page & Turnbull.

SUBJECT BLOCKS

The following descriptions for SF State’s University Park South blocks are excerpted from Page & Turnbull's HABS-HALS Written Report (January 2016) with updated information from a site visit in May 2016:

Block #1

<table>
<thead>
<tr>
<th>Buildings and Structures Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Shape</td>
</tr>
<tr>
<td>Building Type(s)</td>
</tr>
<tr>
<td>Date of construction</td>
</tr>
<tr>
<td>Foundation</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Walls</td>
</tr>
<tr>
<td>Doors</td>
</tr>
<tr>
<td>Windows</td>
</tr>
<tr>
<td>Roof, Chimneys</td>
</tr>
<tr>
<td>Porches, stoops, balconies, porticoes, bulkheads</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>
Landscape Information

<table>
<thead>
<tr>
<th>Natural Features</th>
<th>Topography</th>
<th>Relatively flat, slopes downward at northwest corner of block.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation</td>
<td>The perimeter of the block contains 4 ft. high shrubs along block faces with low beds with cedar chips and no additional plantings. Plantings include hydrangeas and other ornamentals. The courtyard contains specimen trees around the edges, planters, and mature shrubs. Open paving with picnic table, bench, and bike rack at center.</td>
<td></td>
</tr>
<tr>
<td>Designed Features</td>
<td>Circulation</td>
<td>Aggregate concrete walks curve around central lawn.</td>
</tr>
<tr>
<td>Views and vistas</td>
<td>Views include surrounding campus.</td>
<td></td>
</tr>
<tr>
<td>Small scale features</td>
<td>Chain-link fence and gate at northwest corner of block; low concrete walls; square concrete planters; poured concrete divider walls. Wood slat fencing between some units.</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Individual terrace gardens are adjacent to each apartment unit. Terrace gardens are separated by one-story scored concrete walls.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Block 1, southwest façade at Font Blvd. and Tapia Dr., looking northeast.
Figure 5. Block 1, interior courtyard, looking east.
Block #2

<table>
<thead>
<tr>
<th>Buildings and Structures Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Shape</td>
</tr>
<tr>
<td>Building Type(s)</td>
</tr>
<tr>
<td>Date of construction</td>
</tr>
<tr>
<td>Foundation</td>
</tr>
<tr>
<td>Walls</td>
</tr>
</tbody>
</table>
| **Doors** | Flush wood paneled doors with varied surrounds: wide flanking fluted pilasters, surmounted by segmental broken pediments; wide flanking fluted pilasters, surmounted by raised shaped pediments featuring a decorative keystone; wide flanking fluted pilasters surmounted by raised segmental pediments; simple molded wood surrounds; flanking fluted pilasters surmounted by raised entablatures; flanking full height wood shutters under flat semi-circular canopies with light fixtures; and simple molded surrounds under flat square canopies. Recessed wood paneled doors set within flush molded surrounds.

On the courtyard side, each unit contains a door on the right side of the glazing system. Some of the glazing systems have five lites and others full glass; all are recessed with wood frames and wood surrounds. |
| **Windows** | International-style aluminum double-hung, sliding sash and casement windows with wood surrounds and no sills; fixed porthole windows scattered throughout. The laundry room contains multi-lite steel hinged opening windows. |
On the courtyard side, many of the units contain a glazing system consisting of two multi-lite (two over one) windows looking out to the terrace garden.

<table>
<thead>
<tr>
<th>Roof, Chimneys</th>
<th>Combination of roof shapes include flat, side gable, front gable, and pyramidal with no overhangs; visible roofing materials include clay tiles and wood shingles; additional roof features include clay tiles and wood shingles; additional roof features include cupolas, metal chimneys, louvered vents, and vent pipes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porches, stoops, balconies, porticoes, bulkheads</td>
<td>Full-façade, entry, and partial porches with combination of flat, gable, and pyramidal roofs; classical 1-story and classical 2-story columns.</td>
</tr>
<tr>
<td>Garage, Carport</td>
<td>Two masonry carports with entrances on Holloway Avenue and Font Boulevard; attached masonry units with pyramidal roofs and cupolas.</td>
</tr>
<tr>
<td>Other</td>
<td>Concrete stairs at corners of buildings, access to courtyard, and access to porches; decorative pierced wood balustrades; pipe railings.</td>
</tr>
</tbody>
</table>

Landscape Information

<table>
<thead>
<tr>
<th>Natural Features</th>
<th>Topography</th>
<th>Low slope throughout with a steeper sloping central lawn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation</td>
<td>The perimeter of the block contains specimen trees along the block faces intermixed with floral plantings in shrub beds with hedges. Species include eucalyptus, pine, and boxwood. The courtyard contains specimen trees and low beds with hedges and purple lilies.</td>
<td></td>
</tr>
<tr>
<td>Designed Features</td>
<td>Circulation</td>
<td>Aggregate concrete walks around the irregular-shaped lawn; parking spaces along the street.</td>
</tr>
<tr>
<td>Views and vistas</td>
<td>Views of towers 30 and 40 to west from within courtyard.</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Small scale features</td>
<td>Lattice divider walls and four to five concrete stairs connecting interior courtyards</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Individual terrace gardens are adjacent to some apartment units.</td>
<td></td>
</tr>
</tbody>
</table>
Figure 8. Block 2, east façade at Serrano Dr. and Arellano Ave., looking west.

Figure 9. Block 2, interior courtyard west, looking northeast.

Figure 10. Block 2, interior courtyard east, looking northwest.

Figure 11. Block 2, southwest façade, looking northeast.

Block #5

<table>
<thead>
<tr>
<th>Buildings and Structures Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Shape</td>
</tr>
<tr>
<td>Building Type(s)</td>
</tr>
<tr>
<td>Date of construction</td>
</tr>
<tr>
<td>Foundation</td>
</tr>
<tr>
<td>Walls</td>
</tr>
<tr>
<td>Doors</td>
</tr>
</tbody>
</table>
keystone; wide flanking fluted pilasters surmounted by raised segmental pediments; simple molded wood surrounds; flanking full height wood shutters under flat semi-circular canopies with light fixtures hanging underneath; and simple molded surrounds under flat square canopies. There are partial height flush, wood paneled doors with vents leading into mechanical or storage spaces on the ground level of some units.

On the courtyard side, each unit contains a door on the right side of the glazing system. The doors feature either five lites or paneling and partial glazing; all are recessed with wood frames and wood surrounds.

Windows

International –style aluminum double-hung and sliding sash windows with no surrounds or sills. On the courtyard side, many of the units contain a glazing system consisting of two multi-lite (two over one) windows looking out to the terrace garden.

Roof, Chimneys

Combination of roof shapes include flat and side gable with simple trim; visible roofing materials include wood shingles; additional roof features include gutter downspouts, metal chimneys, louvered vents, and vent pipes.

Porches, stoops, balconies, porticoes, bulkheads

Full-height and partial porches with flat roofs; classical 2-story and modern 1-story columns.

Garage, Carport

One masonry carport with two entrances on Holloway Avenue.

Other

Stairs at corners of buildings, access to courtyard, and access to porches; pipe railings.

Landscape Information

Natural Features

Topography

Low slope throughout, with a slightly steeper slope in some courtyards, and lawns.

Vegetation

The perimeter of the block includes foundation plantings and hedges along the façades of the buildings. Large heritage pine trees flank block 5 on Serrano Avenue.

Lawns and curved beds with shrubs are located in the courtyard. Beds contain laurel, palm, hydrangea, maples, and cedars, as well as African lilies and roses.

Designed Features

Circulation

Geometric sidewalks, concrete and brick steps throughout the courtyards; each block face has entry off street.
<table>
<thead>
<tr>
<th>Views and vistas</th>
<th>View to SF State buildings from within courtyards.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small scale features</td>
<td>High concrete retaining walls and square brick planters are located within the courtyards; central courtyard contains a poured concrete slab; lattice divider walls and laundry racks between terraces. A couple benches and a picnic table are scattered in the central courtyard.</td>
</tr>
<tr>
<td>Other</td>
<td>Individual terrace gardens are adjacent to some apartment units.</td>
</tr>
</tbody>
</table>

Figure 12. Block 5, east façade at Cardenas Ave. and Serrano Dr., looking west.

Figure 13. Block 5, interior courtyard, looking east.

Figure 14. Block 5, interior courtyard, looking north.

Figure 15. Block 5, west façade on south side of block, inset from Serrano Dr., looking east.
Block #6

<table>
<thead>
<tr>
<th>Buildings and Structures Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Shape</td>
</tr>
<tr>
<td>Building Type(s)</td>
</tr>
<tr>
<td>Date of construction</td>
</tr>
<tr>
<td>Foundation</td>
</tr>
<tr>
<td>Walls</td>
</tr>
<tr>
<td>Doors</td>
</tr>
<tr>
<td>Windows</td>
</tr>
<tr>
<td>Roof, Chimneys</td>
</tr>
<tr>
<td>Porches, stoops, balconies, porticoes, bulkheads</td>
</tr>
<tr>
<td>Garage, Carport</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>
Landscape Information

<table>
<thead>
<tr>
<th>Natural Features</th>
<th>Topography</th>
<th>Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mostly flat with a divided grade change in the courtyard.</td>
<td>The exterior of the block contains hedges and foundation beds along the facades of the buildings, with trees at the corners of the block. The courtyard contains sheared hedges and several trees at the lower level, some in low concrete planters. Species include boxwood and hydrangea.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designed Features</th>
<th>Circulation</th>
<th>Views and vistas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aggregate walks throughout street sides and courtyard.</td>
<td>One view into the courtyard through a breezeway from Serrano Drive, Northward view of SFSU buildings in the background.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Small scale features</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square brick planters in the courtyard.</td>
<td>A bench located at side of courtyard. A half-flight of concrete steps leading between grade changes in courtyard.</td>
</tr>
</tbody>
</table>

Figure 16. Block 6, context at Serrano Dr. and Crespi Dr., looking west.
Figure 17. Block 6, south façade at Serrano Dr. and Cardenas Ave., looking north.
Block #41

Buildings and Structures Information

<table>
<thead>
<tr>
<th>Block Shape</th>
<th>Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Type(s)</td>
<td>Scored concrete garden apartments, organized in a single linear grouping; 16 units with rear gardens, 1 forecourt, 1 concrete laundry room.</td>
</tr>
<tr>
<td>Date of construction</td>
<td>1949</td>
</tr>
<tr>
<td>Foundation</td>
<td>Concrete</td>
</tr>
<tr>
<td>Walls</td>
<td>Scored concrete</td>
</tr>
<tr>
<td>Doors</td>
<td>Flush paneled wood doors with flanking fluted pilasters, surmounted by raised entablatures. Recessed wood paneled doors set within flush molded surrounds.</td>
</tr>
<tr>
<td>Windows</td>
<td>International-style aluminum double-hung, sliding sash, and casement windows with no surrounds and concrete sills. Each unit has a unique curved or hipped bay window projection covered with a copper roof that leads to each unit’s individual terrace garden.</td>
</tr>
<tr>
<td>Roof, Chimneys</td>
<td>Combination of roof shapes include flat, front gable, and side gable with simple trim; visible roofing materials include clay tile and wood shingles; additional roof features include gutter downspouts, metal chimneys, louvered vents, and vent pipes.</td>
</tr>
<tr>
<td>Porches, stoops, balconies, porticoes, bulkheads</td>
<td>Full-height, full-façade, entry, and partial porches with combination of flat and hipped roofs; classical 1-story and classical 2-story columns. Decorative pierced wood balustrades and pipe railings. Hanging iron lantern centered over main entries.</td>
</tr>
</tbody>
</table>
Landscape Information

<table>
<thead>
<tr>
<th>Natural Features</th>
<th>Topography</th>
<th>Flat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation</td>
<td>Fenced area with lawn courts, walks, shrub beds in low concrete planters.</td>
<td></td>
</tr>
<tr>
<td>Designed Features</td>
<td>Circulation</td>
<td>Aggregate walks, concrete steps.</td>
</tr>
<tr>
<td>Views and vistas</td>
<td>Views into the rear courtyard through locked fence. Views out from the courtyard of adjacent towers to the south, and views of San Francisco State University recreation area (part of original Parkmerced site) to the north.</td>
<td></td>
</tr>
<tr>
<td>Small scale features</td>
<td>Low concrete planters and pipe railings.</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Associated parking on the street.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 20. Block 41, south façade at Vidal Dr., looking north.

Figure 21. Block 41, south façade at Vidal Dr. and Arballo Dr., looking north.

Figure 22. Block 41, center of south façade at Vidal Dr., looking north.

Figure 23. Block 41, south façade at Vidal Dr., looking north.
Buildings and Structures Information

<table>
<thead>
<tr>
<th>Block Type</th>
<th>Wedge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Type(s)</td>
<td>Wood-frame garden apartments with stucco siding, organized in three groupings; 66 units with rear gardens, 3 courtyards, 1 forecourt, 1 central service court, and 1 laundry.</td>
</tr>
<tr>
<td>Date of construction</td>
<td>1944</td>
</tr>
<tr>
<td>Foundation</td>
<td>Concrete</td>
</tr>
<tr>
<td>Walls</td>
<td>Stucco</td>
</tr>
<tr>
<td>Doors</td>
<td>Flush wood paneled doors with varied surrounds: wide flanking fluted pilasters, surmounted by segmental broken pediments; wide flanking fluted pilasters, surmounted by raised shaped pediments featuring a decorative keystone; wide flanking fluted pilasters surmounted by raised segmental pediments; simple molded wood surrounds; flanking full height wood shutters under flat semi-circular canopies with light fixtures; and simple molded surrounds under flat square canopies. Recessed wood paneled doors set within flush molded surrounds.</td>
</tr>
<tr>
<td>Windows</td>
<td>International-style aluminum double-hung, sliding sash, and casement windows with no surrounds or sills; fixed porthole windows throughout; multi-lite steel casement windows on laundry room. Each unit has a unique curved or hipped bay window projection covered with a copper roof that leads to each unit’s individual terrace garden.</td>
</tr>
<tr>
<td>Roof, Chimneys</td>
<td>Combination of roof shapes include flat, side gable, front gable, and pyramidal with simple trim and no overhangs; visible roofing materials include composite tiles and wood shingles; additional roof features include gutter downspouts, cupolas, metal chimneys, louvered vents, and vent pipes.</td>
</tr>
<tr>
<td>Porches, stoops, balconies, porticoes, bulkheads</td>
<td>Full-height, entry, and partial porches with combination of flat and gable roofs; classical 1-story and classical 2-story columns. All entries have small lanterns mounted above or to the side of the doors.</td>
</tr>
<tr>
<td>Garage, Carport</td>
<td>Two masonry carports with entrances on Font Boulevard and Pinto Avenue; attached masonry units with pyramidal roofs and cupolas.</td>
</tr>
<tr>
<td>Other</td>
<td>Concrete stairs on the corners of buildings with access to porches and courtyards; decorative pierced wood balustrades; pipe, wood, and metal railings.</td>
</tr>
</tbody>
</table>
Landscape Information

<table>
<thead>
<tr>
<th>Natural Features</th>
<th>Topography</th>
<th>Flat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation</td>
<td></td>
<td>Low shrub beds, grass and specimen trees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Along the exterior.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Courtyards contain foundation plantings,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hedges, amoeba shaped lawns, and large</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specimen trees, including hydrangea,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>California laurel, olive and jasmine.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designed Features</th>
<th>Circulation</th>
<th>Aggregate walks, brick steps and concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>sidewalks.</td>
</tr>
<tr>
<td>Views and vistas</td>
<td></td>
<td>Views into the courtyards through</td>
</tr>
<tr>
<td></td>
<td></td>
<td>breezeways.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Views out of adjacent towers to the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>southwest.</td>
</tr>
<tr>
<td>Small scale</td>
<td></td>
<td>Low concrete and brick planters, pipe</td>
</tr>
<tr>
<td>features</td>
<td></td>
<td>railings, wood lattice dividing walls,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wood slat dividing walls, and brick</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stairs.</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>Paving with associated carports.</td>
</tr>
</tbody>
</table>

Figure 24. Block 42, west façade at Arballo Dr. and Pinto Ave., looking east.

Figure 25. Block 42, interior courtyard, looking northeast.
Figure 26. Block 42, south façade at Pinto Ave. and Tapia Dr., looking north.

Figure 27. Block 42, interior parking area, looking northwest.
IV. HISTORIC CONTEXT

PARKMERCED HISTORIC CONTEXT

The following historic context is an abbreviated form of the context included in Page & Turnbull’s “HABS-HALS Written Report for Parkmerced,” which was derived from Page & Turnbull’s “Historic Resource Evaluation and Cultural Landscape Assessment” for Parkmerced.

Please see the historic context sections of Page & Turnbull’s Historic Resource Evaluation or HABS-HALS Written Report for contextual history on the following topics: the Garden City Movement, Le Corbusier’s Ideal City, New Deal housing initiatives, and greenbelt towns; the Bay Area housing context, including public housing and low-income housing projects, defense housing projects, and private investment into middle-income housing projects; the broader history of the Metropolitan Life Insurance Company (MetLife); and the biographies of landscape Architect Thomas Church, architect Leonard Schultz & Associates, associate architect Frederick H. Meyer, and builder Starrett Brothers & Eken.3

Early Site History

The area around Lake Merced was originally inhabited by the Ramaytush Ohlone tribe of Native Americans, who used the area to fish, hunt, and gather other resources. During the early years of Spanish settlement in San Francisco, the shores of Lake Merced were used as common land for grazing cattle.4 It was not until 1835 that the land was privatized and granted to a rancher named Jose Antonio Galindo. The current site of Parkmerced formed part of the Rancho Laguna de la Merced.

The Spring Valley Water Company purchased Lake Merced and the surrounding land in 1868 as part of a move to establish a monopoly over San Francisco’s water supply. The company therefore began to sell off some of its land holdings by the 1890s. The future site of Parkmerced became the Ingleside Public Golf Course, one of the many golf courses built on the shores of Lake Merced around the turn-of-the-century.5

During the early decades of the twentieth century, the first signs of significant development began moving out across the dunes of the Sunset district and down into the Parkside district towards Lake Merced. As late as 1920, however, the Lake Merced District was still predominately rural.6 The 1930s brought significant change. The area around Lake Merced represented one of the largest tracts of undeveloped private land in San Francisco, which enticed the rapidly-expanding San Francisco State College (later renamed San Francisco State University) to purchase land for a new campus from the Spring Valley Water Company in 1937. However, construction for the new campus did not begin until after World War II, and the campus was not occupied until 1953—two years after the completion of Parkmerced.7

3 The Historic Resource Evaluation is publicly available from the San Francisco Planning Department, and the HABS-HALS report is available from the San Francisco Planning Department, the San Francisco History Center at the San Francisco Public Library, and the Northwest Information Center at Sonoma State University.
6 Ibid.
Development of Parkmerced: Phase I (1941-1945)

The Parkmerced rental complex was constructed on 192 acres of land previously occupied by the Ingleside Golf Course between 1941 and 1951 as San Francisco's first all-rental housing community.8 The community was planned as a self-contained development by the Metropolitan Life Insurance Company (MetLife) as part of a government-supported effort that encouraged direct investment in middle-income housing by insurance companies in the 1940s and 1950s. MetLife’s 1941 proposal was to build 2,500 apartments, which would house approximately 8,000-10,000 residents.

Parkmerced was designed by Leonard Schultze & Associates, who was also the architect of two related housing projects commissioned by MetLife during this period, Parkfairfax in Virginia (1941-1943) and Parklabrea in Los Angeles (1941-1950).9 Frederick H. Meyer, a prominent San Francisco architect, served as the local architect, while Thomas Church (and other landscape architects from his office) served as the landscape architect for the garden courtyards and public open spaces. Rental units were originally planned to be constructed of high quality, modern materials for the time period, such as reinforced concrete, but wartime shortages of materials dramatically limited the application of these materials. The original plans also included amenities such as modern appliances, parking, landscaped courtyards, playgrounds, and open spaces for recreation. The builders of the project were the New York City firm Starrett Brothers & Eken, who constructed the Empire State Building and several other MetLife housing projects, including Parkchester and Peter Cooper Village.10

Site Planning

Schultze’s early plans for the buildings, layout, and grounds of the Parkmerced project showed a complex of two-story apartments and open spaces that were formal and axial.11 An early site plan and image of the original model for Parkmerced from 1944 showed the overall layout of the site and location of garden apartment blocks and open spaces. The difference between the original model and final site plan upon which construction was carried out was a more finished, urban western edge to the site plan and less open space towards Lake Merced. The early site plan appears to be loosely organized by Beaux Arts and Garden City principles. Evidence of these principles is seen in the overall form of the Parkmerced plan, with a series of landscaped streets radiating from a central common according to a hierarchical circulation system that divides the property into pie-shaped blocks.12 In addition to the garden apartment blocks, this early site plan included a small recreational area (tennis courts), a small commercial area with parking, and the Meadow.

Construction of the first phase of clustered garden apartments at Parkmerced began in 1941 and was completed in 1945. The initial phase of construction included all site planning by Schultze, including the layout of open spaces and the pie-shaped block grid, as well as the construction of six blocks (Blocks 28, 32, 33, 34, 35, and 36) of unfinished concrete garden apartments, which were completed by 1944. Original plans called for the construction of all buildings with reinforced concrete, but wartime restrictions on building materials made reinforced concrete unavailable for private enterprise during this time. Although construction was allowed to continue through the war years, the original number of apartments was reduced from 2,500 to 1,700 to accommodate for materials shortages. The remaining garden apartments planned for the first phase of construction were completed in 1945.

8 Mark Daniels, “Parkmerced: San Francisco’s First All-Rental Community Housing Project” Architect and Engineer (September 1944), 15; Reproduced in Appendix I: Articles and Documents.
9 “A 12,500,000 Housing Project for San Francisco,” Architect and Engineer (January 1941), 51. Reproduced in Appendix I: Relevant Articles and Documents.
10 “Parkmerced Housing Project” Architect and Engineer (September 1943), 43.
11 Daniels, 16.
12 Ibid.
and constructed of wood frame and stucco (Blocks 2-13, 20-25, 29-31, 38, and 42-45).

These include the subject blocks currently owned by SF State.

Landscaping of the Meadow, Common, and drives was completed by 1945, as well as the installation of playgrounds and an elementary school. At the conclusion of the initial construction phase in 1945, the site included 1,687 garden apartment units and associated landscaping within a contained area of low-rise blocks, bounded by Arballo Drive to the west, Holloway Avenue to the north, Cambon Drive to the east, and Brotherhood Way to the south. Two additional small blocks of housing extended beyond Arballo Drive on the west side of the development. The adjacent parcels at the edges of the property were left undeveloped, including the land east of Cambon Drive.

Critics applauded the unity of the whole, seamlessly combining infrastructure, housing, and recreation areas. Also of note were the pie-shaped blocks featuring convenient and designated laundry, play, and private garden space on the interior of each housing cluster.

During the development of the site plan, some of Church’s associates claim that he influenced the site design, while others claim that he was introduced later in the project after Schultze completed the overall site planning. However, these claims seem inaccurate in the face of the historical record, which shows Schultze’s designs and site plans for Parkmerced, which pre-date Church’s involvement.

While Thomas Church’s influence may not have been seen in the earliest site plan (pre-1941), he did design the landscaping of the garden apartment courtyards and open spaces, thus providing landscape interventions into the project site. As noted by author Marc Treib, Church’s role in the project was one of refinement, not creation, relative to the site plan and landscaping. Church utilized modern landscape design concepts to optimize the site conditions, including a focus on the combination of views and spaces instead of the relationship of the landscape to architectural facades. His influence was seen in the landscape elements found within the garden apartment courts, which relate to his other smaller-scale residential work.

Thomas Church utilized the assistance of landscape architects, contractors and designers associated with his firm throughout the duration of construction. These individuals included landscape contractors Floyd Gerow and Alec Cattini; landscape architects H. Leland Vaughn (associated with Church from 1931 to 1945); Robert Royston (associated with Church from c.1938 to 1942); June Meehan (associated with Church from 1940 to 1967); Douglas Baylis (associated with Church from 1941 to 1945); and Lawrence Halprin (associated with Church from c. 1944 to 1949).

Each block of attached garden apartments had a series of interior courtyards featuring private terraces, shared laundry areas, and parking. Within each courtyard Church used low walls and plantings to define private outdoor space associated with each living unit, leaving the central open spaces as a semi-private common for the residents of that building. A large section of open space west of the center of the property and bounded by Arballo Drive, Serrano Drive, and Gonzalez Drive, was called “The Meadow,” and was originally designed to feature a series of recreational nodes. A circular area of open space was set aside for a landscaped Common in the center of the site. Schultze’s site plan provided access to the property through four vehicle entrances, thereby limiting

13 Ibid., 22.
14 Parkmerced plans, University of California, Berkeley (UCB), Environmental Design Archives, Thomas Church Collection.
15 Reiss, 51.
through-traffic on the property with the intent of increasing pedestrian safety in the enclosed complex.17

Development of Parkmerced: Phase II (1948-1951)

In the late-1940s, as a response to the continued demand for housing after World War II, MetLife developed the remaining parcels at Parkmerced to provide greater residential density and site amenities. This second phase of development at Parkmerced took place between 1948 and 1951, and included the addition of four blocks of garden apartments (Blocks 1, 19, 37, and 41), completed between 1948 and 1949, as well as the construction of the Cambon Drive shopping center (specified in the original site plan), an Administration Building (also specified in the original site plan), three underground garages, a Maintenance Building, and eleven mid-rise towers, which were all completed by 1951. All of the buildings constructed between 1948 and 1951 were made of poured-in-place molded concrete with horizontal scoring. The massing, height, and materials of these buildings serve as a clear visual marker of this last phase of construction.18

Thomas Church joined Leonard Schultze again on the second phase of design. Church designed the landscaping around the eleven towers and re-designed the Meadow and associated green spaces to accommodate the larger-scale buildings on the project site.19 An additional 1,769 units were added to the Parkmerced complex upon the completion of the second phase of construction in 1951, thereby doubling the existing number of rentable units to a total of 3,456.

MetLife owned Parkmerced until 1970, when the property was sold to the Parkmerced Corporation.20 Property ownership changed again in 1995 and 1999. An 8.2-acre portion of the original Parkmerced property along Brotherhood Way was sold in 1999 and the Cambon Drive shopping center was sold in 2004. The SF State Foundation purchased Blocks 1, 2, 5, 6 between 2000 and 2005 and subsequently sold them to SF State/CSU. SF State purchased Blocks 41 and 42 directly. Parkmerced Investors LLC purchased the remainder of Parkmerced in 2005.

SAN FRANCISCO STATE UNIVERSITY HISTORIC CONTEXT

The following historic architectural context is excerpted from SF State’s Campus Master Plan EIR:

SFSU Campus

San Francisco State Normal School, a two-year teacher-training college, was founded in 1899. It became a 4-year school in 1930, and received university status in 1972 through the California State University system. The original college was housed in a plain stone structure on Powell Street near Clay, which was destroyed in the 1906 earthquake and fire. While the school reopened at another location on upper Market, it was not until 1939 that 54 acres of land was acquired at the existing campus location. This followed the introduction of the “M” streetcar line along 19th Avenue and the construction of Lake Merced Boulevard. The campus’s earliest temporary buildings and athletic fields replaced farmland. The campus remained largely in this form during the first decade.

17 Parkmerced plans, University of California Berkeley, Environmental Design Archives.
18 Ibid.
19 Ibid.
20 Assessor’s Office information dates a transfer of the property from Met Life to Parkmerced Corp. on December 21, 1970. Whereas, City of San Francisco Building Inspection Commission meeting minutes quote a resident dating the Helmsley purchase to 1972.
It was not until 1949 when construction began on the first permanent structures, a stadium and a physical education building. Construction exploded on and around campus after that time. SFSU saw the construction of the campus core, while Villas Parkmerced and Stonestown were fully completed by the end of the 1950s (see further discussion below). New buildings continued to replace the older temporary structures on the campus, as the 1960s and 1970s saw the campus receive its first dormitories, a student center, two library expansions, and a pair of towering new science buildings. Even the valley, a remnant of the former stream canyon, had accumulated several structures. The last 15 years on campus have seen development across all building types, including an expansion in student housing, new academic and student support facilities, and an ongoing program of seismic upgrading of the University’s building stock. […]

Recent Acquisitions
The University Park North (UPN) was recently acquired by SFSU and was previously called the Stonestown apartments. The Western Neighborhoods Project provides a description of the history and architecture of Stonestown, which is summarized as follows (Western Neighborhoods Project, 2006). The Stonestown shopping center and the adjacent apartment towers and buildings were built in 1952. “Stonestown” as it was called, was the fourth largest apartment complex/shopping center in the United States at the time. By the early 1980s, the mall still retained a classic 1950s look, but a major renovation took place that added a story of stores, a glass ceiling, and marble floors, creating the “Stonestown Galleria.” The apartments and towers were purchased by SFSU in 2005 and remain much as they were in 1952.

The three blocks of University Park South (UPS) and the Tapia Triangle, owned by the San Francisco State University Foundation, are part of the larger Villas Parkmerced neighborhood that lies to the south of the campus. […]

V. DISCUSSION OF ELIGIBILITY

As previously discussed, the entire Parkmerced development, containing the subject blocks, was found eligible for listing in the National Register (and therefore, the California Register) as a historic district (Figure 28). The demolition of the garden apartments at the site owned by Parkmerced Investors, LLC was found to cause a significant adverse impact since the historic district would be impaired.

For a property to be eligible for national, state or local designation under one of the significance criteria (see page 5), the essential physical features, known as character-defining features, that enable the property to convey its historic identity must be evident. A property must clearly contain enough of those characteristics, and these features must also retain a sufficient degree of integrity. Characteristics can be expressed in terms such as form, proportion, structure, plan, style, or materials.

The 2009 Historic Resource Evaluation and Cultural Landscape Assessment provided a list of the Parkmerced Historic District’s character-defining features. In light of the approved project at the greater Parkmerced site that is anticipated to be implemented, the list of character-defining features is assessed below for whether they could still be represented by SF State’s Parkmerced Blocks 1, 2, 5, 6, 41, and 42, along with the towers that will remain on Parkmerced Investors, LLC property to the south. Those character-defining features that would still be represented on SF State’s blocks and other areas to remain are noted in italicized font below.
Spatial Organization

- Overall site plan includes street grid, placement of buildings in blocks [at the Towers, Blocks 1, 2, 5, 6, 41, and 42], the Meadow, and Parkmerced “Common.”
- Garden apartment blocks and courtyards (interior, entry, and laundry) [at Blocks 1, 2, 5, 6, 41, and 42]
- Tower arrangement and courtyards

Cluster Arrangement

- Garden apartment blocks [at Blocks 1, 2, 5, 6, 41, and 42]
- Tower clusters

Circulation

- Landscaped drives
 - Font Boulevard
 - Crespi Drive [circulation will remain though the landscaping will change]
 - Bucareli Drive [circulation will remain though the landscaping will change]
 - Grijalva Drive [circulation will remain though the landscaping will change]
- Juan Bautista Circle [circulation will remain though the landscaping will change]
- Traffic circles [At Font Boulevard]
- Aggregate and concrete paths (in courtyards and between buildings)

Topography

- Individual garden apartment courtyard grading

Buildings and Structures

- Garden apartments
- Towers
- Maintenance building
- Administration building
- Carports
- Laundry buildings
- Storage buildings

Vegetation

- Location and rhythm of street trees and plantings along drives and secondary streets, garden courtyard apartments, and towers
- Placement of specimen trees, lawns, and vegetation in courtyards of garden apartments and towers (actual species of vegetation has been altered in certain cases; this character-defining features should be evaluated on case-by-case basis)
- Parkmerced Common plantings
- Ornamental median plantings in traffic circles and along landscaped drives, where remaining.

Landscape Features

- Terrace divider walls in courtyards
- Planters (concrete, wood and brick)
- Low concrete and/or brick site walls
- Courtyard stairs (brick and concrete)

Views and Vistas

- Vistas down landscaped drives (see circulation above)
- Vistas to and from garden apartment courtyard breezeways
- Views to and from the Common
- Views from mid-rise towers to garden apartments and landscape

In addition to the character-defining features listed above located on Parkmerced Investors LLC site, which was the subject of the Historic Resource Evaluation and Cultural Landscape Assessment done in 2009, the former Parkmerced recreation field (now the site of SF State’s Mashouf Wellness Center), and commercial complex under other ownership are also described in the HRE as being within the boundary of the original Parkmerced development, and thus are contributing features to the Parkmerced Historic District.

If the approved project at Parkmerced is implemented, most of the character-defining features could be represented through the remaining significant landscaped spaces, the towers, and SF State’s garden apartment blocks. Of the typologies of garden apartments that were constructed at Parkmerced, wood frame and stucco garden apartments and scored poured-in-place concrete garden apartments will be represented, but not smooth poured-in-place buildings.

The overall site plan would change because many streets in the existing grid will be removed, though primary radial streets from the Parkmerced Common will remain. The maintenance building, administration building, and other storage buildings would be demolished. Most vegetation and landscape features would continue to be represented by the SF State garden apartment blocks. While views and vistas would change due to the construction of new buildings on the Parkmerced site, the general concept of views down the streets framing the SF State garden apartments and from Towers 39 and 40 across the street from Blocks 41 and 42 would be retained.

Thus, while the garden apartments at the Parkmerced site would eventually be demolished, sufficient character-defining features exist in the six garden apartment blocks with laundry and carport facilities, the landscape features that remain at the SF State Parkmerced garden apartment blocks, and the adjacent Towers 39 and 40 to constitute a smaller, contiguous Parkmerced Remnant Historic District. Integrity of location, design, materials, workmanship, feeling, and association would be maintained in this remnant district, though integrity of setting would be compromised to an extent due to new construction surrounding the remaining blocks. Overall, this remnant historic district would continue to represent the significant mid-century middle-income housing concept characterized by Parkmerced and the architectural and landscape designs of Leonard Schultz and Associates and Thomas Church. The Parkmerced Remnant Historic District would represent two of three garden apartment construction typologies: scored concrete and wood-frame construction (poured concrete would no longer be represented). The blocks create a line along Holloway Avenue and Font Boulevard west of 19th Avenue such that nearly the full width of the Parkmerced development would be represented.

With the implementation of the approved Parkmerced redevelopment project, the larger identified historic district was found in previous analyses to lose eligibility due to the anticipated change in integrity of the overall Parkmerced site. Intact examples of Metlife and other mid-century housing developments exist elsewhere in the country, including Stuyvesant Town in Manhattan, Parkfairfax in Alexandria, Virginia, and Parkchester in the Bronx. However, in California many of these types of mid-century middle-income developments have been altered or demolished, and a lower threshold of integrity may exist to represent the significant context. In sum, this report finds that Blocks 1, 2, 5, 6, 41, and 42, along with towers 39 and 40 that will remain on the Parkmerced Investors, LLC property, constitute as a smaller Parkmerced Remnant Historic District eligible for listing in the California Register of Historical Resources that is significant at the state and local levels (Figures 29). Even as a remnant landscape, the remaining components convey enough information about the to-be-demolished Parkmerced development to the south to be eligible on their own.
Figure 29. Eligible Parkmerced Remnant Historic District boundary comprised of SF State University Park South blocks and adjacent Parkmerced towers, shown with future build-out of Parkmerced redevelopment project. Source: SOM, October 2010; edited by author.

The SF State blocks are not individually significant, as their significance is rooted in the history and design of the larger development.
VI. EVALUATION OF PROJECT IMPACTS

This section analyzes the project-specific and cumulative impacts on the environment for the SF State’s Creative Arts & Holloway Mixed-Use Project.

CALIFORNIA ENVIRONMENTAL QUALITY ACT

The California Environment Quality Act (CEQA) is state legislation (PRC Section 21000 et seq.), that provides for the development and maintenance of a high quality environment for the present-day and future through the identification and consideration of significant environmental effects prior to considering projects for approval.\(^\text{22}\) CEQA applies to “projects” proposed to be undertaken or requiring approval from state or local government agencies. “Projects” are defined as “…activities which have the potential to have a physical impact on the environment and may include the enactment of zoning ordinances, the issuance of conditional use permits and the approval of tentative subdivision maps.”\(^\text{23}\) Historic and cultural resources are considered to be part of the environment. In general, the lead agency must complete the environmental review process as required by CEQA.

According to CEQA, a “project with an effect that may cause a substantial adverse change in the significance of an historic resource is a project that may have a significant effect on the environment.”\(^\text{24}\) Substantial adverse change is defined as: “physical demolition, destruction, relocation, or alteration of the resource or its immediate surroundings such that the significance of an historic resource would be materially impaired.”\(^\text{25}\) The significance of a historical resource is materially impaired when a project “demolishes or materially alters in an adverse manner those physical characteristics of an historical resource that convey its historical significance” and that justify or account for its inclusion in, or eligibility for inclusion in a local register of historical resources pursuant to local ordinance or resolution.\(^\text{26}\) In other words, a significant impact occurs when demolition or significant alteration renders a historical resource no longer eligible for listing in a historic register. A project may cause changes to a historic resource but still not have a significant adverse effect on the environment as defined by CEQA as long as the impact of the change on the historic resource is determined to be less than significant, negligible, neutral or even beneficial.

STATUS OF EXISTING BUILDINGS AS HISTORIC RESOURCES

A building or district may qualify as a historic resource if it falls within at least one of four categories listed in CEQA Guidelines Section 15064.5(a). The four categories are:

- A resource listed in, or determined to be eligible by the State Historical Resources Commission, for listing in the California Register of Historical Resources (Pub. Res. Code SS5024.1, Title 14 CCR, Section 4850 et seq.).
- A resource included in a local register of historical resources, as defined in Section 5020.1(k) of the Public Resources Code or identified as significant in an historical resource survey meeting the requirements of section 5024.1 (g) of the Public Resources Code, shall be presumed to be historically or culturally significant. Public agencies must

\(^{23}\) Ibid.

\(^{24}\) CEQA Guidelines subsection 15064.5(b).

\(^{25}\) CEQA Guidelines subsection 15064.5(b)(1).

\(^{26}\) CEQA Guidelines subsection 15064.5(b)(2).
treat any such resource as significant unless the preponderance of evidence demonstrates that it is not historically or culturally significant.

- Any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California may be considered to be an historical resource, provided the lead agency’s determination is supported by substantial evidence in light of the whole record. Generally, a resource shall be considered by the lead agency to be “historically significant” if the resource meets the criteria for listing on the California Register of Historical Resources (Pub. Res. Code SS5024.1, Title 14 CCR, Section 4852).

- The fact that a resource is not listed in, or determined to be eligible for listing in the California Register of Historical Resources, not included in a local register of historical resources (pursuant to section 5020.1(k) of the Pub. Resources Code), or identified in an historical resources survey (meeting the criteria in section 5024.1(g) of the Pub. Resources Code) does not preclude a lead agency from determining that the resource may be an historical resource as defined in Pub. Resources Code sections 5020.1(j) or 5024.1.

In general, a resource that meets any of the four criteria listed in CEQA Guidelines Section 15064.5(a) is considered to be a historical resource unless “the preponderance of evidence demonstrates” that the resource is not historically or culturally significant.27

Therefore, the smaller Parkmerced Remnant Historic District, which has been found in this report to be eligible for listing in the California Register, would be considered a qualified historic resource under CEQA under the third of the categories listed above.

PROPOSED PROJECT DESCRIPTION

The following description of the proposed project is provided by SF State for the Creative Arts & Holloway Mixed-Use Project.

SF State proposes to develop the Creative Arts & Holloway Mixed-Use Project (Project) in the southern portion of the SF State campus (Figure 30). The Project includes the construction of the Creative Arts Replacement Building, an associated 800-seat concert hall, and a mixed-use development including student housing, neighborhood-serving retail, and student support services.

The approximately 3.6-acre Project site is located in the south campus, with one parcel (Block 6) on the south side of Holloway Avenue between Cardenas and Varela Avenues, and one parcel (Block 1), referred to as the Tapia Triangle, bounded by Tapia Drive, Holloway Avenue, and Font Boulevard. The Project site is part of University Park South, which was purchased by SF State between 2000 and 2005 and includes a portion of the original Parkmerced development, which extends beyond the central campus boundaries to the south. Most of the existing units are occupied by SF State students and affiliates.

The Campus Master Plan, adopted by the CSU Board of Trustees in 2007, addresses all aspects of future physical development and land use on the campus to accommodate the enrollment ceiling of 25,000 full-time equivalent (FTE) students. The adopted Campus Master Plan accommodates a building program of 0.9 million gross square feet (GSF) of new and replacement non-residential building space and the development or conversion of about 1,198 additional units of housing for

27 Pub. Res. Code SS5024.1, Title 14 CCR, Section 4850 et seq.
faculty, staff, and students. The Project is consistent with the Campus Master Plan building program; however, a master plan map revision is required to allow for the proposed uses on the identified sites.

The Project would include demolition of existing housing and construction of new student housing, neighborhood-serving retail, and student support services on Block 6 on the south side of Holloway Avenue. The proposed residences would include apartment style student housing. Redevelopment of the block would allow for a more compact configuration to increase the supply of on-campus housing in conformance with the Campus Master Plan objectives. This development pattern is also in alignment with Parkmerced’s redevelopment plans. The retail and support services space would include uses such as neighborhood-serving retail, student support services, bike storage, study rooms, copy center, and retail dining, and a modest amount of underground parking to replace parking being removed elsewhere on campus in the vicinity of the Project. The retail and student support services space would serve SF State affiliates, as well as neighbors in the immediate vicinity of the campus.

The Project would also include demolition of existing housing and construction of the Creative Arts replacement building and concert hall on Block 1 on the north side of Font Boulevard and Holloway Avenue. This development assumes a relocation of the existing Department of Broadcast & Electronic Communication Arts (BECA) program from the existing Creative Arts building. An 800-seat concert hall would be located adjacent to the Creative Arts replacement building. The concert hall would have recording and broadcast capabilities that would provide hands-on learning for BECA students and would serve as a performance venue and state-of-the-art recording studio for chamber orchestras, choral/vocal music, instrumental ensembles, and music groups. It also could host and simulcast lecture series, film festivals, and debates. Events may be open to the campus community only or to the neighborhood and larger community, similar to the University’s current program of performing arts and lectures housed in McKenna and Knuth Theaters.

Parking would be provided in the basement of the new residential building on Holloway to serve neighborhood retail, concert hall events, and visitors to campus. Student residential parking would be limited to accessible spaces. Consistent with the 2007 Campus Master Plan, parking on Holloway would relocate a portion of the campus parking supply to the perimeter of campus, removing existing parking along Tapia Drive, and would constitute no net increase in the overall campus parking supply. The table below provides a summary of the key elements of the Project.

PROJECT DESCRIPTION SUMMARY

<table>
<thead>
<tr>
<th>Project Element</th>
<th>Existing Site Conditions</th>
<th>Proposed Site Conditions</th>
<th>Net Change with Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student housing (Block 6)</td>
<td>168 beds (Blocks 1 & 6)</td>
<td>550 beds</td>
<td>360 beds</td>
</tr>
<tr>
<td></td>
<td>8 units (Block 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood-serving retail/</td>
<td>None</td>
<td>25,000 gross square feet (GSF)</td>
<td>25,000 GSF</td>
</tr>
<tr>
<td>student support services (Block 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking facilities</td>
<td>53 auto spaces</td>
<td>70 parking spaces</td>
<td>0 parking spaces</td>
</tr>
<tr>
<td></td>
<td>9 motorcycle spaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative Arts replacement</td>
<td>None</td>
<td>75,000 GSF</td>
<td>75,000 GSF</td>
</tr>
<tr>
<td>building (Block 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concert hall (Block 1)</td>
<td>None</td>
<td>60,000 GSF</td>
<td>60,000 GSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 seats</td>
<td>800 seats</td>
</tr>
</tbody>
</table>

Source: Data compiled by SF State in 2016.
1 The eight units are occupied by approximately 2.75 people per unit, which is equivalent to 22 beds.
2 Parking located on Tapia Drive.
3 Parking would be removed elsewhere on campus to provide for no net increase in parking with the Project.

The Project would also include the preparation and implementation of urban design and sustainability guidelines, and the target of Leadership in Energy and Environmental Design (LEED) Platinum and Net Zero Energy in support of the campus’ Climate Action Plan and core value of resiliency. Transportation improvements would include secured bicycle parking, loading and emergency access, streetscape improvements to benefit pedestrians, and vacating (removing) Tapia Drive to integrate Tapia Triangle into the campus academic core. The Project would connect to existing water and combined sewer services adjacent the site. Low impact landscaping and energy-efficient lighting improvements would also be installed with the Project.

Figure 30. SF State Campus map showing proposed new development at Block 1 and Block 6. Source: SF State, edited by Dudek.
PROPOSED PROJECT ANALYSIS

The proposed project includes the demolition of Parkmerced Blocks 1 and 6, which have been determined to be historic resources for the purposes of CEQA as they contribute to the previously identified Parkmerced Historic District, and are two of six garden apartment blocks and two towers that compose the identified smaller Parkmerced Remnant Historic District. The analysis takes into consideration both the existing condition, wherein all of the original Parkmerced development currently remains, and the future anticipated condition, whereby the approved project at the Parkmerced Investors LLC property is redeveloped.

Analysis of Project-Specific Impacts Under CEQA

Provided below is an analysis of the project’s potential impacts to historic architectural resources in terms of CEQA criteria.

Impact 1.0 – The Project would demolish Blocks 1 and 6, which are qualified historic resources as contributors to an identified Parkmerced Historic District. The demolition of Blocks 1 and 6 would erode the integrity of the historic district but would not materially impair its significance (Less than significant).

Demolition is often considered to be a significant adverse impact, since it could materially alter in an adverse manner those physical characteristics of a historic resource that convey its historical significance and that justify its eligibility for inclusion in the National Register or California Register. In this case, the Parkmerced Historic District includes all of the original Parkmerced development. The demolition of the garden apartment Blocks 1 and 6 in the larger Parkmerced Historic District, which is extant under current conditions, would erode the integrity of the historic district, but would not materially impair the district’s significance. The historic district would continue to represent the significant mid-century middle-income housing concept characterized by Parkmerced and the architectural and landscape designs of Leonard Schultze and Associates and Thomas Church. The SF State blocks are not considered significant individually, and the majority of the site plan and blocks would remain. The remaining 28 garden apartment blocks, 11 towers, and landscape features on the Parkmerced Investors LLC site, as well as the other four SF State garden apartment blocks, would convey the character-defining features and all characteristic building typologies of the development. The larger Parkmerced Historic District would remain eligible under existing conditions with the implementation of the Project. Thus, the Project would create a less-than-significant project-specific impact on the larger historic district.

Impact 2.0 – The Project would demolish Blocks 1 and 6, which are qualified historic resources as contributors to an identified Parkmerced Remnant Historic District. The demolition of Blocks 1 and 6 would erode the integrity of the historic district but would not materially impair its significance (Less than significant).

In the event that the approved project at the Parkmerced Investors LLC site is fully implemented, the Parkmerced Remnant Historic District identified in this report—comprised of six garden apartment blocks with laundry and carport facilities, and two adjacent towers—is the historic resource under evaluation in this impact. The apartment blocks are not considered significant individually. The integrity of the historic district would erode with the demolition of Blocks 1 and 6, one-third of the represented garden apartments that line Holloway Avenue west of 19th Avenue. Block 1 is one of two scored concrete garden apartments with one of five total laundry units, and Block 6 is one of four wood frame and stucco garden apartments with one of four carport complexes. Although the number of these typologies would be reduced, all typologies of buildings represented in the identified district would remain, and the character-defining features that the six blocks feature would still be represented by four blocks. Furthermore, Blocks 1 and 6 are both on the
edges of the line of former Parkmerced blocks owned by SF State: Block 1 is an outlier on the northeast side of Holloway Avenue and Font Boulevard, and Block 6 is the furthest east in the row along Holloway. Removing these two blocks would not create a discontiguous condition amongst the remaining Parkmerced blocks.

The demolition of the garden apartment Blocks 1 and 6 in the Parkmerced Remnant Historic District would erode the integrity of the remnant historic district, but it but would not materially impair the district’s significance. The historic district would continue to represent the significant mid-century middle-income housing concept characterized by Parkmerced and the architectural and landscape designs of Leonard Schultze and Associates and Thomas Church. Therefore, the Parkmerced Remnant Historic District would remain eligible with the implementation of the Project. The Project would create a less-than-significant project-specific impact on the remnant historic district.

Analysis of Cumulative Impacts Under CEQA

“Cumulative impacts” under CEQA refers to two or more individual effects that, when considered together, are considerable or that compound or increase other environmental impacts. The individual effects may be changes resulting from a single project or a number of separate projects. The cumulative impact from several projects is the change in the environment that results from the incremental impact of the project when added to other closely related past, present, and reasonably foreseeable probable future projects. Cumulative impacts can result from individually minor but collectively significant projects taking place over a period of time.

This HRTR is being prepared to support the forthcoming Focused Tiered EIR for the project. CEQA also indicates that an EIR should not discuss cumulative impacts to which the project would not contribute. If the combined cumulative impact (impacts from other projects combined with the impact from the project) is not significant, then the EIR should briefly indicate why the impact is not significant, and no further evaluation is necessary. If the combined cumulative impact is significant, the EIR also must indicate whether the project’s contribution to that significant cumulative impact will be cumulatively considerable.

Reasonably foreseeable cumulative projects typically include approved but not yet constructed projects and projects for which there is a pending application or that are otherwise contemplated in adopted plans. Therefore, reasonably foreseeable cumulative projects addressed in the cumulative analysis include the following:

- The approved Parkmerced project, including demolition of all of the two-story garden apartment buildings and removal of all of the interior landscaping on the Parkmerced Investors LLC property.
- Future redevelopment of Parkmerced’s eastern 2.75-acre commercial shopping center owned by Yousef Realty.
- The current redevelopment project of the former Parkmerced recreation area to construct the Mashouf Wellness Center.
- The probable future build out of University Park South, as contemplated in the future vision included in the 2007 adopted Campus Master Plan, including demolition and redevelopment of all SF State garden apartment blocks in University Park South.

The cumulative impact analysis below considers the project’s contribution to significant cumulative impacts related to both the larger Parkmerced Historic District and the Parkmerced Remnant Historic District that would remain after the approved Parkmerced project is implemented.
Impact 3.0 – The proposed demolition of Blocks 1 and 6 and removal of existing landscape features on the Project site would contribute to a significant cumulative impact on the historic significance of the Parkmerced Historic District, as it would erode its integrity; however, the Project’s contribution to this significant cumulative impact would not be cumulatively considerable (*Less-than-significant impact*).

The EIR for the redevelopment project at the Parkmerced Investors LLC site already determined that the Parkmerced Historic District would not remain eligible for listing in any historic registers if that project proceeds as entitled and the project-level impact was determined to be significant and unavoidable for that project. Additionally, the cumulative study area for that project was the original Parkmerced complex, which included four other property owners of Parkmerced properties, SF State, Yousef Realty, and Olympic Realty. Redevelopment of these former Parkmerced properties is contemplated in some fashion by all of these owners, as described above. The EIR for the Parkmerced project determined that the impact associated with the Parkmerced project and the cumulative redevelopment projects would be significant and unavoidable, as anticipated redevelopment of all of the properties identified above would materially impair the significance of the historic district to the extent that it would no longer be eligible for listing. This impact was identified as being caused primarily by the Parkmerced Investors LLC redevelopment project. For example, out of 34 total garden apartment blocks, the Parkmerced Investors LLC project would demolish 28. The demolition of Blocks 1 and 6 for the Creative Arts and Holloway Mixed Use Project would contribute to a significant cumulative impact by eroding the Parkmerced Historic District’s integrity. However, when combined with known current, entitled, and future projects, including the large Parkmerced Investors LLC project, the Project’s contribution would not be cumulatively considerable. Thus, the cumulative impact of the Project on the Parkmerced Historic District would be less than significant.

Impact 4.0 – The proposed demolition of Blocks 1 and 6 and removal of existing landscape features on the Project site would contribute to a significant cumulative impact on the historic significance of the Parkmerced Remnant Historic District, as it would erode its integrity; the Project’s contribution to this significant cumulative impact would be cumulatively considerable (*Significant adverse impact*).

Following the redevelopment of Blocks 1 and 6, the remaining blocks of Parkmerced garden apartments owned by SF State—blocks 2, 5, 41, and 42—are anticipated to be demolished eventually and redeveloped by SF State, and the landscape design of Font Boulevard is anticipated to be eventually altered. This would likely occur under the future vision included in the adopted 2007 CMP, which contemplated demolition and redevelopment of all SF State garden apartment blocks in University Park South beyond the 2020 horizon year for the CMP. While redevelopment of the entirety of University Park South is not yet approved or adopted, it is considered reasonably foreseeable and is therefore considered in this analysis.

The future redevelopment of Blocks 1 and 6 as part of the Project, as well as the rest of SF State’s Parkmerced blocks and street landscapes, would materially impair the significance of the Parkmerced Remnant Historic District. The remnant historic district would no longer be able to represent the significant mid-century middle-income housing concept characterized by Parkmerced and the architectural and landscape designs of Leonard Schultz and Associates and Thomas Church. This would constitute a significant cumulative impact, as the remnant district would no longer be eligible for listing. Because the remnant district only includes six garden apartment blocks and two towers, the Project would contribute one-third of the garden apartment demolitions. The Project therefore would create a considerable contribution to the cumulative impact when combined with the known and future redevelopment of all former Parkmerced blocks on the SF State campus, as contemplated
in the future vision for the campus in the 2007 CMP. Thus, the cumulative impact of the Project on the Remnant Parkmerced Historic District would be significant.

This significant cumulative impact can be reduced through the implementation of the applicable CMP EIR mitigation measures and through the implementation of the additional mitigation measures identified in the following section. However, the impact is significant and unavoidable as the implementation of feasible mitigation measures would not reduce the impact to less than significant.
VII. MITIGATION MEASURES

Historic resource mitigations are typically developed on a case-by-case basis, providing the opportunity to tailor them to the characteristics and the significance of the resource and the particular impacts to the resource. Common mitigation measures for demolition consist of documentation of the resource, typically to the standards of the Historic American Buildings Survey (HABS), preparation of a salvage plan for significant architectural features and materials, or a commemorative plaque or interpretive display. While in some instances these mitigation measures are judged to reduce the level of adverse impacts to less than significant, they often do not alter the loss to community character and collective history. Section 15126.4(b)(2) of the Public Resources Code is clear in this regard: “In some circumstances, documentation of an historical resource, by way of historic narrative, photographs or architectural drawings, as mitigation for the effects of demolition of the resource will not mitigate the effects to a point where clearly no significant effect on the environment would occur.”

Cultural resource mitigation measures have already been undertaken in response to the proposed demolition of buildings on the adjacent Parkmerced Investors LLC site. This includes HABS and HALS documentation in the form of measured drawings, digital photographs, and written report; as well as an interpretive program that includes two outdoor educational displays and a video on loop in the administration building.

The following mitigation measures are recommended in advance of the Project, and elaborate on the mitigation measure outlined in the Campus Master Plan EIR's Mitigation CULT-2C (ii):

If a significant historic building or structure is proposed for major alteration or renovation, or to be moved and/or demolished, the campus shall ensure that a qualified architectural historian thoroughly documents the building and associated landscaping and setting. Documentation shall include still and video photography and a written documentary record of the building to the standards of the Historic American Building Survey (HABS) or Historic American Engineering Record (HAER), including accurate scaled mapping, architectural descriptions, and scaled architectural plans, if available. A copy of the record shall be deposited with the SF State Library. The record shall be accompanied by a report containing site-specific history and appropriate contextual information. This information shall be gathered through site specific and comparative archival research, and oral history collection as appropriate.

DOCUMENTATION

SF State shall facilitate documentation of the affected historic resource and its setting. Generally, this documentation shall be in accordance with Historic American Building Survey (HABS) Level II per Campus Master Plan EIR Mitigation CULT-2C, which includes:

1. **Drawings:** Select original Church and Schultze drawings of Blocks 1 and 6, if available from Parkmerced Investors LLC or the San Francisco Planning Department\(^{28}\), should be photographed with large-format negatives or photographically reproduced on Mylar. Measured drawings are not required, as these were completed for each type of building.

\(^{28}\) Parkmerced Investors LLC transferred a set of historic Parkmerced drawings to the San Francisco Planning Department to be archived as part of the Parkmerced project’s cultural resource mitigation measures.
as part of the mitigation for demolition of the Parkmerced site (completed by Page & Turnbull in 2016).

2. **Photographs:** Archivally printed digital photographs of exterior and interior views of Blocks 1 and 6. These photographs must adequately document the character-defining features of the buildings and should be produced by a qualified professional who is familiar with the character-defining features of the buildings, as identified in the Historic Resource Evaluation completed by Page & Turnbull in 2009 and information provided in this report. Photographs should include general views that illustrate the setting; the exterior façades; the courtyard façades; details including front entrances and/or typical doorways; typical windows; exterior details indicative of the era of construction or of historic or architectural interest; and interior views to capture spatial relationships and any decorative elements. An example of printed digital photographs, site plans, and photo captions can be found in the Parkmerced HABS-HALS photographs produced as part of the mitigation for demolition of the Parkmerced Investors LLC site. These photograph sets are located at the San Francisco Public Library History Center and the Northwest Information Center of the California Historical Resources Information System. The photograph set for Blocks 1 and 6 should correspond to the previously produced sets.

3. **Written data:** Not required, as these blocks are covered in the HABS-HALS written report produced as part of the mitigation for demolition of the Parkmerced Investors LLC site.

HABS material standards regarding reproducibility, durability, and size shall be met. The HABS Level II documentation shall be completed by professionals who meet or exceed the Secretary of the Interior’s Professional Qualification Standards for History or Architectural History.

Three copies of the drawings and photographs should be provided to the San Francisco Public Library History Center, the Northwest Information Center of the California Historical Resources Information System, and SF State University.

This mitigation would create a collection of preservation materials that would be available to the public and inform future research. Implementation of this mitigation measure will assist in reducing the project-specific impacts: however, according to Section 15126.4 (b) (2) of the Public Resources Code (CEQA), HABS-level documentation of a historical resource as mitigation for significant impacts of demolition of the resource will typically not mitigate the impacts to less-than-significant.

VIDEO RECORDATION

The project sponsor will facilitate the creation of a walk-through video of Blocks 1 and 6 and their Parkmerced setting, including an exterior overview of adjacent streets (with medians and traffic circles), nearby tower apartments, and primary public spaces at Parkmerced such as the central Common and the Meadow. The documentation shall be conducted by a professional videographer, preferably one with experience recording architectural resources. The documentation shall be narrated by a qualified architectural historian. The documentation shall include as much information as possible—using visuals in combination with narration—about the materials, construction methods, current condition, historic use, and historic context of the historical resources. Copies of the video documentation shall be submitted to the San Francisco Public Library History Room, the Northwest Information Center, and SF State University. This mitigation measure will supplement the traditional HABS-HALS documentation.
VIII. CONCLUSION

The Parkmerced Historic District was identified in the Parkmerced Historic Resource Evaluation and Cultural Landscape Assessment (2009) and is eligible for listing in the National Register and California Register under Criteria A/1 (Events) and C/3 (Architecture). In addition, assuming that the entitled project at the Parkmerced Investors LLC site is implemented, a Parkmerced Remnant Historic District has been identified at Blocks 1, 2, 5, 6, 41, 42 and towers 39 and 40 and determined significant under California Register Criteria 1 (Events) and 3 (Design). Therefore, both historic districts are considered historic resources for the purposes of CEQA analysis.

The proposed Creative Arts and Holloway Mixed-Use Project requires the demolition of Blocks 1 and 6. Under current conditions, the project-specific impact of demolishing Blocks 1 and 6 on the Parkmerced Historic District would be less than significant, as the remaining blocks would continue to convey the historic district’s significance and its character-defining features and construction typologies. Likewise, assuming the entitled project is implemented, the project-specific impact of demolishing Blocks 1 and 6 on the Parkmerced Remnant Historic District would be less than significant, as the remaining four blocks of the smaller district would continue to convey the historic district’s significance and its character-defining features and construction typologies.

The proposed Creative Arts and Holloway Mixed-Use Project would contribute to a cumulative impact on the currently extant Parkmerced Historic District when considering all known current, entitled, and future projects, though the Project would not create a considerable contribution to that cumulative impact. The Project would also contribute to a cumulative impact on the Parkmerced Remnant Historic District, and would create a considerable contribution to that cumulative impact. Mitigation measures are included in this report, which if implemented can reduce the impact of the proposed project but cannot eliminate the impact.
IX. REFERENCES CITED

PUBLISHED WORKS

NEWSPAPERS AND PERIODICALS

“A 12,500,000 Housing Project for San Francisco.” *Architect and Engineer* (January 1941), 5.

Daniels, Mark. “Parkmerced: San Francisco’s First All-Rental Community Housing Project” *Architect and Engineer* (September 1944), 15.

“Parkmerced Housing Project.” *Architect and Engineer* (September 1943), 43.

INTERNET SOURCES

OTHER SOURCES

Parkmerced plans, Thomas Church Collection. University of California- Berkeley, Environmental Design Archives.
APPENDIX E
Transportation Memorandum
MEMORANDUM

Date: September 14, 2016 (Revised March, 3, 2017)

To: Wendy Bloom, San Francisco State University

CC: Ann Sansevero, Dudek

From: Ingrid Ballus Armet and Matt Goyne, Fehr & Peers
Anais Schenk, Dudek

Subject: SF State Creative Arts and Holloway Mixed-Use Project, Traffic and Circulation Analysis

This memorandum presents a study of travel demand at San Francisco State University (SF State) and the transportation-related effects and impacts of the proposed Creative Arts and Holloway Mixed-Use Project (herein referred to as “Project”). The Project is consistent with the SF State Campus Master Plan (CMP) completed in 2007 and the transportation-related effects and impacts identified in its Environmental Impact Review in 2007 (herein referred to as “2007 CMP EIR”).

This memorandum includes a description and assessment of existing transportation conditions at the Project site followed by a travel demand analysis and assessment of potential impacts of the Project on traffic, transit, bicyclists, and pedestrians. This evaluation is consistent with the 2007 CMP EIR Standards of Significance and the California State University’s Transportation Impact Study Manual (November 2012) (herein “CSU’s TIS Manual”). The evaluation also includes methods from the City and County of San Francisco’s Transportation Impact Analysis Guidelines (October 2002) (herein “SF Guidelines”).

The travel demand analysis includes an assessment of changes in campus travel demand since the completion of the 2007 CMP EIR as a result of changes in SF State’s campus population and their travel behavior, and its effects on the Trip Envelope established by the 2007 CMP EIR. The Adjusted CMP Trip Envelope is compared to the Project’s trip generation to determine if the Project would result in any additional significant impacts not presented and evaluated within the 2007 CMP EIR.
EXECUTIVE SUMMARY

The Project, located on the south side of the SF State campus (Figure 1), includes the construction of a new student housing building with 550 beds and campus-serving retail, a new Creative Arts replacement building, and an associated 800-seat concert hall. The student housing/mixed-use building will replace seven apartments with 22 beds and an existing student housing building with 173 beds, resulting in a net increase of 355 beds.

Based on the results of the 2016 SF State Travel Survey (Attachment B) and the San Francisco Guidelines, on an event day the Project would generate 233 new vehicle trips and 70 new transit trips during the PM peak hour. On a non-event day the Project would result in a decrease in trips with a total of -18 vehicle trips and -39 transit trips. This decrease in Project trips is a result of locating students who would otherwise live off campus into on campus housing.

The 2007 CMP EIR estimated an increase in travel demand to campus of 466 additional vehicle trips and 387 additional public transit trips during the PM peak hour by 2020. These additional trips, referred to as the CMP Trip Envelope in this memo, were added to existing conditions and analyzed in the 2007 CMP EIR. The total number of trips analyzed under the 2020 scenario of the 2007 CMP EIR is the threshold that projects are evaluated against to determine whether they would generate additional impacts beyond what was analyzed in the 2007 CMP EIR. The CMP Trip Envelope is the number of additional trips above existing conditions that can occur before trips exceed the 2020 conditions analyzed in the 2007 CMP EIR. Because the 2007 CMP EIR was completed in 2007 the Trip Envelope was adjusted to account for changes in existing conditions.

Since the completion of the 2007 CMP EIR, the campus population has remained steady or even declined in some years. In addition, fewer students, staff, and faculty currently drive to campus compared to 2007 due to the successful implementation of TDM measures. The combination of these two factors has reduced the number of campus-generated vehicle trips since the completion of the 2007 CMP and 2007 CMP EIR. Due to the changing demographics and travel behaviors, the total number of campus-generated vehicle trips has decreased while the number of

1 This is comparison to the 2007/2008 academic year which was the year the EIR was certified and the year that baseline counts for implementation of CMP EIR Mitigation Measure TRA-1 were conducted. Data on the campus population for every year is provided by the University Communications department and can be found on the SF State website at http://puboff.sfsu.edu/sfsufact/archive. (Accessed August, 2016.)
campus-generated public transit trips has increased. Thus, the Trip Envelope from the 2007 CMP EIR was adjusted to account for changed conditions. The resulting Trip Envelope is the difference between current conditions (2016) and the number of trips analyzed in the 2007 CMP EIR for the 2020 scenario. The Adjusted Trip Envelope is 1,027 vehicle trips and 163 public transit trips during the PM peak hour, which is greater than the number of vehicle and transit trips generated by the Project.

Further, given that the number of PM peak hour vehicle trips campus wide has declined by 561 trips between 2007 (CMP EIR base year) and 2016, the net new PM peak hour vehicle trips associated with the event-day Project conditions, would not result in an increase in PM peak hour vehicle trips over the 2007 CMP EIR baseline conditions. Since the estimated number of Project related trips is less than the Adjusted CMP Trip Envelope and the campus has reduced vehicle trips to below 2007 levels, the severity of impacts on traffic and transit conditions would be less than those presented in the 2007 CMP EIR.

The Project would also close Tapia Drive to vehicles (except for commercial loading and deliveries). Holloway Avenue and Font Boulevard would be able to accommodate rerouted traffic and passenger loading needs for the existing surrounding land uses and the Project’s concert hall. The Project is directly accessible to 19th Avenue and the M Line as well as Routes 28/28R, 29 and 57, as shown in Figure 1. As discussed above and below, the Project will not result in new or increased impacts to transit since the estimated number of Project transit trips is below what was studied for the 2020 scenario in the 2007 CMP EIR. The Project will include a number of bicycle and pedestrian improvements including secure bicycle parking, wider sidewalks, pedestrian bulb-outs and new access ramps. While pedestrian and bicycle trips are expected to increase due to the Project, existing and proposed facilities would be able to accommodate these trips and the Project is expected to have a less-than-significant impact on bicycle and pedestrian conditions.

PROJECT DESCRIPTION

The Project site includes two parcels on the south side of the SF State campus, as shown on Figure 1. One parcel is located on the south side of Holloway Avenue between Cardenas and Varela Avenues, while the other parcel, known as the Tapia Triangle, is bounded by Tapia Drive, Holloway Avenue, and Font Boulevard. The Project site is part of University Park South, an area that extends beyond the central campus boundaries to the south. University Park South currently includes existing residential units occupied by SF State students, affiliates and non-affiliates.
The CMP adopted in 2007 addresses all aspects of future physical development and land use on the campus to accommodate the enrollment ceiling of 25,000 full-time equivalent (FTE) students. The adopted CMP also accommodates a building program of 0.9 million gross square feet (GSF) of new and replacement non-residential building space and the development or conversion of about 1,200 additional units of housing for faculty, staff, and students. The Project is consistent with the CMP building program. However, a master plan map revision is required to allow for the proposed uses on the identified sites.

HOUSING

The Project includes the construction of new apartment-style student housing, campus-serving retail, and student support services on the south side of Holloway Avenue. The redevelopment of the block will allow for a more compact and dense configuration to increase the supply of on-campus housing in conformance with the CMP objectives. This development pattern is also in alignment with Parkmerced’s redevelopment plans. The retail and support services space will include campus-serving retail, student support services, bike storage, study rooms, a copy center, retail dining, and a modest amount of underground parking to replace parking being removed elsewhere on-campus in the vicinity of the Project. The retail and student support services space will serve SF State affiliates, as well as neighbors in the immediate vicinity of the campus.

CREATIVE ARTS AND CONCERT HALL BUILDINGS

The Project will also include constructing the Creative Arts replacement building and concert hall in the Tapia Triangle. This development assumes a relocation of the existing Department of Broadcast & Electronic Communication Arts (BECA) program from the existing Creative Arts building, but does not increase the enrollment or full-time employees above current levels. The 800-seat concert hall will be located adjacent to the Creative Arts replacement building. The concert hall will have recording and broadcast capabilities that will provide hands-on learning for BECA students and will serve as a performance venue and state-of-the-art recording studio for chamber orchestras, choral/vocal music, instrumental ensembles, and music groups. It also could host and simulcast lecture series, film festivals, and debates. Some events may be open to the campus community only while others will cater to the neighborhood and larger community, similar to the University’s current program of performing arts and lectures housed in McKenna and Knuth Theaters.
CHANGES TO TAPIA DRIVE AND VARELA AVENUE

SF State is applying to the City to close, or “vacate”, Tapia Drive to vehicles. This would allow SF State to incorporate the street right-of-way into the Project site and to integrate the site into the campus and, specifically, the academic core. SF State owns the property on both sides of Tapia Drive, and closing the street is consistent with the 2007 CMP, which envisioned a major east/west walkway connecting the central academic core with sites to the west, including the Mashouf Wellness Center. The current Tapia Drive right-of-way would be developed as part of the site for the proposed Creative Arts replacement building and concert hall and would be used primarily by pedestrians, although some vehicular access would be required for loading at the existing Creative Arts and Humanities building.

Varela Avenue is envisioned as a shared street. The Project would be designed to connect to the future Parkmerced transit station by adding pedestrian amenities and a courtyard that opens towards the transit hub. The alignment of the courtyard to this potential transit hub would promote movement of visitors through the courtyard from the new transit hub, ultimately connecting pedestrians to the SF State campus via Holloway Avenue. Once the future transit hub is completed, Varela Avenue may be restricted to shuttles and Muni buses as part of that future project such that pedestrians would be prioritized and the courtyard would act as an extension of the transit hub on the opposite side of the street. Improvements will include eliminating parking on Varela Avenue, a strategy to modify and reduce curbs so that ease of movement is promoted across Varela Avenue, and pavers that strengthen the pedestrian connection as well as provide a safe street crossing.

TDM AND TRANSPORTATION IMPROVEMENTS

The addition of housing and neighborhood retail services supports SF State’s goal to minimize drive-alone auto trips to reduce traffic congestion and GHG emissions. Consistent with the SF State transportation demand management (TDM) plan (Nelson/Nygaard 2009), new residential and retail development should use strategies that minimize the need for parking, such as car sharing, bike facilities, and access to transit.

The new student housing/mixed-use building at the southeast corner of Holloway Avenue and Varela Avenue would include secure, covered bicycle storage on the first floor of the building. Approximately 185 Class 1 secure, covered bicycle storage spaces would be provided in the
building. Approximately 12 Class I or Class II bicycle parking spaces would also be provided in the vicinity of the Creative Arts replacement building and concert hall.

The Project will include direct bicycle and pedestrian access from Block 1 to paths accessing the campus core, pedestrian bulb outs and wider sidewalks consistent with the Better Streets Plan, improved crosswalks and new access ramps. The Project is directly accessible to 19th Avenue and the M Line as well as Routes 28/28R, 29 and 57. Additionally, the Project is by nature a TDM strategy to reduce vehicle trips as it relocates students who would otherwise live off-campus into on-campus housing.

Parking will be provided in the basement of the new student housing/mixed-use building on Holloway Avenue and will serve SF State affiliates, concert hall events, and visitors to campus. Student residential parking will be limited to accessible spaces. Consistent with the 2007 CMP, the parking on Holloway will relocate a portion of the campus parking supply to the perimeter of campus, removing existing parking along Tapia Drive and from on-campus lots, and will constitute no net increase in the overall campus parking supply.

The absence of available parking spaces, the available alternatives to vehicular travel (transit, bicycling, and walking), and the dense pattern of urban development would induce many drivers to seek other modes of travel or change their overall travel behavior. Any such resulting shifts to transit service in particular would be in keeping with the City’s “Transit First” policy. The City’s Transit First Policy (CCSF 2007) provides that parking policies for areas well-served by public transit, such as the SF State campus, be designed to encourage travel by public transportation and alternative transportation. The table below provides a summary of the key elements of the Project.
TABLE 1: PROJECT DESCRIPTION SUMMARY

<table>
<thead>
<tr>
<th>Project Element</th>
<th>Existing Site Conditions</th>
<th>Proposed Site Conditions</th>
<th>Net Change with Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student housing</td>
<td>173 beds 7 units(^1)</td>
<td>550 beds</td>
<td>355 beds(^1)</td>
</tr>
<tr>
<td>Campus-serving retail/</td>
<td>none</td>
<td>33,000 25,000 GSF</td>
<td>33,000 25,000 GSF</td>
</tr>
<tr>
<td>Student support services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking facilities</td>
<td>53 auto spaces 9</td>
<td>72 70 parking spaces</td>
<td>0 parking spaces(^3)</td>
</tr>
<tr>
<td></td>
<td>motorcycle spaces(^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic</td>
<td>none</td>
<td>76,350 25,000 GSF</td>
<td>76,350 25,000 GSF</td>
</tr>
<tr>
<td>Theater seats</td>
<td>none</td>
<td>60,000 GSF 800 seats</td>
<td>60,000 GSF 800 seats</td>
</tr>
</tbody>
</table>

Notes:

1. The seven units are occupied by approximately 3.1 people per unit which is equivalent to 22 beds. Therefore the net new beds is 550 less 195, for a total of 355 beds.
2. Parking located on Tapia Drive.
3. Parking will be removed from Tapia Drive and elsewhere on campus to provide for no net increase in parking with the Project.

Figure 1

Project Sites and Existing Bicycle and Transit Network

Note: Crosswalks only shown along Holloway Avenue and Font Boulevard for pedestrian access to campus near the Project Sites.
EXISTING CONDITIONS

ROADWAY NETWORK

As shown in Figure 1, the Project site is located to the west of the California State Route 1 (CA SR-1)/19th Avenue at its intersection with Holloway Avenue. The student housing/mixed-use building site is located to the immediate west of this intersection and the Creative Arts building and concert hall site is located at the intersection of Holloway Avenue and Font Boulevard, approximately 0.3 mile from 19th Avenue.

19th Avenue is a north-south arterial road with three travel lanes in each direction and on-street parking and sidewalks on both sides. Muni light rail lines travel through the center of 19th Avenue in both directions in a dedicated right-of-way. 19th Avenue provides the primary north-south connection between the west side of San Francisco and I-280. I-280 is located approximately one mile away and provides the primary regional connection to the Project site.

Holloway Avenue is a two-way east-west road that provides primary local access to the Project site. Holloway Avenue has one travel lane in each direction, a narrow concrete median, on-street parking, and sidewalks, and Class 2 bicycle facilities (i.e. painted bike lanes).

Adjacent to the Creative Arts building and concert hall site, Font Boulevard is a two-way northwest-southeast road with one wide travel lane in each direction, angled parking on both sides, and a wide planted median and standard concrete sidewalks on both sides.

Tapia Drive is a one-way neighborhood street with one travel lane and one lane of on-street parking on both sides adjacent to the Creative Arts building and concert hall site. Tapia Drive is northbound north of Holloway Avenue and westbound east of Font Boulevard. From Holloway Avenue, Tapia Drive can only be accessed from the westbound direction.

Adjacent to the student housing/mixed-use building site, Varela Avenue and Cardenas Avenue are neighborhood streets with one travel lane in each direction as well as on-street parking and sidewalks on both sides. Serrano Drive is also a neighborhood street with one-way operations (westbound) between Varela Avenue and Cardenas Avenue. Between Cardenas Avenue and Arellano Avenue, Serrano Drive is two-way with one travel lane in each direction, angled parking on both sides and sidewalks on both sides.
The intersection of 19th Avenue and Holloway Avenue is signalized and includes marked white standard crossings with push-buttons and signals with countdowns for pedestrians. The intersection of Holloway Avenue, Tapia Drive (northbound) and Font Boulevard has a traffic circle with marked yellow continental pedestrian crossings. There is another traffic circle at the intersection of Font Boulevard and Tapia Drive (westbound), with marked yellow continental crossings across the northeast and southeast legs of the intersection, across Tapia Drive and Font Boulevard, respectively; all other crossings are unmarked.

Traffic Operating Conditions

Field observations of current traffic conditions on Holloway Avenue, Font Boulevard and Tapia Drive around the Project site were conducted by Fehr & Peers on Tuesday, May 24th, 2016, during the evening peak period (4:00 PM – 6:00PM).

During the weekday evening peak period, low-to-moderate vehicle volumes and congestion were observed on Holloway Avenue and Font Boulevard whereas low vehicle volumes were observed on Tapia Drive and the neighborhood streets adjacent to the student housing/mixed-use building site. Higher vehicle volumes and congestion were observed on 19th Avenue, consistent with findings from the 2007 CMP EIR.

TRANSIT NETWORK

Transit services near the Project site are shown in Figure 1. Primary public transit access to the Project site is provided by San Francisco Municipal Railway (“Muni”) bus and light rail services. Four Muni bus routes run in proximity to the Project site: 28/28R 19th Avenue, 29 Sunset, 57 Parkmerced and 91 Owl. Bus stops nearest to the Project site are located at 19th Avenue/Holloway Avenue (serving the 28/28R 19th Avenue, 29 Sunset and 91 Owl), Crespi Drive/Varela Avenue (serving the 29 Sunset), Font Boulevard/Tapia Drive (serving the 57 Parkmerced) and Font Boulevard/Arballo Drive (serving the 57 Parkmerced). The M Ocean View Muni light rail line also runs near the Project site, with a stop on the north side of the 19th Avenue/Holloway Avenue intersection, in the center of 19th Avenue’s right-of-way. Additionally, the Daly City and Balboa BART stations are approximately 1.5 miles and 2.0 miles, respectively, away from the Project site and serve the four BART lines running through San Francisco: Richmond-SFO/Millbrae, Pittsburg/Baypoint-SFO/Millbrae, Dublin/Pleasanton-Daly City, and Fremont-Daly City.

The northbound and southbound bus stops at 19th Avenue/Holloway Avenue (serving the 28/28R 19th Avenue, 29 Sunset and 91 Owl) are both located on the north side of the intersection.
Notably, the 29 Sunset south/eastbound stops are located east of the Crespi Drive/Varela Avenue intersection, at a traffic circle, and nearside, south of the 19th Avenue/Holloway Avenue intersection. The northbound and southbound bus stops for the 57 Parkmerced are located at opposite sides of the traffic circles on Font Boulevard.

Existing Muni Ridership Data

The availability of existing local and regional transit service near the Project site was analyzed using the screenline method to determine if screenline corridors that serve the SF State area have adequate capacity to serve demand and operate at or below the 85 percent capacity utilization threshold.

Table 2 presents the existing ridership and capacity utilization at the maximum loading point for the routes crossing the Southwest Screenline. All corridors within the screenline currently operate under the 85 percent performance standard.

<table>
<thead>
<tr>
<th>Outbound Screenline</th>
<th>PM Peak Hour* Ridership</th>
<th>PM Peak Hour* Capacity</th>
<th>PM Peak Hour* Capacity Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subway lines</td>
<td>4,904</td>
<td>6,164</td>
<td>80%</td>
</tr>
<tr>
<td>Haight/Noriega</td>
<td>977</td>
<td>1,554</td>
<td>63%</td>
</tr>
<tr>
<td>Other lines</td>
<td>555</td>
<td>700</td>
<td>79%</td>
</tr>
<tr>
<td>Southwest Screenline Total</td>
<td>6,435</td>
<td>8,418</td>
<td>76%</td>
</tr>
</tbody>
</table>

* PM peak hour; outbound (i.e. away from Downtown) only
Source: San Francisco Planning Department, May 2015; Fehr & Peers, 2016.

Proposed Changes to Transit Service

In March 2014, the SFMTA Board of Directors approved many recommendations that emerged from the Muni Forward Program, a review of the City’s public transit system, and were designed to make Muni service faster, more reliable, and more frequent. These recommendations include new routes and route extensions, service-related capital improvements, more service on busy routes, designation of rapid transit routes and travel time reduction proposals on those routes, and elimination or consolidation of certain routes or route segments with low ridership. The Muni Forward Implementation Strategy anticipates that many of the service improvements would be implemented between 2016 and 2017, pending resource availability. Muni Forward proposes the following changes for lines in the Project vicinity:
• **28(R) 19th Avenue (Rapid)** – The 28 19th Avenue would increase frequency during AM and PM peak from 10 to 9 minutes and during midday from 12 to 9 minutes. The 28R 19th Avenue Rapid service would increase operations, operating seven days a week between 6:00 AM and 8:00 PM with 9 minute headways during the AM and PM peak periods. The route for these two services would be modified near Fort Mason, by eliminating a section on Laguna, Beach, Buchanan and Bay streets. In addition, new transit and pedestrian bulbs are planned for the intersection of 19th Avenue/Holloway Avenue, near the Project site.

• **29 Sunset** – The 29 Sunset would increase in frequency during the AM peak from 9 to 8 minutes. The route has been modified (in 2014) so that buses make a left from Lincoln Way to Crossover Drive (instead of a series of three right turns). In addition, part of the route – on Geneva Avenue and Mission Street south of Ocean Avenue – would be eliminated; buses would travel directly on Ocean Avenue.

Muni Subway Expansion Project

In addition, the MTA is planning to combine the 28R Line with the Geneva Harney bus rapid transit (BRT) to provide a one-seat ride between the 19th Avenue corridor/SF State and Balboa Park as well as other major growth areas in southeast San Francisco. The new combined route would include exclusive lane treatments for BRT and would terminate in Candlestick/Hunters Point Shipyard. Implementation is planned for as early as 2023.

The MTA is also studying options to improve the M Ocean View Muni light rail line (M-line). The options under consideration were prompted by the Parkmerced development project, approved by the San Francisco Board of Supervisors in May 2011. The City and County of San Francisco and the owners of Parkmerced entered into a Development Agreement that governs each parties’ roles and responsibilities over a 20 to 25 year buildout of the site. One component of the Development Agreement relates to options for changes to the M-line.

The default improvement plan for the M-line is to realign it to Parkmerced. In this alignment option, the M-line would leave the 19th Avenue median at Holloway, cross 19th Avenue’s southbound lanes, run through the Parkmerced development on a dedicated transitway and return to the existing M-line alignment at 19th Avenue and Junipero Serra. This option would also include re-locating the existing M-line station at Holloway from the 19th Avenue median to west of 19th Avenue between Holloway and Crespi, as well as introducing two new stations within the Parkmerced site.
At the time the Development Agreement was executed, there was interest in a few long-term alternatives for the M-line that had not yet undergone any feasibility study or planning. Such ideas included grade separating the M-line at 19th Avenue, either above or below the street, as well as extending the M-line to Daly City BART. Since 2011, SFCTA and SFMTA have carried out the 19th Avenue Transit Study and the Pre-Environmental Study to define and evaluate these alternatives. In addition to the at-grade crossing alignment, two grade-separation options - the Longer Subway and Bridge, and the Full Subway have also been defined as alternatives that could be advanced to an environmental review stage.

None of these options have yet received the required project approvals and permits. If none of these alternatives receives approval by July 2018, the Development Agreement provides for extension of the deadline or defining an alternative investment that replicates the public benefits.

The San Francisco Municipal Transportation Agency (SFMTA) is studying options to improve the M Ocean View Muni light rail line. In 2011, as part of Parkmerced’s Development Agreement, an alternative was developed to extend the existing M-line into Parkmerced and add an M-line crossing at 19th Avenue at Holloway Avenue. In 2015, as part of the Pre-Environmental Study, another alternative was developed that would build a subway under 19th Avenue between West Portal and Parkmerced and introduces a new transfer at SF State for the M- and J-lines. The 19th Avenue Transit Study (SFCTA 2014), developed for the Muni Subway Expansion Project considers several alternatives for building a subway: Baseline, Longer Subway and Bridge, and Shorter Subway and Tunnel. The alternatives studied for the M-line included simplifying the crossing at 19th Avenue and Winston Avenue or 19th Avenue and Holloway, with a shorter distance across the street and fewer light-rail tracks to cross. In addition, the Longer Subway and Bridge alternative would add a new protected bike connection over Junipero Serra in the southern part of the corridor as a part of the light-rail bridge, a connection seen as particularly important for improving the bike connection between SF State and Daly City BART.

While the 19th Avenue Transit Study (SFCTA 2014) does include initial analysis of options for improving transit connections to the Daly City BART station, the Study’s main focus was on

assessing the feasibility and benefits of grade-separating the M-Ocean View crossings of 19th Avenue. All alternatives considered in the Study for the M-line include a trail track which would enable a future extension of the light rail to Daly City BART. However, because of the time sensitive need to advance the grade-separation project as it relates to Parkmerced Development Agreement timeline provisions, and because of the significant and independent benefit the grade separation project would provide, the next phase of project development will focus exclusively on advancing the grade-separation project, while leaving next steps on the question of Daly City transit access upgrades as a future phase of work that could be turned to. The potential improvements to the M-line have not undergone environmental review yet.

BICYCLE & PEDESTRIAN FACILITIES

Pedestrian facilities within the vicinity of the Project site include sidewalks, crosswalks, directional or diagonal curb ramps, pedestrian signals, and streetscape and landscape features (i.e. trees, planters, street lighting). The intersection of 19th Avenue and Holloway Avenue is signalized and includes marked white standard crossings with push-buttons and signals with countdowns for pedestrians. The pedestrian crossings across Holloway Avenue at Varela Avenue, Cardenas Avenue and Arellano Avenue are marked, standard crosswalks. However, the south leg of the crossing at Holloway Avenue/Cardenas Avenue, across Cardenas Avenue, is not marked. The marked crosswalks at the traffic circles on Font Boulevard – at Holloway Avenue/Tapia Drive and at Arballo Drive/Tapia Drive – are high-visibility crosswalks, with yellow continental pattern striping. However, only about half of the crossings at these two traffic circles are marked. Crossings are generally not marked on neighborhood streets such as Varela Avenue, Cardenas Avenue, Arellano Avenue and Serrano Drive.

There are Class 2 bicycle lanes in both directions on Holloway Avenue adjacent to the Project site, between Font Boulevard and Junipero Serra Boulevard (Figure 1). Font Boulevard between Holloway Avenue and Lake Merced Boulevard is designated as a Class 3 bicycle route that does not have painted “sharrows.”

There are a number of bicycle parking facilities on the SF State campus. Near the Project site, there are Class 2 bicycle racks (i.e. unsecured outdoor racks) adjacent to the existing Creative Arts Building on Tapia Drive (where the road curves) and near the intersection of Font Boulevard and the access road to the Village parking lot. These bicycle racks can accommodate 80 and 40 bicycles, respectively.
Existing pedestrian conditions were evaluated during field visits to the Project site during the evening peak period (4:00 PM to 6:00 PM) on Tuesday, May 24, 2016. Pedestrian activity was observed to be moderate along Holloway Avenue and Font Boulevard. Fewer pedestrians were observed on Tapia Drive and the residential streets south of Holloway Avenue. Pedestrian activity was observed to be higher at the 19th Avenue/Holloway Avenue intersection due to activity surrounding the highly-used Muni bus stops on 19th Avenue and M Ocean View light rail station. Few cyclists were observed traveling along Font Boulevard and Holloway Avenue during the evening peak period. On Holloway Avenue, cyclists were observing using the bicycle lanes. One cyclist was observed using the sidewalk on 19th Avenue at Holloway Avenue.

There are no near-term planned changes to bicycle and pedestrian infrastructure in the area, aside from the Project’s proposed closure of Tapia Drive. The M-Line improvement project would include new pedestrian and bicycle amenities such as a Class I mixed-use pathway on the west side of 19th Avenue, wider sidewalks, and shorter and more frequent pedestrian crossings across 19th Avenue.

ON-STREET PARKING CONDITIONS

Fehr & Peers conducted on-street parking surveys in the vicinity of the Project site (within one block of the Project site) on Holloway Avenue between 19th Avenue and Font Boulevard, Tapia Drive between Holloway Avenue and Font Boulevard, Font Boulevard between Serrano Drive and the campus access road to the Village/Mary Ward Hall, Serrano Drive between Varela Avenue and Font Boulevard, Varela Avenue between Holloway Avenue and Serrano Drive, Crespi Drive between Serrano Drive and Cardenas Avenue, Cardenas Avenue between Holloway Avenue and Crespi Drive, and Arellano Avenue between Holloway Avenue and Serrano Drive. The survey was conducted during a weekday evening peak period (4:00 PM to 6:00 PM), on Tuesday, May 24, 2016.

Table 3 presents the on-street parking supply and demand (occupancy) near the Project site by street during the PM peak period. There are a total of 381 on-street parking spaces within one block of the Project site, with the majority of spaces located on Holloway Avenue (101 spaces) and Font Boulevard (105 spaces). In general, parking within one block of the Project site is highly utilized, with an overall occupancy of 94% during the evening peak period. During the observation period, a few parked cars appeared to be engaged in moving loading activities (i.e. moving students out of student housing).
Parking on the south side of Holloway Avenue between 19th Avenue and Varela Avenue as well as on the north side of Holloway Avenue between Varela Avenue and Font Boulevard is metered. Although most of these metered parking spaces have a two-hour maximum, approximately 40% of these spaces have a 30-minute maximum. On the south side of Holloway Avenue between Varela Avenue and Font Boulevard as well as on most of Font Boulevard parking is unmetered short-term/residential parking (one-hour maximum Monday through Friday 8:00 AM to 6:00 PM except residential ‘E’ permits). Similar to Holloway Avenue, Tapia Drive has metered parking on its north and east sides and unmetered short-term/residential parking (two-hour maximum Monday through Friday 8:00 AM to 6:00 PM) on its south and west sides. Residential streets like Varela Avenue, Cardenas Avenue, Arellano Avenue and Crespi Drive have unmetered short-term/residential parking (one-hour maximum Monday through Friday 8:00 AM to 6:00 PM except residential ‘E’ permits). However, there are two 30-minute spaces on the eastside of Varela Avenue between Holloway Avenue and Serrano Drive, adjacent to intersection with Holloway Avenue. Serrano Drive is unmetered short-term/residential parking but with two-hour maximums (Monday through Friday 8:00 AM to 6:00 PM except residential ‘E’ permits).

<table>
<thead>
<tr>
<th>Street</th>
<th>From – To</th>
<th>Supply</th>
<th>Parking Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holloway Avenue</td>
<td>19th Avenue – Font Boulevard</td>
<td>101</td>
<td>95%</td>
</tr>
<tr>
<td>Tapia Drive</td>
<td>Holloway Avenue - Font Boulevard</td>
<td>20</td>
<td>90%</td>
</tr>
<tr>
<td>Font Boulevard</td>
<td>Campus Road (Access to Village & Mary Ward Hall) – Serrano Drive</td>
<td>105</td>
<td>94%</td>
</tr>
<tr>
<td>Varela Drive</td>
<td>Holloway Drive - Serrano Drive</td>
<td>11</td>
<td>91%</td>
</tr>
<tr>
<td>Cardenas Avenue</td>
<td>Holloway Avenue – Crespi Drive</td>
<td>35</td>
<td>97%</td>
</tr>
<tr>
<td>Arellano Avenue</td>
<td>Holloway Drive - Serrano Drive</td>
<td>21</td>
<td>76%</td>
</tr>
<tr>
<td>Serrano Drive</td>
<td>Varela Avenue – Font Boulevard</td>
<td>80</td>
<td>98%</td>
</tr>
<tr>
<td>Crespi Drive</td>
<td>Serrano Drive - Cardenas Avenue</td>
<td>8</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>381</td>
<td>94%</td>
<td></td>
</tr>
</tbody>
</table>

LOADING CONDITIONS

Fehr & Peers observed passenger loading activities at the Project site during the May 24th site visit. As indicated in Figure 1, there are two passenger loading zones within one block of the Project site, located at:

- North side of Holloway Avenue between Varela Avenue and 19th Avenue: 130 feet long, active from 7:00 AM to 10:00 PM Monday-Friday;
- North side of Holloway Avenue between Tapia Drive and Arellano Avenue: 90 feet long, active between from 8:00 AM to 11:00 PM daily.

At the time of observations, no loading activities were observed at these two locations. However, passenger loading (pick-up/drop-off) was observed at the location of two ADA parking spaces on the northeast side of the traffic circle on Font Boulevard at Tapia Drive/Arballo Drive.

A commercial loading zone was observed on the east side of Cardenas Avenue (30 feet long). There is also a commercial loading zone located on campus at the northeast corner of Tapia Drive (20 feet long) for the existing College of Liberal and Creative Arts. At the time of observations, no commercial loading activities were observed.

METHODOLOGY

The analysis presented herein is based on the methodology set forth in the CSU’s TIS Manual and the SF Guidelines.

The CSU TIS Manual states that a full TIS, including Level of Service (LOS) analysis, would be required if an assessment of the project’s trip generation indicated potential new significant impacts to traffic conditions based on the CEQA Guidelines Appendix G checklist. As presented later in this memorandum, the Project’s trip generation would not exceed the 2007 CMP EIR Trip Envelope, which indicates no potential new significant impacts to traffic conditions. Additionally, the number of vehicle trips generated by the campus in the PM peak hour has declined due to an effective TDM program and changing demographics and population. Therefore, even with event day conditions for the Project, the number of vehicle trips generated would not result in an increase in PM peak hour vehicle trips over the 2007 CMP EIR baseline conditions. Thus, a LOS analysis was not conducted for the Project.
Additionally, this memorandum presents a Downtown transit screenline analysis as described in the SF Guidelines. A screenline is an imaginary line on a map, composed of one or more straight line segments. Various screenlines were created by the City of San Francisco that intercept groups of transit lines at or near their maximum load point. The SF Guidelines establishes that a project would have a significant effect on the transit provider if project-related transit trips would cause the capacity utilization standard to be exceeded during the peak hour at those screenlines. For the Muni transit screenlines, the capacity utilization standard is 85 percent.

The impact analysis section presented in this memorandum reviews the potential transportation impacts due to the Project and compares them to what was presented in the 2007 CMP EIR. The 2007 CMP EIR found that the increased campus population by 2020 would result in a significant traffic impact to two study intersections and a significant transit impact. These significant impacts were found to be less than significant following implementation of several mitigation measures, including a Transportation Demand Management program and an associated trip survey and monitoring program that includes extensive coordination between SF State, BART, and SFMTA.

TRAVEL DEMAND ANALYSIS

The section presents the Project’s travel demand and the changes in SF State’s campus travel demand between 2007 and 2016 on the 2020 Trip Envelope presented in the 2007 CMP EIR.

SF State has conducted an online Travel Survey at least every three years starting in April 2008; the latest survey having been conducted in April 2016. The survey asked SF State students, faculty, and staff (both on and off-campus residents) a series of questions about their commutes and general travel behavior for trips to and from SF State’s campus, including trip time and mode of travel to/from campus. The 2016 Travel Survey instrument is presented in Attachment A. Nelson/Nygaard prepared a report presenting the 2016 Travel Survey results, which is included in Attachment B.

STUDENT HOUSING/MIXED-USE BUILDING TRIP GENERATION

The Project’s new on-campus student housing/mixed-use building would provide a net increase of 382 beds. These units are expected to be occupied by students that are currently living off-campus. PM peak hour trip rates and mode splits for the new student housing were estimated for students living both on- and off-campus based on the results of the 2016 Travel Survey. This summary is inclusive of both internal trips (e.g. a student traveling from on-campus student
housing to an evening class) and external trips (e.g. a staff member traveling home from the concert hall). Table 4 presents the net change in trips by mode to/from and within campus during the PM peak hour that would result from the addition of the 382 on-campus beds. With respect to external campus trips - vehicle and transit trips would decrease as students currently living off-campus move on-campus while walk and bike trips within the campus would increase. Overall, the total number of person trips generated by on-campus students during the PM peak hour is slightly less than for off-campus students. In net, the Project’s new on-campus student housing/mixed-use building would reduce trips external to the campus by 18 vehicle trips and 39 public transit trips.

<table>
<thead>
<tr>
<th>TABLE 4: PM PEAK HOUR STUDENT HOUSING TRIP GENERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing 355 Off-Campus Students</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Total Person Trips</td>
</tr>
<tr>
<td>Trips</td>
</tr>
<tr>
<td>Trips</td>
</tr>
<tr>
<td>Drive Alone, Motorcycle</td>
</tr>
<tr>
<td>Carpool</td>
</tr>
<tr>
<td>Taxi, Transportation Network Company (TNC), Pick up/Drop off</td>
</tr>
<tr>
<td>Public Transit</td>
</tr>
<tr>
<td>Walk/Bike</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Vehicle Trips</td>
</tr>
<tr>
<td>Public Transit Trips</td>
</tr>
<tr>
<td>Notes:</td>
</tr>
<tr>
<td>1. Net change in trip generation due to the Project, i.e. trips generated by 355 students living on-campus minus trips generated by 355 students living off-campus.</td>
</tr>
<tr>
<td>2. The 2016 Travel Survey asked about trip making behavior during the two hour PM peak period for a typical day on campus. Therefore, the PM peak hour trip rates shown here include the following assumptions: the PM peak hour generates 60 percent of the trips from the two-hour PM peak period (based on the peak hour factors in SF-CHAMP, the City of San Francisco’s travel demand model), and 80 percent of students will be present on-campus on any one day (based on the responses to the SF State 2016 Travel Survey and survey data from other university campuses in San Francisco).</td>
</tr>
<tr>
<td>3. Vehicle trips include drive alone, motorcycle, carpool, and taxi/TNC/pick-up and drop-off. Vehicle occupancy for carpool trips is 2.2 people per vehicle, based on cordon counts performed on April 6, 2016. Because so few students are currently using carpool, this number was rounded down for a conservative assessment.</td>
</tr>
<tr>
<td>4. Transportation Network Companies, or TNCs, connect paying passengers with drivers who transport people in their own private vehicles. Examples include Lyft, Uber, and Cabify.</td>
</tr>
<tr>
<td>5. Mode for ‘Other’ trips were not specified by 2016 Travel Survey respondents. These are assumed to be people using skateboards or other active modes typically used on university campuses. i.e. not vehicle or transit trips.</td>
</tr>
<tr>
<td>6. Public transit trips include the SF State campus shuttle.</td>
</tr>
</tbody>
</table>

The mixed-use component of the Project includes campus-serving retail, student support services, bike storage, study rooms, a copy center, and retail dining. These land uses supplement or replace existing on-campus services and primarily cater to SF State affiliates, although the retail options will also be open to nearby residents of the adjacent Parkmerced neighborhood (similar to existing on-campus retail services). As a result of these new on-campus services, SF State affiliates may choose to stay on campus for activities they would have otherwise done off campus. This effect may decrease the number of trips from campus. In contrast, nearby residents may travel to these new on-campus services whereas they would not previously have traveled to campus. These effects have not been quantified as part of this analysis, although patrons of the businesses are expected to be from the campus or within walking or biking distance in the adjacent neighborhood. Thus, the campus-serving retail and student support services are assumed not to generate new vehicle or transit trips to campus.

CREATIVE ARTS BUILDING AND CONCERT HALL TRIP GENERATION

The Project will also include the construction of the Creative Arts replacement building. This building will provide a new home for the existing BECA program. There are not currently any plans to use the old Creative Arts building to add new programs, students, staff, or faculty to the existing services provided at SF State. Therefore, this building would not increase the enrollment or full-time employees above current levels nor result in an increase in the number of trips to/from campus.

The Project will also include an 800-seat concert hall that would provide hands-on learning for BECA students and would also serve as a performance venue and state of the art recording studio. On a typical day, the concert hall will function as a teaching and learning environment for existing BECA students. The addition of the concert hall will not result in additional students or faculty and staff on non-event days. Therefore, when there are no events at the concert hall, the concert hall will not result in additional vehicle trips.

Events at the concert hall will vary in size and purpose. Some events will cater only to students while others will have a regional draw. In order to calculate the trip generation for the concert hall on an event day, a large event scenario was assumed based on input from SF State. The large event scenario assumes full capacity, or 800 attendees, with 85% of attendees coming from off-
campus and 15% of attendees coming from on-campus. Four additional employees will be needed to staff the concert hall on event days. Most weekday events would not begin until 7:30 PM or 8:00 PM, in which case attendees would not be traveling to campus during the PM peak hour. However, for the purpose of presenting a "worst-case" analysis, the event day trip generation assumes that all attendees and staff would travel during the PM peak hour.

Table 5 presents the resulting number of person trips by mode on event days related to the new concert hall. Assuming the worst-case large event scenario – the event is at full capacity and all attendees travel during to the concert hall during the PM peak – the concert hall would result in 251,249 new vehicle trips and 109 new transit trips during the PM peak hour of an event day.

<table>
<thead>
<tr>
<th>TABLE 5: EVENT DAY PM PEAK HOUR TRIP GENERATION DUE TO NEW CONCERT HALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person Trips</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Staff (Drive Alone Trips)</td>
</tr>
<tr>
<td>Event Attendees</td>
</tr>
<tr>
<td>Total Person Trips</td>
</tr>
<tr>
<td>Off-Campus Person Trips</td>
</tr>
<tr>
<td>Off-Campus Mode Split</td>
</tr>
<tr>
<td>Vehicle</td>
</tr>
<tr>
<td>Transit</td>
</tr>
<tr>
<td>Walk</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>On-Campus Person Trips</td>
</tr>
</tbody>
</table>

Notes:
1. Based on information provided by SF State regarding existing on-campus events, 85 percent of event attendees are assumed to come from off-campus. It is assumed that on-campus attendees will walk, bicycle or use a form of transportation other than driving or transit.
2. Modes splits are based on Table E-17 from the City and County of San Francisco Transportation Impact Analysis Guidelines.
3. Vehicle occupancy is 2.1 for Visitors to “Other” land uses, based on the City and County of San Francisco Transportation Impact Analysis Guidelines. The number of vehicle trips also includes four additional staff, all of which are assumed to be living off campus and driving alone.
4. Since these trips are generated by on-campus attendees it is assumed that they will bike or walk to the event.

4 Provided by SF State staff. These percentages are based on attendance data from existing events at other comparable theaters on-campus.
PROJECT TRIP GENERATION SUMMARY

The total number of net new trips generated by the Project (student housing/mixed-use building and Creative Arts replacement building and concert hall) is shown in Table 6 below. The Project would generate a total of 233,231 net new vehicle trips and 70 net new public transit trips during the PM peak hour on an event day assuming the worst-case large event scenario described above. On typical, non-event days, the Project would contribute to further reducing vehicle trips on campus during the PM peak hour, as existing students living off campus relocate to the student housing/mixed use building.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Person Trips</td>
<td>-11</td>
<td>804</td>
<td>793</td>
<td>-11</td>
</tr>
<tr>
<td>Vehicle Trips</td>
<td>-18</td>
<td>254-249</td>
<td>233,231</td>
<td>-18</td>
</tr>
<tr>
<td>Public Transit Trips</td>
<td>-39</td>
<td>109</td>
<td>70</td>
<td>-39</td>
</tr>
<tr>
<td>Walk/Bike</td>
<td>40</td>
<td>32,157</td>
<td>22,197</td>
<td>40</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>15</td>
<td>21</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
1. As presented in Table 4.
2. As presented in Table 5.
3. Vehicle occupancy is 2.2 for carpool trips to/from the new student housing and 2.1 for visitor trips to concert hall, as presented in Tables 4 and 5.
4. Mode split was obtained from two different sources and each categorizes mode split differently. The housing land use mode split was used from the 2016 Travel Survey. The concert hall mode split was obtained from the SF Guidelines using “visitor trips” because campus specific mode split for events was not collected in the 2016 Travel Survey. Due to the differences in how mode split is collected, this row includes walking and bicycle trips for the student housing/mixed-use land use, whereas it only includes walking trips for the Creative Arts Building land use. Biking trips are characterized under “other” and cannot be extracted based on available data.

CMP TRIP ENVELOPE

The 2007 CMP EIR estimated that the projected campus expansion by 2020 would result in an additional 466 vehicle trips and 387 public transit trips during the PM peak hour by 2020. The 2007 CMP EIR evaluated transportation impacts based on this “CMP Trip Envelope” for vehicle and transit trips. However, since 2007, the campus population has decreased from 33,612 to 33,563 students, faculty, and staff. In addition, fewer students, staff, and faculty currently drive to campus compared to 2007. The combination of these two factors has reduced the number of
campus-generated vehicle trips since the completion of the 2007 CMP. Table 7 shows the estimated PM peak hour travel demand for the campus in 2007 and in 2016, and calculates the change in the number of trips generated by the campus between 2007 and 2016. During the PM peak hour, SF State generates 561 fewer vehicle trips and 224 additional public transit trips during the PM peak hour in 2016 compared to 2007.

TABLE 7: SF STATE CAMPUS PM PEAK HOUR TRAVEL DEMAND 2007-2016

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>Percent¹</th>
<th>2016</th>
<th>Percent¹</th>
<th>Change 2007-2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headcount Students, Faculty, and Staff²</td>
<td>33,612</td>
<td></td>
<td>33,563</td>
<td></td>
<td>-49</td>
</tr>
<tr>
<td>Total Person Trips</td>
<td>10,083</td>
<td>100.0%</td>
<td>10,068</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Trip Rate³,⁴</td>
<td>0.30</td>
<td></td>
<td>0.30</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Drive Alone, Motorcycle</td>
<td>2,692</td>
<td>26.7%</td>
<td>2,084</td>
<td>20.7%</td>
<td>-608</td>
</tr>
<tr>
<td>Carpool</td>
<td>494</td>
<td>4.9%</td>
<td>181</td>
<td>1.8%</td>
<td>-313</td>
</tr>
<tr>
<td>Taxi, TNC, Pick up/Drop off</td>
<td>242</td>
<td>2.4%</td>
<td>413</td>
<td>4.1%</td>
<td>171</td>
</tr>
<tr>
<td>Public Transit</td>
<td>4,941</td>
<td>49.0%</td>
<td>5,165</td>
<td>51.3%</td>
<td>224</td>
</tr>
<tr>
<td>Walk/Bike</td>
<td>1,593</td>
<td>15.8%</td>
<td>2,104</td>
<td>20.9%</td>
<td>511</td>
</tr>
<tr>
<td>Other</td>
<td>121</td>
<td>1.2%</td>
<td>121</td>
<td>1.2%</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle Trips</td>
<td>3,140</td>
<td></td>
<td>2,579</td>
<td></td>
<td>-561</td>
</tr>
<tr>
<td>Public Transit Trips</td>
<td>4,941</td>
<td></td>
<td>5,165</td>
<td></td>
<td>224</td>
</tr>
</tbody>
</table>

Notes:

2. Mode splits are based on Travel Survey results analyzed by Nelson/Nygaard in 2008 and 2016. See Nelson/Nygaard report in Attachment B.
3. The 2016 Travel Survey asked about trip making behavior during the two hour PM peak period for a typical day on campus. Therefore, the PM peak hour trip rates shown here include the following assumptions: the PM peak hour generates 60 percent of the trips from the two-hour PM peak period (based on the peak hour factors in SF-CHAMP, the City of San Francisco’s travel demand model), and 80 percent of students will be present on-campus on any one day (based on the responses to the SF State 2016 Travel Survey and survey data from other university campuses in San Francisco).
4. Trip rate is a weighted average for students, faculty, and staff. It is assumed to be the same for 2007 as for 2016, i.e. assumes the number of trips generated per person were the same in 2007 as they are in 2016.
5. Vehicle occupancy for carpool trips in 2007 is assumed to be 2.4, based on travel survey results presented in the Transportation Demand Management Plan, Fall 2009.
6. Vehicle occupancy for carpool trips in 2016 is assumed to be 2.2, based on cordon counts performed on April 6, 2016.

Table 8 presents the changes in travel demand from 2007 to 2016 due to changes in SF State's campus population and the Adjusted CMP Trip Envelope to reflect these changes. This Adjusted CMP Trip Envelope represents the number of trips that could be added to the campus between 2016 and 2020 without creating new impacts to the roadway and transit networks beyond those presented in the 2007 CMP EIR. As indicated in **Table 8**, the Adjusted CMP Trip Envelope is 1,027 vehicle trips and 163 public transit trips during the PM peak hour. In comparison, the Project generates a total of 233 231 vehicle trips and 70 public transit trips during the PM peak hour on event days. On a typical day the Project would result in a decrease of 18 vehicle trips and a decrease of 39 transit trips.

| TABLE 8: PM PEAK HOUR CMP TRIP ENVELOPE ADJUSTMENTS AND PROJECT TRIP GENERATION |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | 2007 CMP EIR Trip Envelope | SF State Campus Travel Demand Change 2007-2016 | Adjusted CMP Trip Envelope | Event Day Project Trip Generation |
| Vehicle Trips | 466 | -561 | 1,027 | 233 231 |
| Public Transit Trips | 387 | 224 | 163 | 70 |

IMPACT ASSESSMENT

This section summarizes the assessment of transportation impacts resulting from the travel demand generated by the Project. The impacts are grouped into three potential impact areas: (1) traffic, (2) transit, and (3) bicycle and pedestrian. Additionally, an assessment of loading conditions is provided for informational purposes.

TRAFFIC IMPACTS

The Project would close Tapia Drive to vehicles. During site observations, vehicle volumes on Tapia Drive were low as it does not provide through access to any destinations. Existing vehicles on Tapia Drive are typically looking for parking spaces or picking-up or dropping-off passengers. Therefore, the closure of Tapia Drive would cause that parking and pick-up/drop-off activity to shift to other locations on campus or the new parking area provided as a part of the Project, but would not cause congestion on adjacent streets. Passenger loading for the Project’s concert hall
would be provided in the existing Holloway Avenue passenger-loading zone (see Figure 1) or along Font Boulevard, since it is a wide street and through vehicles would be able to maneuver around double-parked vehicles.

As presented in the travel demand analysis section, the Project would add 233 net new vehicle trips during the PM peak hour, which is less than the Adjusted CMP Trip Envelope of 1,027 vehicle trips. This increase in vehicle trips would occur during Concert Hall event days only (up to 80 per year or about 7 per month), and only in the rare occasion when there is an early evening, full-capacity event that attracts mostly off-campus attendees. Most evening events are expected to begin at 7:30 or 8pm, after the PM peak hour. On most days during the year, the Project would result in fewer vehicle trips to SF State’s campus. Additionally, the number of vehicle trips generated by the campus has declined since the 2007 base year. Therefore, even under the event day scenario, the Project and the campus as a whole would still be generating fewer trips than the 2007 base year. Thus, the Project will not result in any additional vehicle traffic or significant traffic impacts beyond those identified in the 2007 CMP EIR.

TRANSIT IMPACTS

As presented in Table 8, the Project would add 70 net new public transit trips during the PM peak hour, which is less than the Adjusted CMP Trip Envelope of 163 public transit trips during the PM peak hour. Therefore, the Project would not result in any additional transit ridership beyond that identified in the 2007 CMP EIR.

In addition to the comparison to the Adjusted CMP Trip Envelope, the Project’s contribution to Downtown transit screenlines were evaluated using the SF Guidelines methodology to determine whether the Project would cause an existing transit line to exceed its capacity. The SF Guidelines methodology requires analysis of outbound trips away from Downtown. As indicated in Table 4, the proposed student housing/mixed-use building would generate a net decrease of 39 public transit trips in the PM peak hour. Based on the 2016 Travel Survey results, only eight percent of these trips (i.e. three trips) represent trips towards the SF State campus (i.e. Muni’s outbound direction, away from downtown), which would affect the PM peak hour Muni screenline analysis. This small reduction in transit trips would have a negligible effect on the Downtown transit screenline analysis and will therefore not be taken into account in this analysis.

On the other hand, the concert hall would generate 109 transit trips on an event day assuming the worst-case large event scenario. Based on the 2016 Travel Survey, of the 109 transit trips
generated by the concert hall during the PM peak hour, 33 percent of the trips would use the M line to SF State (i.e. Muni’s outbound direction, away from downtown). This represents 36 additional trips on the M line across the Downtown screenline. The remainder of the transit trips would use the SF State shuttle or other Muni lines that do not cross any of the screenlines – routes 28/28R 19th Avenue, 29 Sunset, and 57 Parkmerced.

As presented in Table 9, based on the worst-case large event scenario, Project trips represent a less than one percent increase in the number of transit riders crossing the Downtown screenline. Even with the addition of these 36 trips, neither the individual M line nor the Southwest screenline would exceed the 85 percent PM peak hour capacity utilization. Therefore, the Project would not result in any additional significant public transit impacts beyond those identified in the 2007 CMP EIR.

<table>
<thead>
<tr>
<th>Outbound Screenline</th>
<th>Existing</th>
<th>Existing Plus Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM Peak Hour¹ Ridership</td>
<td>PM Peak Hour¹ Capacity</td>
</tr>
<tr>
<td>Subway lines</td>
<td>4,904</td>
<td>6,164</td>
</tr>
<tr>
<td>Haight/Noriega</td>
<td>977</td>
<td>1,554</td>
</tr>
<tr>
<td>Other lines</td>
<td>555</td>
<td>700</td>
</tr>
<tr>
<td>Southwest Screenline Total</td>
<td>6,435</td>
<td>8,418</td>
</tr>
</tbody>
</table>

Notes:
1. PM peak hour outbound (i.e. away from Downtown, inbound to SF State) only.
2. Data is based on the 2016 Travel Survey. Transit riders using BART (the subway) have to use another mode to arrive to campus because the nearest BART stop is over 1.5 miles away. Some of these BART riders are likely to take MUNI. Therefore, the total number of transit trips will be greater than 109 as some people will take both BART and MUNI to get to campus.

BICYCLE & PEDESTRIAN IMPACTS

As presented in the travel demand analysis section of this memorandum (see Table 8), the Project would add 197 net new pedestrian and bicycle trips on event days and 40 net new on-campus pedestrian and bicycle trips on non-event days. The Project’s closure of Tapia Drive to through vehicular traffic would create a more pleasant pedestrian and bicycle environment on campus near the Project site. Commercial loading access to the Concert Hall and College of Liberal and
Creative Arts on Tapia Drive and vehicle access the parking garage at new student housing/mixed-use building along Holloway Avenue would be designed to minimize conflicts with pedestrians and bicyclists by providing adequate sight distance and conforming to the SF Planning Code. At the vacated Tapia Drive, access to most vehicles would be limited through the provision of bollards or signage, similar to the designs of other mixed commercial loading and pedestrian spaces on campus.

The proposed changes to Tapia Drive due to the Project would improve conditions for pedestrians and bicyclists by reducing intermodal conflicts. Sidewalks installed as part of the Project would be consistent with the Better Streets Plan and would be able to accommodate the new pedestrians. Other pedestrian improvements as part of the Project would improve access and add more space for the pedestrians. Further, the existing facilities near the Project site would be able to accommodate the new bicyclists associated with the Project.

The Project would be designed to connect to the future Parkmerced transit station by adding pedestrian amenities and a courtyard that opens towards the transit hub. The alignment of the courtyard to this potential transit hub would promote movement of visitors through the courtyard from the new transit hub, ultimately connecting pedestrians to the SF State campus via Holloway Avenue. The Project would also include improved pedestrian crossings on Varela Avenue. The final design of the Project's proposed modifications in the public right-of-way, including pedestrian crossings, would be completed in consultation with City staff as part of the Project’s approval process for a street improvement permit and sidewalk legislation through the City. Once the future transit hub is in the design phase additional pedestrian amenities and improvements could be considered as part of that future project. Varela Avenue would be designed to prioritize pedestrians. Improvements will include eliminating parking on Varela Avenue, a strategy to modify and reduce curbs so that ease of movement is promoted across Varela Avenue, and pavers that strengthen the pedestrian connection as well as provide a safe street crossing.

The new student housing/mixed-use building would also include secure, covered bicycle storage on the first floor of the building. Approximately 185 Class 1 secure, covered bicycle storage spaces would be provided in the building. Approximately 12 Class II bicycle parking spaces would also be provided in the vicinity of the Creative Arts replacement building and concert hall and will be in a visible location, easily accessible to the buildings. These spaces are part of a campus-wide planning effort to improve bicycle infrastructure and access to campus, addressing routes, safety, and centralized bike parking areas that include a mix of racks and secure facilities.
While pedestrian and bicycle trips are expected to increase due to the Project, the Project would not create unsafe conditions for pedestrians or bicyclists, nor would the additional walk and bike trips cause crowding on nearby sidewalks. Campus facilities are designed to accommodate high pedestrian and bicycle volumes and these facilities would not experience crowding due to the Project. In addition, the Project’s closure of Tapia Drive to vehicles (except commercial loading and deliveries) and other pedestrian improvements along nearby roadways would improve pedestrian conditions on campus near the Project site. These improvements include new access ramps, bulb-outs, crosswalks, improved sidewalks, and other pedestrian amenities that will ensure safer access. Therefore, the Project would not result in any additional significant impacts to pedestrians and bicyclists beyond those identified in the 2007 CMP EIR.

Loading Assessment

The existing commercial loading zone located on Tapia Drive for the College of Liberal and Creative Arts would remain, with access through the bollard or sign controlled pedestrian zone via Holloway Avenue. Therefore, the Project would not change the existing commercial loading access for College of Liberal and Creative Arts. Commercial loading for the Creative Arts Building and Concert Hall would occur within Tapia Drive and typically include delivery of materials for the Creative Arts Building or preparing for concerts at the Concert Hall, which would occur throughout the day. The new pedestrian plaza would be designed to accommodate the commercial loading trucks, providing a clear pathway from Holloway Avenue to the loading zone and from the loading zone to Font Boulevard, including adequate curb radii. This would be similar to other loading facilities on campus where the loading zone is located within a shared loading and pedestrian/bicycle zone. Access to these loading zones would conform to SF Planning Code and Better Streets Plan.

Passenger loading for the concert hall should be provided on Font Boulevard. The passenger loading zone would need to be similar in size to the existing passenger loading zone on Holloway Avenue in front of the McKenna theatre, which is approximately 100 feet. This passenger loading zone would be subject to SFMTA approval.

Residential loading (deliveries and passenger loading) would be accommodated within the existing commercial loading zone on Cardenas Avenue and the new parking garage in the proposed student housing/mixed-use building. San Francisco’s Planning code (section § 152)
requires one off-street loading space to be provided for the student housing/mixed-use building. In addition, there are passenger loading zones along Holloway as shown on Figure 1.

As the Project will be designed to accommodate commercial and passenger loading demand and meet the Code requirements, it would not create new hazards for other roadway users, including pedestrians and bicyclists. Therefore, the Project would not result in any additional significant impacts to pedestrians and bicyclists beyond those identified in the 2007 CMP EIR due to loading facilities.

CONCLUSION

The Creative Arts and Holloway Mixed-Use Project would not create new significant impacts or worsen the severity of impacts identified in the 2007 CMP EIR. The new student housing portion of the Project would reduce the total number of vehicle and transit trips to the campus during the PM peak; the number of students living on campus – who would otherwise live off-campus and arrive to campus via car, public transit, or other means – would increase and therefore reduce the number of trips from off-campus student residences. The Creative Arts replacement building would not include an increase in enrollment or full-time employees and thus would not result in any changes in travel demand to/from campus. The new concert hall would not result in additional trips on non-event days. On event days, vehicle and transit trips related to the concert hall during the PM peak hour would increase, but the added number of trips would be below the Adjusted Trip Envelope presented in this memorandum. Additionally, the total number of vehicle trips generated by the campus even with event day traffic of the Project is well below the total number of vehicle trips studied in the baseline year of the 2007 CMP EIR. Therefore, the Project would not result in new or additional impacts beyond those identified in the 2007 CMP EIR.

While pedestrian and bicycle trips are expected to increase due to the Project, the Project would not create unsafe conditions for pedestrians or bicyclists, nor would the additional walk and bike trips cause crowding on nearby sidewalks or bicycle facilities. In addition, the Project’s closure of Tapia Drive to vehicles (except commercial loading and deliveries) and additional pedestrian and bicycle amenities would improve pedestrian and bicycle conditions on campus near the Project.

5 San Francisco Planning Code, section 152, states that new buildings between 100,001 and 200,000 square feet shall provide one off-street freight loading space. The student housing/mixed-use building would approximately be 140,000 square feet.
site. Thus, the Project would not result in any additional significant impacts to pedestrians and bicyclists beyond those identified in the 2007 CMP EIR.

Attachments

Attachment A – 2016 Travel Survey Instrument
Attachment B – San Francisco State University 2016 Transportation Survey Results Report by Nelson/Nygaard - DRAFT
ATTACHMENT A – 2016 TRAVEL SURVEY INSTRUMENT
General Information

SF State Transportation Survey

Please complete this survey about your commute and general travel to and from SF State's main campus at 1600 Holloway on Wednesday, April 6, 2016.

The survey takes approximately 5 minutes to complete, and your response is greatly appreciated. The survey will close on April 14, 2016.

Upon completing the survey you will have an opportunity to enter for a chance to win a $100 gift card to the SF State Bookstore.

Thank you for helping us improve the quality of our campus!

What is your primary affiliation with SF State?
- Freshman
- Other undergraduate
- Graduate student
- Staff or Administrator
- Faculty
- Visitor/contractor
- Other

Are you full-time or part-time?
- Full-time
- Part-time
- Not Applicable

On average, how many days a week do you come to the SF State main campus at 1600 Holloway?

Where do you live?
- On campus
- Off campus
Specify dorm/apartment

Specify zip code

What is your average cost for your **round trip** commute to and from SF State? Please round to the nearest dollar.

Were you on campus on **Wednesday, April 6th 2016**?
- Yes
- No

Have you participated in or used / do you currently participate in or use any of the following programs and services?

<table>
<thead>
<tr>
<th>Service</th>
<th>I wasn't aware of this service</th>
<th>I've heard of this service but never used it</th>
<th>I occasionally (1-2 times a week) use this service</th>
<th>I frequently (3-5 days a week) use this service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free round trip transfer on Muni 28/28R from Daly City BART when using Clipper Card</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Bike Barn</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Bike Racks</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>511 RideMatch Service</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Zipcar</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Electric Vehicle Charging Stations</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

For Employees: Have you participated in or used / do you currently participate in or use any of the following programs and services?

<table>
<thead>
<tr>
<th>Service</th>
<th>I wasn't aware of this service</th>
<th>I've heard of this service but never used it</th>
<th>I occasionally (1-2 times a week) use this service</th>
<th>I frequently (3-5 days a week) use this service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter Check Pre-Tax Transit Benefit (pre-tax purchase of transit passes)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Vanpool</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Emergency Ride Home</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Do you know where to go if you have questions about your commute or need other transportation information?
- Yes, and I have used the resources available to me before
- Yes, but I have not used the resources available to me
- No, I do not know what resources are available to me

Which resources have you used to get transportation and commute information? (please check all that apply)
- SF State Website home page
- Parking & Transportation Website
- Word of mouth (fellow student or coworker)
- My manager
- Human resources
- Hiring materials
- A distribution list that I signed up for
- Digital screens found around campus
- Other (please specify) []

In an effort to reduce parking demand and to expand affordable transportation options, SF State is exploring the possibility of pursuing discounts for our students, faculty, and staff for on-demand taxi services known as TNCs such as Uber and Lyft.

Would you be interested in such a benefit?
- Yes
- No

Please provide any additional comments about transportation issues that relate to SF State.

If you would like to be entered for a chance to receive a $100 gift card to the SF State Bookstore, please enter your email address.
Your Trip to Campus

The following questions are about your trip to the main campus at 1600 Holloway. You will be asked to describe your commute by indicating the mode of transportation used for each segment of the trip.

For example, your commute might have only one segment if you drove, walked, or biked directly to campus. Or, it might have three segments if you 1) drove and parked at your closest BART station, 2) took BART to Daly City, and 3) took the shuttle to campus.

Please describe your commute to the main campus on Wednesday, April 6, 2016.

If you took more than one mode/ have multiple segments, please start the survey by selecting your first segment.

For your trip to the main campus, where did you start your trip?
(For example, Main Campus and On-Campus Dorms = 94132).

Zipcode

For your trip to the main campus, what time did you arrive at the main campus?

Please enter time in the following format: HH:MM AM

HH

MM

AM/PM

Select the mode of transportation for your first segment:

- Walk, bike, or other active transport
- Public transportation / shuttle
- Private vehicle (cars, carpool, motorcycle, etc.)
- Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs

Which mode of transportation did you use?

- Walk
- Bicycle
- Other
- Other
Please estimate (in miles) the distance you traveled for this segment of your trip
(E.g. If you traveled 1 1/2 miles, enter 1.5)

Specify Muni Line

Please estimate (in miles) the distance you traveled in this segment of your trip
(E.g. If you traveled 1 1/2 miles, enter 1.5)

Specify BART start station

Specify BART end station

Specify Caltrain start station
On your trip to SF State’s main campus, what was the mode of transportation for your second segment?

If you used BART previously, please use this question to tell us how you got from BART to campus.

- Walk, bike, or other active transport
- Public transportation / shuttle
- Private vehicle (cars, carpool, motorcycle, etc.)
Which mode of transportation did you use?

- Walk
- Bicycle
- Other
- Muni
- BART
- SF State Shuttle
- Caltrain
- Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans)
- Drove Alone
- Dropped Off / Picked Up
- Motorcycle/Moped
- Carpool/Vanpool
- Taxi
- Uber
- Lyft
- Other on-demand taxi or real-time ride-sharing service

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify Muni Line

Specify BART start station
Specify BART end station

Specify Caltrain start station

Specify Caltrain end station

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

I was the:
- Passenger
- Driver

Number of people in the carpool/vanpool on **Wednesday April, 6, 2016**:

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
On your trip to SF State’s main campus, what was the mode of transportation for your third segment?

If you used BART previously, please use this question to tell us how you got from BART to campus.
- Walk, bike, or other active transport
- Public transportation / shuttle
- Private vehicle (cars, carpool, motorcycle, etc.)
- Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs
- None

Which mode of transportation did you use?
- Walk
- Bicycle
- Other
- Muni
- BART
- SF State Shuttle
- Caltrain
- Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans)
- Drove Alone
- Dropped Off / Picked Up
- Motorcycle/Moped
- Carpool/Vanpool
- Taxi
- Uber
- Lyft
- Other on-demand taxi or real-time ride-sharing service

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify Muni Line

Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
Specify BART start station

Specify BART end station

Specify Caltrain start station

Specify Caltrain end station

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

I was the:

- Passenger
- Driver

Number of people in the carpool/vanpool on **Wednesday April, 6, 2016**:

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

On your trip to SF State's main campus, what was the mode of transportation for your fourth segment? If you used BART previously, please use this question to tell us how you got from BART to campus.

- Walk, bike, or other active transport
- Public transportation / shuttle
- Private vehicle (cars, carpool, motorcycle, etc.)
- Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs
- None

Which mode of transportation did you use?

- Walk
- Bicycle
- Other
- Muni
- BART
- SF State Shuttle
- Caltrain
- Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans)
- Drove Alone
- Dropped Off / Picked Up
- Motorcycle/Moped
- Carpool/Vanpool
- Taxi
- Uber
- Lyft
- Other on-demand taxi or real-time ride-sharing service

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify Muni Line
Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify BART start station

Specify BART end station

Specify Caltrain start station

Specify Caltrain end station

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

I was the:

- Passenger
- Driver

Number of people in the carpool/vanpool on Wednesday April 6, 2016:
Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Parking

Did you park on the street or in a parking lot / garage?
- Parking lot / garage
- On the street
- I did not drive today.

Where did you park when you came to the main campus on **Wednesday, April 6, 2016**?
- On Campus
- Near Campus
- Near Daly City BART station
- Near another BART station
- Park & Ride lot
- Other

Please choose a zone where you parked (map below)
How much did it cost you to park on Wednesday, April 6, 2016?

- Free
Which of the following programs, if any, would encourage you to commute to campus via a mode of travel other than driving alone?

Please rank your first, second, and third choices.

First choice:

Second choice:

Third choice:

Your Trip Segments From Campus

Your Trip from Campus

The following questions are about your trip from the main campus at 1600 Holloway. You will be asked to describe your commute away from campus by indicating the mode of transportation used for each segment of your trip.

For example, your trip might have only one segment if you drove, walked, or biked directly from campus. Or, it might have three segments if you 1) took the shuttle to BART, 2) took BART to the East Bay and 3) walked home.

Please describe your trip from campus on Wednesday, April 6, 2016.

If you took more than one mode/ have multiple segments, please start the survey by selecting your first segment.
For your trip from the main campus, what time did you depart from the main campus?

Please enter time in the following format: HH:MM AM

HH

MM

AM/PM

Did you use the exact same means of transportation when you left the campus on Wednesday, April 6, 2016 as you did when coming to campus?

If any segment of your trip from campus was different from your trip to campus, please select No.

- Yes
- No

For your trip from the main campus, where did you end your trip?

Zipcode

Select the mode of transportation for your first segment:

If your next segment is via BART, please use this question to tell us how you got from campus to the BART station.

- Walk, bike, or other active transport
- Public transportation / shuttle
- Private vehicle (cars, carpool, motorcycle, etc.)
- Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs

Which mode of transportation did you use?

- Walk
- Bicycle
- Other
- Muni
- BART
- SF State Shuttle
- Caltrain
- Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans)
- Drove Alone
- Dropped Off / Picked Up
Motorcycle/Moped

Carpool/Vanpool

Taxi

Uber

Lyft

Other TNC

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify Muni Line

Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify BART start station

Specify BART end station

Specify Caltrain start station

Specify Caltrain end station
Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

I was the:
- Passenger
- Driver

Number of people in the carpool/vanpool on **Wednesday, April 6, 2016**:

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

On your trip **from** SF State’s main campus, what was the mode of transportation for your **second** segment?

If your next segment is via BART, please use this question to tell us how you got from campus to the BART station.
- Walk, bike, or other active transport
- Public transportation / shuttle
- Private vehicle (cars, carpool, motorcycle, etc.)
- Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs
- None

Which mode of transportation did you use?
- Walk
- Bicycle
- Other
- Muni
BART
SF State Shuttle
Caltrain
Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans)
Drove Alone
Dropped Off / Picked Up
Motorcycle/Moped
Carpool/Vanpool
Taxi
Uber
Lyft
Other TNC

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify Muni Line

Specify BART start station

Specify BART end station

Specify Caltrain start station
Specify Caltrain end station

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

I was the:

- Passenger
- Driver

Number of people in the carpool/vanpool on Wednesday, April 6, 2016:

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

On your trip from SF State's main campus, what was the mode of transportation for your third segment?

If your next segment is via BART, please use this question to tell us how you got from campus to the BART station.

- Walk, bike, or other active transport
- Public transportation / shuttle
- Private vehicle (cars, carpool, motorcycle, etc.)
- Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs
- None
Which mode of transportation did you use?
- Walk
- Bicycle
- Other
- Muni
- BART
- SF State Shuttle
- Caltrain
- Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans)
- Drove Alone
- Dropped Off / Picked Up
- Motorcycle/Moped
- Carpool/Vanpool
- Taxi
- Uber
- Lyft
- Other on-demand taxi or real-time ride-sharing service

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify Muni Line

Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify BART start station

Specify BART end station
On your trip from SF State's main campus, what was the mode of transportation for your fourth segment?

If your next segment is via BART, please use this question to tell us how you got from campus to the BART station.
Which mode of transportation did you use?

- Walk
- Bicycle
- Other
- Muni
- BART
- SF State Shuttle
- Caltrain
- Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans)
- Drove Alone
- Dropped Off / Picked Up
- Motorcycle/Moped
- Carpool/Vanpool
- Taxi
- Uber
- Lyft
- Other on-demand taxi or real-time ride-sharing service

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Specify Muni Line

Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
Specify BART start station

Specify BART end station

Specify Caltrain start station

Specify Caltrain end station

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

I was the:

- Passenger
- Driver

Number of people in the carpool/vanpool on **Wednesday, April 6, 2016**:

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
Transportation Patterns Questions

How many round trips, other than those already reported in this survey, did you take to/from campus (or home for on-campus residents) on Wednesday, April 6, 2016? Please do not include trips taken within campus.

What was your primary mode of travel for these trips?

If this includes an auto trip for any segment, please select that option.

- Walk, bike, or other active transport
- Public transportation / shuttle
- Private vehicle (cars, carpool, motorcycle, etc.)
- Taxi, Uber, Lyft, or other on-demand taxi services known as TNCs

How many of these trips occurred (arrived or departed campus) between the hours of 7-9 AM?

How many of these trips occurred (arrived or departed campus) between the hours of 4-6 PM?

Have you participated in or used / do you currently participate in or use any of the following programs and services?

<table>
<thead>
<tr>
<th>Program/Service</th>
<th>I wasn't aware of this service</th>
<th>I've heard of this service but never used it</th>
<th>I occasionally (1-2 times a week) use this service</th>
<th>I frequently (3-5 days a week) use this service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free round trip transfer on Muni 28/28R from Daly City BART when using Clipper Card</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Bike Barn</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Bike Racks</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>511 RideMatch Service</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Zipcar</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Electric Vehicle Charging Stations</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
For Employees: Have you participated in or used / do you currently participate in or use any of the following programs and services?

<table>
<thead>
<tr>
<th>Service</th>
<th>I wasn't aware of this service</th>
<th>I've heard of this service but never used it</th>
<th>I occasionally (1-2 times a week) use this service</th>
<th>I frequently (3-5 days a week) use this service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter Check Pre-Tax Transit Benefit (pre-tax purchase of transit passes)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Vanpool</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Emergency Ride Home Program</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Pre-Tax Parking Benefit (pre-tax purchase of parking)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Do you know where to go if you have questions about your commute or need other transportation information?

- Yes, and I have used the resources available to me before
- Yes, but I have not used the resources available to me
- No, I do not know what resources are available to me

Which resources have you used to get transportation and commute information? (please check all that apply)

- SF State Website home page
- Parking & Transportation Website
- Word of mouth (Fellow student or Coworker)
- My manager
- Human Resources
- Hiring Materials
- A distribution list that I signed up for
- Digital Screens found around campus
- Other (please specify)

In an effort to reduce parking demand and to expand affordable transportation options, SF State is exploring the possibility of pursuing discounts for our students, faculty, and staff for on-demand taxi services known as TNCs such as Uber and Lyft.

Would you be interested in such a benefit?

- Yes
- No
Please provide any additional comments about transportation issues that relate to SF State.

If you would like to be entered for a chance to receive a $100 gift card to the SF State Bookstore, please enter your email address.
ATTACHMENT B – SAN FRANCISCO STATE UNIVERSITY 2016
TRANSPORTATION SURVEY RESULTS REPORT BY
NELSON/NYGAARD
Table of Contents

<table>
<thead>
<tr>
<th></th>
<th>Executive Summary</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>3</td>
<td>Online Survey</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Survey Design</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Methodology</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>3-5</td>
</tr>
<tr>
<td>4</td>
<td>Cordon Count</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Methodology</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>4-3</td>
</tr>
<tr>
<td>5</td>
<td>Carbon Emissions</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>Methodology</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>Online Survey</td>
<td>ii</td>
</tr>
</tbody>
</table>
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-1:</td>
<td>Adjusted Faculty/Staff and Student Responses</td>
<td>3-4</td>
</tr>
<tr>
<td>Figure 3-2:</td>
<td>Population Scale</td>
<td>3-4</td>
</tr>
<tr>
<td>Figure 3-3:</td>
<td>Mode of Arrival to Campus</td>
<td>3-5</td>
</tr>
<tr>
<td>Figure 3-4:</td>
<td>Number of Legs in Journey to Campus</td>
<td>3-6</td>
</tr>
<tr>
<td>Figure 3-5:</td>
<td>All Modes Used to Get to Campus</td>
<td>3-7</td>
</tr>
<tr>
<td>Figure 3-6:</td>
<td>Mode Split by Affiliation</td>
<td>3-8</td>
</tr>
<tr>
<td>Figure 3-7:</td>
<td>Cost of Commute</td>
<td>3-9</td>
</tr>
<tr>
<td>Figure 3-8:</td>
<td>Daily Estimated Number of Muni trips by Muni route</td>
<td>3-10</td>
</tr>
<tr>
<td>Figure 3-9:</td>
<td>Peak Hour Estimated Number of Muni Trips for the SF State Peak Period</td>
<td>3-10</td>
</tr>
<tr>
<td>Figure 3-10:</td>
<td>Peak Hour Estimated Number of Muni Trips for the Muni System Wide Peak</td>
<td>3-11</td>
</tr>
<tr>
<td>Figure 3-11:</td>
<td>Total Passenger Miles Travelled per Day by Mode</td>
<td>3-12</td>
</tr>
<tr>
<td>Figure 3-12:</td>
<td>Home County of BART Riders</td>
<td>3-15</td>
</tr>
<tr>
<td>Figure 3-13:</td>
<td>Estimated Parking On and Near Campus</td>
<td>3-17</td>
</tr>
<tr>
<td>Figure 3-14:</td>
<td>Parking Costs</td>
<td>3-18</td>
</tr>
<tr>
<td>Figure 3-15:</td>
<td>Programs to Encourage Drivers to Use Alternative Modes</td>
<td>3-18</td>
</tr>
<tr>
<td>Figure 3-16:</td>
<td>Affiliation with San Francisco State University</td>
<td>3-19</td>
</tr>
<tr>
<td>Figure 3-17:</td>
<td>Place of Residence</td>
<td>3-19</td>
</tr>
<tr>
<td>Figure 3-18:</td>
<td>Campus Affiliates by Zip code</td>
<td>3-21</td>
</tr>
<tr>
<td>Figure 3-19:</td>
<td>Location of SF State University Affiliates</td>
<td>3-0</td>
</tr>
<tr>
<td>Figure 4-1:</td>
<td>Cordon Count Locations</td>
<td>4-2</td>
</tr>
<tr>
<td>Figure 4-2:</td>
<td>Number of Vehicles Entering and Exiting by Location</td>
<td>4-3</td>
</tr>
<tr>
<td>Figure 4-3:</td>
<td>Count of Vehicles Entering and Exiting by Location and Time in 2016</td>
<td>4-4</td>
</tr>
<tr>
<td>Figure 4-4:</td>
<td>Percent Change in the Count of Vehicles Entering and Exiting from 2014 to 2016</td>
<td>4-4</td>
</tr>
<tr>
<td>Figure 4-5:</td>
<td>Count of Vehicles Entering and Exiting by Mode and by Hour</td>
<td>4-6</td>
</tr>
<tr>
<td>Figure 4-6:</td>
<td>Count of Persons Entering and Exiting by Mode and by Hour</td>
<td>4-7</td>
</tr>
<tr>
<td>Figure 4-7:</td>
<td>Peak Hour and Total Auto Trips</td>
<td>4-8</td>
</tr>
<tr>
<td>Figure 5-1:</td>
<td>Total Passenger Miles Travelled per Day by Mode</td>
<td>5-5</td>
</tr>
<tr>
<td>Figure 5-2:</td>
<td>Total Pounds of CO2-e per Day by Mode</td>
<td>5-7</td>
</tr>
<tr>
<td>Figure 5-3:</td>
<td>Pounds of CO2 Emissions per Passenger Mile</td>
<td>5-8</td>
</tr>
<tr>
<td>Figure 5-4:</td>
<td>Total Miles Travelled and CO2 Emissions per Day 2016</td>
<td>5-9</td>
</tr>
<tr>
<td>Figure 5-5:</td>
<td>Passenger-miles travelled, pounds CO2 per mile, and total CO2 per year by mode</td>
<td>5-10</td>
</tr>
</tbody>
</table>

1 EXECUTIVE SUMMARY

In October 2007, the City and County of San Francisco and San Francisco State University (SF State) entered into a Memorandum of Understanding (MOU) to address the impact on the City and County of San Francisco from the implementation of the University’s campus master plan and anticipated increase in enrollment on the campus. The MOU identifies a number of measures that the University must take, including the establishment of a traffic monitoring and mitigation program.

In response to the requirements of the MOU, SF State has conducted an online transportation survey and cordon count at least every three years beginning in April 2008 with subsequent surveys taking place in April 2011, April 2014, and April 2016. The most recent survey was conducted in April 2016 instead of 2017 to align with ongoing CEQA analysis. There was a 9% response rate to the survey. Survey data is used to track a number of key factors such as mode split, peak hour vehicle trips, peak hour Muni ridership, and GHG emissions.

Key Findings

Key findings from the 2016 transportation survey include the following:

- Since 2008, the drive-alone rate for commute trips to the University has decreased by 23%, with 26% of campus affiliates driving alone to campus in 2008 compared to 20% in 2016.
- The percentage of campus affiliates who arrive on campus on foot has increased by 42% between 2008 and 2014.
- Transit usage has increased, with 45% of campus affiliates using Muni and 27% using BART for a portion of their trip to campus. This is an increase of 24% and 25% respectively, since 2008. Muni is also the most common arrival mode to campus for all students.
- Between 2008 and 2014, the number of automobile trips per day has decreased by 22%. The number of peak hour trips has decreased by 3%.
- On a typical travel day in 2016, University affiliates commuted approximately 201,400 miles to and from the campus, a 1.2% decrease in daily passenger miles between 2014 and 2016 and a 1.7% decrease in daily passenger miles between 2008 and 2016.
- Private vehicles have the highest levels of CO\textsubscript{2}-e emissions per passenger mile. Drive-alone commuters are the largest contributors to San Francisco State University’s CO\textsubscript{2}-e commute travel emissions, representing approximately 80% of the total daily pounds of CO\textsubscript{2}-e emissions.
BART commuters travel only slightly fewer total miles per day than car drivers but emit far lower levels of CO$_2$-e per day; BART commuters emit an estimated 650 pounds of CO$_2$-e in a day, compared to approximately 6,000 pounds of CO$_2$-e emitted by those who drive alone.
2 INTRODUCTION

In 2007, San Francisco State University developed its campus master plan to accommodate a 25% increase in its student population through infill and renovation of its compact campus. Many community members raised concerns that campus growth would result in traffic congestion and parking scarcity.

Nelson\Nygaard helped SF State and the City and County of San Francisco negotiate a Memorandum of Understanding (MOU) in October 2007. The MOU includes the University’s “fair share” funding commitment to address the impacts of campus growth on the surrounding neighborhood and the transportation network. The University committed to almost $2 million in transit improvements, along with an extensive list of programs and projects to minimize vehicle trips.

The MOU includes the establishment of a traffic monitoring and mitigation program to determine whether the University’s expanded Transportation Demand Management (TDM) efforts are successfully minimizing or avoiding new peak hour trips. As part of the traffic monitoring and mitigation program, the University was required to conduct a baseline cordon count and intercept survey no less than 12 months after the certification of the master plan EIR. Furthermore, additional cordon counts must be conducted at intervals of no more than every three years, and no later than when enrollment grows by 1,000 students by headcount.

In fulfillment of the requirements, SF State conducted the baseline cordon count and intercept survey on the main campus at 1600 Holloway Avenue on Wednesday, April 30, 2008. A Wednesday was selected to ensure that the cordon count and intercept survey would be representative of a typical day on campus, when classes are in session and most affiliates are on campus. The cordon count covered 15 vehicle, pedestrian, and bicycle entry points to campus. Intercept surveys were conducted at seven entrances to campus, and a total of 1,400 surveys were completed.

A subsequent cordon count was conducted on Wednesday, April 27, 2011. The second cordon count covered 16 vehicle, pedestrian, and bicycle entry points to campus. In 2014, the cordon count methodology was revised significantly to focus on vehicle entry points to campus. The third cordon count was conducted on Wednesday, April 23, 2014 at nine locations, and the fourth cordon count was conducted on Wednesday, April 7, 2016 at nine locations.

In addition to the cordon count, the University conducted online surveys in 2008, 2011, 2014, and 2016. The online survey, sent to all University affiliates, replaced the intercept survey, per discussions between the University and the San Francisco Municipal Transportation Agency (SFMTA). An online survey can provide more detailed information on travel behavior than can be collected during an intercept survey or cordon count.

This report presents the findings from the online survey and cordon count efforts on Wednesday, April 6, 2016. In total, 3,090 University affiliates responded to the online survey. The report provides an in-depth analysis of the online survey, with a discussion of methodology and a comparison of 2016 survey results to those from previous surveys. The report concludes with a carbon footprint analysis for commute trips using data gathered from the online survey.
3 ONLINE SURVEY

San Francisco State University conducted an online survey that asked University affiliates how they travelled to and from campus on Wednesday, April 6, 2016. A total of 3,090 University affiliates responded to the survey, and of the total, 2,358 stated that they were on campus on Wednesday, April 6.

SURVEY DESIGN

Survey respondents were asked a series of questions about their commutes and general travel behavior for trips to and from SF State’s main campus at 1600 Holloway on Wednesday, April 6, 2016. All respondents were asked a number of background questions, such as their primary affiliation with the University and their zip code. Respondents were then asked to provide travel information for up to four legs of their journey to and from campus.

Each leg of the journey was treated as a separate question, and respondents were asked to identify the mode they took for each leg. For example, someone who drove to BART and then took the SF State shuttle from the Daly City BART station to campus would enter trip information for three legs. Similarly, if a respondent transferred from one Muni route to another Muni route, they would enter trip information for two legs. If respondents took Muni, they were asked to select the Muni route they took, and if a respondent selected BART or Caltrain, they were asked to identify their start and end stations. For each leg, respondents were asked to estimate the distance they traveled, in miles, for that segment of the trip.

Respondents who stated that they drove or carpooled to campus were asked a series of questions related to parking, including their parking location and how much they paid for parking. Respondents were also asked their arrival and departure time to campus, as well as participation and knowledge of different TDM programs and services.

The 2016 survey was similar to the 2014 version. To accommodate the rise of Transportation Network Companies (TNCs) such as Lyft and Uber, TNCs were added as a mode choice option in the 2016 survey. The 2016 survey also included arrival and departure times, which had been left out of the 2014 survey inadvertently. The 2016 survey also included updated Muni routes and names, given SFMTA’s Muni Forward initiative that has included substantial route changes since 2014.

The survey was implemented in the Qualtrics survey platform. A copy of the online survey instrument is provided in the Appendix A for reference.

Constraints and Limitations

In 2016, a total of 3,090 University affiliates responded to the survey, and out of the 3,090 total respondents, 2,358 persons (76% of respondents) stated they were on campus on Wednesday,
April 6. Only those people who stated they were on campus are included in this analysis unless otherwise noted.

The response rate in 2016 (9%) were lower than in previous years (12% in 2014, 11% in 2011, and 13% in 2008), which might be primarily attributed to the timing and marketing of the survey. Other major campus efforts, such as the student transit pass referendum and the anticipation of a possible, but avoided, strike may have added to survey fatigue among campus affiliates. Despite a lower response rate than previous years, the survey sample is still statistically valid. For a campus population of 33,563, a minimum of 1,753 responses is needed to generate results at a 99% confidence level with a confidence interval of +/-3%. The 3,090 survey responses received exceeds this minimum number of survey responses needed for statistical significance.

METHODOLOGY

The online survey collected rich data on trip patterns. Data clean-up and restructuring was necessary to allow for data analysis. This section describes the data clean-up and restructuring processes, including assignment of weights to make the survey response distribution among students, staff, and faculty reflect the distribution of those groups among the campus population as a whole.

Data Clean-up and Data Restructuring

A number of steps were taken to clean and restructure the online survey responses to properly format them for analysis. Duplicates were removed, and data was cleaned to ensure ease of analysis.

The format of the online survey made it possible for respondents to select up to four legs of their trip. A few respondents did not report on the legs of their trip to campus in a logical or feasible way. For example, a total of 42 respondents stated that they arrived on campus via Caltrain or BART. Since that is not physically possible, the last leg of their journey was adjusted. For respondents with a last leg mode of Caltrain, their record was adjusted to reflect taking BART from Millbrae to Daly City and then transferring to the SF State Shuttle or Muni Route 28. For respondents stating that they arrived on campus via BART, their records were adjusted to reflect the SF State Shuttle or Muni Route 28 as their last mode.\(^1\)

Mode Split

In order to determine the mode split for University affiliates commuting to and from campus, it was necessary to create several new variables. The newly created variables are as follows:

1. **Arrival Mode** – The “arrival mode” is the mode by which respondents arrived on campus.
2. **Mode prior to arrival mode** – The “mode prior to arrival mode” is the mode respondents used before their arrival mode. This trip may have occurred on leg 1, 2, or 3 of their trip, depending on the total number of legs. Respondents who used only one mode of transportation to arrive on campus have no recorded “mode prior to arrival mode.”

\(^1\) Respondents who stated they arrived by BART or Caltrain were assigned to Muni Route 28 or the SF State Shuttle based on the percentage breakdown of those respondents who said they took BART and selected a mode of arrival of either Muni Route 28 or the SF Shuttle.
3. **Departure Mode** – The “departure mode” is the mode by which respondents left campus, the first leg of the trip from campus.

In addition to creating new variables, the existing data needed to be restructured in order to meet the requirements of the MOU between the University and the City and County of San Francisco. The MOU requires that all respondents who park and walk within 10 minutes of campus be classified as drivers rather than walkers when determining the mode split and peak hour auto trips. The following steps were taken to address this requirement:

1. Respondents with an arrival mode of walking and a mode prior to arrival of driving or carpooling were identified using the arrival mode variable and the mode prior to arrival variable.
2. An arrival mode distance variable was then calculated using the responses given in the survey to the question “Please estimate the distance you travelled in this segment of your trip.” People whose walk segment was a half mile or less were classified with an auto arrival mode. Half a mile was used because the average speed of walkers is three miles per hour, meaning a 10 minute walk is equivalent to approximately a half mile.
3. For people who did not provide a distance, the location where they parked their car was used. Respondents who drove or carpooled and parked on or near campus were asked to select the zone that corresponded to their parking location on a map of the area surrounding campus. The map covered the area bounded by I-280, Lake Merced Boulevard, Sloat Boulevard, Santa Clara Avenue, Victoria Street, and Head Street. Respondents were given 19 zones from which to choose. Using a half-mile radius, the zones that are within a 10-minute walk to campus were identified. Zones where part but not all of the zone is within a 10-minute walk were considered to be within the half-mile radius. Of the 19 zones, only three are not within the half-mile radius.
4. The same steps were then repeated for the trips from campus.

A similar methodology was applied to people whose arrival mode was “walk” and their mode prior to arrival was Muni in order to more accurately determine the number of peak-hour Muni trips, as required by the MOU. The following steps were taken to address this requirement:

1. Using the arrival mode distance variable, respondents whose walk segment was a half-mile or less were reclassified with a Muni arrival mode. For respondents who did not provide an arrival mode distance, the “Muni route taken” was used. People travelling on routes directly serving campus (M-Ocean View, 57-Parkmerced, 18-46th Avenue, 28-19th Avenue, 28R-19th Avenue Rapid, and 29-Sunset) were reclassified with a Muni arrival mode. Persons travelling on any other Muni routes retained “walk” as their arrival mode.
2. The same steps were then repeated for the trips from campus.

Weights

Based on the distribution of responses between students and faculty/staff, a weight was created and applied to all responses for the analysis.

As of Spring 2016, there were approximately 30,000 students and 3,300 faculty and staff members are on campus (Figure 3-1 and Figure 3-2). The analysis team weighted survey responses to yield an equivalent ratio. It should be noted weights were applied to responses from people who stated they were on campus.
campus on Wednesday, April 6, 2016, as respondents who stated they were not on campus on April 6 were not included in this analysis.

Figure 3-1: Adjusted Faculty/Staff and Student Responses

<table>
<thead>
<tr>
<th>Total Population</th>
<th>Online Responses (On Campus April 6)</th>
<th>Adjusted Weight</th>
<th>Weighted Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>30,256</td>
<td>1,670</td>
<td>1.2658</td>
</tr>
<tr>
<td>Faculty/Staff</td>
<td>3,307</td>
<td>675</td>
<td>0.3423</td>
</tr>
<tr>
<td>Total</td>
<td>33,563</td>
<td>2,345</td>
<td></td>
</tr>
</tbody>
</table>

Scaling to the Campus Population

In order to scale the online survey data to represent the San Francisco State University population as a whole, it was necessary to determine how many faculty, staff, and students are on campus on an average day. The total campus population was obtained from the University Facts brochure, and the online survey was used to determine the percentage breakdown by affiliation of those who were on campus. From this, an adjustment factor was established.

Figure 3-2: Population Scale

<table>
<thead>
<tr>
<th>Affiliation</th>
<th>Total Population²</th>
<th>Adjustment Factor³</th>
<th>Daily Population on Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>30,256</td>
<td>75%</td>
<td>22,692</td>
</tr>
<tr>
<td>Faculty/Staff</td>
<td>3,307</td>
<td>82%</td>
<td>2,712</td>
</tr>
<tr>
<td>Total</td>
<td>33,563</td>
<td></td>
<td>25,404</td>
</tr>
</tbody>
</table>

The total population was then multiplied by the adjustment factor to determine the daily population for students and faculty/staff. The daily population was used to scale the survey results to represent the actual San Francisco State University population and estimate total trips by mode and greenhouse gas emissions.

² Source: Faculty and staff population numbers courtesy of University Facts brochure at http://puboff.sfsu.edu/sfsufact/archive/1516/students and http://puboff.sfsu.edu/sfsufact/archive/1516/facstaff

³ Adjustment factor determined by survey responses sample. In the 2016 sample, 25% of students said they were not on campus on the survey day; 18% of faculty or staff said they were not on campus on the survey day.
RESULTS

The following section discusses the high-level results of the online survey, focusing on mode split, Muni ridership on the lines that directly serve the campus, parking, and demographics. At the end of the chapter, results for a number of demographic questions that were asked of all respondents—regardless of whether they were on campus that day—are presented. Unless otherwise noted, results shown in this section only include those respondents who stated that they were on campus on Wednesday, April 6, 2016, with weights for the student to faculty/staff ratio taken into account.

Commute

Figure 3-3 shows the mode people used to arrive to campus. Muni was the most common mode, at approximately 31.3%, followed by driving alone at 20.1%.

Mode split results from the 2016 survey were generally consistent with the 2014 results, with a slight increase in Muni, drive alone, walk, and shuttle rates a small drop in the bicycling rate, and a larger drop in carpooling and drop-offs. “Taxi or TNCs” was a new option in 2016, and it represents 1.7% of the mode split.

From 2008 and 2016, the percentage of respondents driving alone has decreased by nearly 23%. Walking has increased by 42%, and represents the fourth most popular way to arrive on campus, after Muni, drive alone, and the SF State shuttle.

Figure 3-3: Mode of Arrival to Campus

<table>
<thead>
<tr>
<th>How Online Survey Respondents Get to SF State</th>
<th>2016 (n=2,238)</th>
<th>2014 (n=3,013)</th>
<th>2011 (n=2,684)</th>
<th>2008 (n=3,292)</th>
<th>% Change 2008 - 2016</th>
<th>% Point Change 2008 - 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muni</td>
<td>31.3%</td>
<td>29.8%</td>
<td>29.4%</td>
<td>30.6%</td>
<td>2.3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Drive alone</td>
<td>20.1%</td>
<td>19.7%</td>
<td>23.0%</td>
<td>26.0%</td>
<td>-22.6%</td>
<td>-5.9%</td>
</tr>
<tr>
<td>Walk</td>
<td>17.5%</td>
<td>17.0%</td>
<td>13.7%</td>
<td>12.3%</td>
<td>42.2%</td>
<td>5.2%</td>
</tr>
<tr>
<td>SF State Shuttle</td>
<td>17.9%</td>
<td>16.7%</td>
<td>18.7%</td>
<td>16.9%</td>
<td>6.1%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Bike</td>
<td>3.4%</td>
<td>3.8%</td>
<td>4.1%</td>
<td>3.5%</td>
<td>-2.5%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Carpool</td>
<td>1.8%</td>
<td>3.9%</td>
<td>4.5%</td>
<td>4.9%</td>
<td>-62.7%</td>
<td>-3.1%</td>
</tr>
<tr>
<td>Dropped off</td>
<td>2.4%</td>
<td>4.7%</td>
<td>3.0%</td>
<td>2.4%</td>
<td>-0.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Other bus provider (AC Transit/Golden Gate</td>
<td>2.1%</td>
<td>2.8%</td>
<td>2.0%</td>
<td>1.5%</td>
<td>41.3%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Transit/SamTrans)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi or TNC</td>
<td>1.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.7%</td>
</tr>
<tr>
<td>Other</td>
<td>1.2%</td>
<td>1.0%</td>
<td>0.5%</td>
<td>1.1%</td>
<td>7.8%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Motorcycle/Moped</td>
<td>0.6%</td>
<td>0.4%</td>
<td>1.2%</td>
<td>0.7%</td>
<td>-17.6%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The slight increase in Muni, drive alone, walk, and shuttle rates in 2016 are all within the margin of error of 3%, and may be attributed to sampling error.
Figure 3-4 summarizes the unweighted number of legs in respondents’ journeys to campus. The majority of respondent’s reported using two get to campus (approximately 39%). After that the second most common number of legs used by respondent’s was four legs (approximately 35%). About 24% reported their trip taking 3 legs and only 1% reported their trip to campus taking only one leg.

Figure 3-4: Number of Legs in Journey to Campus

<table>
<thead>
<tr>
<th>Number of Legs</th>
<th>Percentage of Respondents (n=2,255)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>2</td>
<td>39%</td>
</tr>
<tr>
<td>3</td>
<td>24%</td>
</tr>
<tr>
<td>4</td>
<td>35%</td>
</tr>
</tbody>
</table>

Figure 3-5 shows the weighted percent of all modes used in all legs for students, faculty, and staff respondents’ on their trips to campus. Respondents could select up to four legs for their journey to campus. In 2016, approximately 45.1% of all respondents used Muni for a portion of their journey to campus compared to 36% in 2008. The percentage of respondents stating they drove alone for a portion of their trip to San Francisco State University increased marginally from 34% in 2008 to 38% in 2016. In 2016, approximately 28% of respondents took BART compared to 21% in 2008, and 25% took the San Francisco State University shuttle for one leg of their trip compared to 21% in 2008.

Interestingly, the percentage of respondents who reported walking as a part of their commute dramatically increased in 2016. This may be due to a clarification of the commute mode question and example of trip segments in the survey instrument, which made selecting a segment for walking more explicit. In past years, walking may have been overlooked as a commute mode.
Figure 3-5: All Modes Used to Get to Campus

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muni</td>
<td>45.1%</td>
<td>46.8%</td>
<td>38.9%</td>
<td>36.3%</td>
<td>24.2%</td>
<td>8.8%</td>
</tr>
<tr>
<td>Drive alone</td>
<td>36.0%</td>
<td>29.9%</td>
<td>31.1%</td>
<td>33.6%</td>
<td>7.1%</td>
<td>2.4%</td>
</tr>
<tr>
<td>SF State Shuttle</td>
<td>23.8%</td>
<td>24.7%</td>
<td>23.2%</td>
<td>20.7%</td>
<td>15.0%</td>
<td>3.1%</td>
</tr>
<tr>
<td>BART</td>
<td>26.7%</td>
<td>26.4%</td>
<td>22.7%</td>
<td>21.3%</td>
<td>25.4%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Walk</td>
<td>46.9%</td>
<td>32.4%</td>
<td>21.2%</td>
<td>18.6%</td>
<td>152.2%</td>
<td>28.3%</td>
</tr>
<tr>
<td>Bike</td>
<td>4.8%</td>
<td>7.3%</td>
<td>7.1%</td>
<td>5.5%</td>
<td>-12.7%</td>
<td>-0.7%</td>
</tr>
<tr>
<td>Dropped off</td>
<td>7.1%</td>
<td>8.4%</td>
<td>5.4%</td>
<td>4.2%</td>
<td>69.0%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Other bus provider (AC Transit/Golden Gate Transit/SamTrans)</td>
<td>7.8%</td>
<td>6.6%</td>
<td>4.7%</td>
<td>3.2%</td>
<td>143.8%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Motorcycle/Moped</td>
<td>0.9%</td>
<td>0.9%</td>
<td>2.0%</td>
<td>1.0%</td>
<td>-10.0%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Other</td>
<td>2.3%</td>
<td>1.7%</td>
<td>1.0%</td>
<td>1.6%</td>
<td>43.8%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Caltrain</td>
<td>1.7%</td>
<td>2.0%</td>
<td>0.7%</td>
<td>1.1%</td>
<td>54.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Taxi or TNC</td>
<td>3.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-6 provides a mode split breakdown by campus affiliation and commute mode used to arrive at campus. Muni was the most common mode of transport for students of all kinds. Nearly a third of freshman walk to campus, likely a result of the fact that freshmen live on campus in larger numbers than do other groups.

Drive alone rates for all students decreased between 2008 and 2016. For freshman, drive alone rates dropped by nearly half, while for other undergraduates, drive alone rates decreased by a little less than a quarter. For graduate students, driving alone is no longer the most popular mode to arrive to campus; between 2008 and 2016, driving alone decreased from 31% to 28%, and commuting by Muni increased from 28% to 31%.

Driving alone remained the most popular mode for faculty and staff, marginally increasing between 2008 and 2016.

Reported use of the SF State Shuttle increased for undergraduates but decreased among all other groups. Reported participation in carpools and vanpools decreased among all groups. Bicycling mode share stayed below 5% for all groups. However, bicycling among faculty and staff doubled from 2008 to 2016, while bicycling marginally dropped or remained the same among all other groups.
Figure 3-6: Mode Split by Affiliation

<table>
<thead>
<tr>
<th>How Online Survey Respondents Get to SF State</th>
<th>Freshman</th>
<th>Other Undergraduate</th>
<th>Graduate Student</th>
<th>Staff/Admin Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muni</td>
<td>32.2%</td>
<td>34.6%</td>
<td>33.6%</td>
<td>31.7%</td>
</tr>
<tr>
<td>Drove Alone</td>
<td>5.9%</td>
<td>5.3%</td>
<td>8.5%</td>
<td>11.1%</td>
</tr>
<tr>
<td>Walk</td>
<td>31.1%</td>
<td>23.9%</td>
<td>24.3%</td>
<td>25.3%</td>
</tr>
<tr>
<td>SF State Shuttle</td>
<td>18.7%</td>
<td>18.4%</td>
<td>21.6%</td>
<td>17.9%</td>
</tr>
<tr>
<td>Bike</td>
<td>1.7%</td>
<td>1.9%</td>
<td>3.1%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Car/Vanpool</td>
<td>0.7%</td>
<td>4.1%</td>
<td>2.7%</td>
<td>4.4%</td>
</tr>
<tr>
<td>Dropped off</td>
<td>1.7%</td>
<td>6.0%</td>
<td>4.2%</td>
<td>4.4%</td>
</tr>
<tr>
<td>Other bus provider (AC Transit/Golden Gate Transit/SamTrans)</td>
<td>3.8%</td>
<td>3.8%</td>
<td>1.2%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Taxi/TNC</td>
<td>2.1%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>2.1%</td>
<td>2.1%</td>
<td>0.4%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Motorcycle/Moped</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.4%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
All University affiliates participating in the survey were asked how much they spend each day on their commute to and from campus, regardless of whether they traveled to the main campus on April 6. As displayed in Figure 3-7, 16% reported not spending anything on their commute, while nearly 50% reported spending between $1 to $9 on their commute per day.

Figure 3-7: Cost of Commute

<table>
<thead>
<tr>
<th>Amount Spent on Daily Commute (roundtrip)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>15.7%</td>
</tr>
<tr>
<td>$1 - $4</td>
<td>17.0%</td>
</tr>
<tr>
<td>$5 - $9</td>
<td>32.9%</td>
</tr>
<tr>
<td>$10 - $14</td>
<td>19.0%</td>
</tr>
<tr>
<td>$15 - $19</td>
<td>7.4%</td>
</tr>
<tr>
<td>$20 - $24</td>
<td>4.6%</td>
</tr>
<tr>
<td>More than $25</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

Transit

Muni and BART are the transit systems most heavily utilized by the campus population, with an estimated 45% of SF State commuters riding Muni and 27% riding BART for some portion of their journey to campus. An estimated 80% of campus affiliates take some form of public transportation to get to campus.⁵

Muni

Figure 3-8 shows the estimated percentage of Muni trips that were taken to and from campus via the six Muni routes that directly serve the University. Of those commuters who ride Muni to campus, the most heavily traveled route is estimated to be the M-Ocean View, which made up 33% of all Muni trips. The percentage of commuters coming to campus by Muni routes 28-19th Avenue/28R-19th Avenue Rapid decreased between 2014 and 2016, most likely due to Muni Forward rerouting on the rapid line (the line no longer serves BART’s Daly City Station). The percentage of commuters taking the M-Ocean View continued to decline, from a high of 45% in 2008 to 33% in 2016. The decrease may be in part related to changes in where SF State affiliates are living. Increased frequencies and longer buses on the SF State Shuttle may also have caused some BART riders from the East Bay to transfer to the shuttle at Daly City instead of transferring to the M-Ocean View downtown.

⁵ This calculation includes BART, Muni, Caltrain, and other bus providers. It does not include the SF State Shuttle.
Figure 3-8: Daily Estimated Number of Muni trips by Muni Route

<table>
<thead>
<tr>
<th>Muni Route</th>
<th>Estimated Number of trips 2016</th>
<th>% of all Muni Trips 2016</th>
<th>Number of trips 2014</th>
<th>% of all Muni Trips 2014</th>
<th>Number of trips 2011</th>
<th>% of all Muni Trips 2011</th>
<th>Number of trips 2008</th>
<th>% of all Muni Trips 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-46th Avenue</td>
<td>650</td>
<td>6%</td>
<td>620</td>
<td>5%</td>
<td>520</td>
<td>4%</td>
<td>600</td>
<td>4%</td>
</tr>
<tr>
<td>28-19th Avenue and 28R-19th Avenue Rapid</td>
<td>1,800</td>
<td>16%</td>
<td>4,300</td>
<td>34%</td>
<td>5,400</td>
<td>38%</td>
<td>4,800</td>
<td>32%</td>
</tr>
<tr>
<td>29-Sunset</td>
<td>2,800</td>
<td>24%</td>
<td>2,800</td>
<td>22%</td>
<td>2,500</td>
<td>18%</td>
<td>2,200</td>
<td>15%</td>
</tr>
<tr>
<td>57-Parkmerced</td>
<td>300</td>
<td>3%</td>
<td>300</td>
<td>2%</td>
<td>130</td>
<td>1%</td>
<td>160</td>
<td>1%</td>
</tr>
<tr>
<td>M-Ocean View</td>
<td>3,700</td>
<td>33%</td>
<td>4,000</td>
<td>31%</td>
<td>5,000</td>
<td>35%</td>
<td>6,700</td>
<td>45%</td>
</tr>
</tbody>
</table>

Note: N = Total Campus Population

For campus affiliates arriving or departing campus via Muni, the 2016 morning peak hour for Muni trips was estimated to be between 8:00 a.m. to 9:00 a.m., a shift from 2014 and 2011 when the peak hour of Muni trips was estimated to be between 9:00 a.m. and 10:00 a.m.. Figure 3-9 and Figure 3-10 show the estimated number of trips to and from campus on the routes serving campus during both the San Francisco State University Muni peak and the system-wide Muni peak. Estimated peak-hour use by line mirrored daily patterns, with the M and 29 estimated to be the most heavily utilized.

Figure 3-9: Peak Hour Estimated Number of Muni Trips for the SF State Peak Period

<table>
<thead>
<tr>
<th>Muni Route</th>
<th>Number of trips 8:00 AM – 9:00 AM 2016</th>
<th>Number of trips 9:00 AM – 10:00 AM 2014</th>
<th>Number of trips 9:00 AM – 10:00 AM 2011</th>
<th>Number of trips 8:00 AM – 9:00 AM 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-46th Avenue</td>
<td>250</td>
<td>70</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>28-19th Avenue</td>
<td>330</td>
<td>450</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td>28R-19th Avenue Rapid</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>29-Sunset</td>
<td>350</td>
<td>310</td>
<td>270</td>
<td>260</td>
</tr>
<tr>
<td>57-Parkmerced</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>M-Ocean View</td>
<td>620</td>
<td>440</td>
<td>540</td>
<td>800</td>
</tr>
<tr>
<td>Total</td>
<td>1,640</td>
<td>1,330</td>
<td>1,460</td>
<td>1,720</td>
</tr>
</tbody>
</table>

Note: N = Total Campus Population
Figure 3-10: Peak Hour Estimated Number of Muni Trips for the Muni System Wide Peak Period of 5:00 PM to 6:00 PM

<table>
<thead>
<tr>
<th>Muni Route</th>
<th>Number of trips 2016</th>
<th>Number of trips 2014</th>
<th>Number of trips 2011</th>
<th>Number of trips 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-46th Avenue</td>
<td>100</td>
<td>50</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>28-19th Avenue</td>
<td>100</td>
<td>290</td>
<td>390</td>
<td>290</td>
</tr>
<tr>
<td>28R-19th Avenue Rapid</td>
<td>50</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>29-Sunset</td>
<td>190</td>
<td>200</td>
<td>180</td>
<td>130</td>
</tr>
<tr>
<td>57-Parkmerced</td>
<td>60</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>M-Ocean View</td>
<td>120</td>
<td>280</td>
<td>370</td>
<td>410</td>
</tr>
<tr>
<td>Total</td>
<td>620</td>
<td>860</td>
<td>1,010</td>
<td>880</td>
</tr>
</tbody>
</table>

Note: N = Total Campus Population

Figure 3-11: Peak Hour, Estimated Number of Peak Direction Riders for M Line shows the AM and PM peak-hour ridership estimates for the M-Ocean View. It appears that more people are coming to and leaving campus earlier in 2016 than they were in 2014 or 2011, which could be related to schedule changes. This shift is particularly important in the inbound direction, as it is the overall peak direction in the morning (into Downtown San Francisco) and the 8 a.m. hour is the generally more crowded than the 9 a.m. hour. This might simply mean that more SF State affiliates are dealing with crowded conditions in the morning peak and that they are contributing to a greater extent to the overall morning inbound crowding issues at Castro and Church stations.

Figure 3-11: Peak Hour, Estimated Number of Peak Direction Riders for M Line

<table>
<thead>
<tr>
<th>M Line</th>
<th>Inbound Trips</th>
<th>Outbound Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM – 9:00 AM</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>9:00 AM – 10:00 AM</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td>5:00 PM – 6:00 PM</td>
<td>80</td>
<td>190</td>
</tr>
</tbody>
</table>

Note: N = Total Campus Population

There were insufficient data points regarding arrival times, departure times, zip codes, and transit use in 2016 and 2014 so 2011 directionality percentages were used for the analysis. Inbound and outbound trips for the M line during the AM peak hour were determined by applying a 44% inbound - 56% outbound ratio to the total number of M line trips, scaled to represent the campus population, during the AM peak hour. This ratio was determined by using the home zip codes of online survey respondents to determine their direction of travel and the number of trips in each direction. The same methodology was used in the PM peak and a ratio of 66% inbound – 34% outbound was applied.
Figure 3-12: Peak Hour, Estimated Number of Peak Direction Riders for Bus Route 28/28R

<table>
<thead>
<tr>
<th>28/28R Line</th>
<th>Northbound Trips</th>
<th>Southbound Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM – 9:00 AM</td>
<td>180</td>
<td>280</td>
</tr>
<tr>
<td>9:00 AM – 10:00 AM</td>
<td>230</td>
<td>280</td>
</tr>
<tr>
<td>5:00 PM – 6:00 PM</td>
<td>70</td>
<td>150</td>
</tr>
</tbody>
</table>

Note: N = Total Campus Population

The changes in Muni ridership levels on different routes, including the increases seen on the 18-46th Avenue and 57-Parkmerced, may be attributed to changes in SF State affiliates’ residential choices as well as service changes made as part of the Muni Forward initiative. For example, as of September 2015, the 57 (previously the 17-Parkmerced route) runs every 20 minutes instead of every 30 minutes. The 57 also now serves Daly City BART. Figure 3-13 shows the changes for routes 18 and 57. A free roundtrip transfer loaded to one’s Clipper card when exiting Daly City BART now also applies to the 57, as it does to all Muni lines serving Daly City BART Station. This free transfer is no longer available when transferring from the 28R to BART – Muni Forward re-routed the 28R to serve Balboa Park BART, rather than Daly City BART.

There were insufficient data points regarding arrival times, departure times, zip codes, and transit use in 2016 and 2014 so 2011 directionality percentages were used for the analysis. Northbound and southbound trips for the 28/28R line during the AM peak hour were determined by applying a 48% northbound - 58% southbound ratio to the total number of 28/28L line trips, scaled to represent the campus population, during the AM peak hour. This ratio was determined by using the home zip codes of online survey respondents to determine their direction of travel and the number of trips in each direction. The same methodology was used in the PM peak and a ratio of 49% northbound – 51% southbound was applied.
The lower number of trips on the 28 and 28R may also be attributed to service changes as part of the Muni Forward initiative. As of April 23, 2016, the 28R provides rapid service every 10 minutes between 7 a.m. and 7 p.m. Monday through Friday. However, 28R service to Daly City is discontinued and is to be covered by the 28 local. A series of changes were also proposed for the 28 route, which is in progress. Figure 3-14 presents Muni's approved proposal for 28.
Figure 3-14: Muni 28-19th Avenue Proposal, Approved July 2015

Source: San Francisco Municipal Transportation Agency 2015. The 28 19th Avenue Rapid Project was approved on July 7, 2015. Next steps include detailed design through summer 2016, construction following through 2018, and a street repaving in summer 2018.
BART

An estimated 27% of respondents used BART for some portion of their journey to campus. Figure 3-15 shows the home end of BART riders’ trips to and from campus. The majority of SF State BART riders reported living in Alameda County (38.4%), followed by Contra Costa County (29%). Approximately 21% reported living in San Francisco, and 12% reported living in San Mateo County.

Figure 3-15: Home County of BART Riders

<table>
<thead>
<tr>
<th>County</th>
<th>Percentage of BART Riders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alameda</td>
<td>38.4%</td>
</tr>
<tr>
<td>Contra Costa</td>
<td>29.1%</td>
</tr>
<tr>
<td>San Francisco</td>
<td>20.9%</td>
</tr>
<tr>
<td>San Mateo</td>
<td>11.6%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Parking

An estimated 20% of commuters arrived on campus by single-occupancy vehicle. Forty nine percent of those University affiliates who reported driving parked on campus, and 32% reported parking near campus. Three percent of drivers stated that they parked at Daly City BART, while two percent of drivers said they parked at a park and ride lot. Approximately three percent of drivers selected “other” with regards to their parking location.

The survey asked respondents who stated that they parked on or near campus to identify where they parked. The number of responses was scaled to reflect the entire population of the University. Figure 3-16 provides a breakdown of parkers by location. Nearly 49% of on-campus parkers reported parking in the main parking garage at the center of campus. Close to campus, approximately 11% parked in Parkmerced, and 10% parked along Junipero Serra Boulevard. This marks a shift in where campus affiliates are predominantly parking near campus. In 2014, a higher percentage of parkers were parking on Holloway Avenue or Font Boulevard, and Lake Merced Boulevard. The decrease in the number of people parking on Font Boulevard may be attributed to the construction of the Mashouf Wellness Center. In 2011, a higher percentage of drivers parked on 19th Avenue.
Figure 3-16: Estimated Parking On and Near Campus
Survey respondents who stated that they drove to campus were also asked how much they paid to park. Figure 3-17 presents the weighted percentage of students, faculty, and staff who drove to campus, including those who parked either on-campus and off-campus. Per the weighted data, a majority of campus affiliates did not pay to park. An estimated quarter of students, faculty, and staff had a SF State Semester or Yearly Pass, which is a 13% increase from 2008.

Figure 3-17: Parking Costs

<table>
<thead>
<tr>
<th>Cost</th>
<th>% of Respondents 2016 (n=492)</th>
<th>% of Respondents 2014 (n=845)</th>
<th>% of Respondents 2011 (n=1,042)</th>
<th>% of Respondents 2008 (n=1,373)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free</td>
<td>48.8%</td>
<td>52.1%</td>
<td>56.7%</td>
<td>53.8%</td>
</tr>
<tr>
<td>Less than $1</td>
<td>0.6%</td>
<td>1.3%</td>
<td>1.2%</td>
<td>0.7%</td>
</tr>
<tr>
<td>$1 - $2</td>
<td>1.0%</td>
<td>1.5%</td>
<td>3.8%</td>
<td>3.9%</td>
</tr>
<tr>
<td>$2 - $4</td>
<td>1.4%</td>
<td>3.0%</td>
<td>5.9%</td>
<td>6.5%</td>
</tr>
<tr>
<td>$4 - $7</td>
<td>12.7%</td>
<td>19.9%</td>
<td>18.1%</td>
<td>20.0%</td>
</tr>
<tr>
<td>$7 - $10</td>
<td>11.2%</td>
<td>0.4%</td>
<td>0.6%</td>
<td>0.5%</td>
</tr>
<tr>
<td>More than $10</td>
<td>0.5%</td>
<td>1.1%</td>
<td>0.5%</td>
<td>0.8%</td>
</tr>
<tr>
<td>SF State Semester/Yearly Pass</td>
<td>23.8%</td>
<td>20.7%</td>
<td>13.3%</td>
<td>13.8%</td>
</tr>
</tbody>
</table>

Incentives to Use Other Modes

University affiliates participating in the online survey who stated that they drove to campus on April 6 were asked what programs would encourage them to use a mode other than driving alone to get to campus. They were asked to select their first, second, and third choices from the list of programs shown in Figure 3-18.

Figure 3-18: Programs to Encourage Drivers to Use Alternative Modes

<table>
<thead>
<tr>
<th>Incentives (n=1,030)</th>
<th>1st Choice</th>
<th>2nd Choice</th>
<th>3rd Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rideshare or carpool with someone who lives near me</td>
<td>31.7%</td>
<td>17%</td>
<td>12%</td>
</tr>
<tr>
<td>Reduced transit fare pass for MUNI and BART</td>
<td>29.8%</td>
<td>24%</td>
<td>12%</td>
</tr>
<tr>
<td>Improved shuttle service from BART to the university</td>
<td>12.0%</td>
<td>19%</td>
<td>14%</td>
</tr>
<tr>
<td>Improved bicycle amenities</td>
<td>4.9%</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>Emergency guaranteed ride home program</td>
<td>3.3%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Improved pedestrian amenities</td>
<td>0.9%</td>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td>None</td>
<td>17.3%</td>
<td>23%</td>
<td>39%</td>
</tr>
</tbody>
</table>
“Rideshare or carpool with someone who lives near me” was the top choice. While the mode share for carpooling and ridesharing has gone down since 2008, there is openness for this option. The high interest in the rideshare and carpool modes suggests that the university could strengthen its rideshare program. In 2014 and 2011, a reduced transit fare pass for Muni and BART was the most popular first choice. In 2016, this also ranked highly. Improved shuttle service from BART to the university is another factor that may encourage people who drive alone to use a mode other than drive alone.

Background Information for All Survey Respondents

All survey respondents, regardless of whether they were on campus on Wednesday, April 6th, were asked to provide their affiliation with the University as well as information on where they live. In Figure 3-19 and Figure 3-20 respondents who were not on campus on the 6th are referred to as “No Respondents,” and respondents who traveled to the main campus on the 6th are referred to as “Yes Respondents.”

The majority of “Yes Respondents” were undergraduates (62%). “Staff or administrator” was the second most common affiliation at 19%, followed by faculty at 9%. Undergraduates also made up a majority of “No Respondents” (54%), followed by graduate students at 22%. Figure 3-19 presents a breakdown of survey responses by affiliation.

Figure 3-19: Affiliation with San Francisco State University

<table>
<thead>
<tr>
<th>Affiliation</th>
<th>Percentage Yes Respondents (n=2,358)</th>
<th>Percentage No Respondents (n=732)</th>
<th>Percentage Overall (n=3,090)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshmen</td>
<td>12.9%</td>
<td>6.0%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Other Undergraduate</td>
<td>49.4%</td>
<td>48.0%</td>
<td>49.0%</td>
</tr>
<tr>
<td>Graduate Student</td>
<td>8.5%</td>
<td>21.7%</td>
<td>11.7%</td>
</tr>
<tr>
<td>Staff/Admin</td>
<td>19.1%</td>
<td>5.7%</td>
<td>16.0%</td>
</tr>
<tr>
<td>Faculty</td>
<td>9.3%</td>
<td>14.9%</td>
<td>10.6%</td>
</tr>
<tr>
<td>Visitor/Contractor</td>
<td>0.2%</td>
<td>0.8%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Other</td>
<td>0.6%</td>
<td>2.9%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

The majority of respondents stated that they reside off-campus, as shown in Figure 3-20.

Figure 3-20: Place of Residence

<table>
<thead>
<tr>
<th></th>
<th>Percentage Yes Respondents</th>
<th>Percentage No Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Campus</td>
<td>10.0%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Off-Campus</td>
<td>90.0%</td>
<td>97.7%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
All survey respondents were asked their home zip code. Responses to this question were mapped to show what parts of the Bay Area SF State affiliates live in. As shown in Figure 3-21, the largest concentration of SF State affiliates reported living within San Francisco. Outside of San Francisco, the largest concentration of University affiliates are estimated to be in Oakland, Daly City, Berkeley, South San Francisco, San Mateo, Pacifica, and Hayward.
Figure 3-21: Campus Affiliates by County

Percentage of Survey Respondents by County:
- 0 - 5%
- 6 - 10%
- 11 - 25%
- 25 - 49%

Map shows the percentage of survey respondents by county, with the following percentages:
- Contra Costa: 8%
- Alameda: 24%
- San Mateo: 12%
- San Francisco: 48%
- Marin: 2%
- Solano: 1%
- Napa: <1%
- Sonoma: <1%

Data Sources: MTC, US Census, SF State
Using the zip code data, University affiliates were grouped into four geographic regions: San Francisco, East Bay, North Bay, and Peninsula. As illustrated in Figure 3-21 and Figure 3-22, the largest concentration of SF State affiliates is in San Francisco, with nearly half living in the same city as the University. Nearly a third of affiliates live in the East Bay, and approximately 15% live on the Peninsula. Only 5% of SF State affiliates live to the north of San Francisco in Sonoma or Marin counties.

Figure 3-22: Location of SF State University Affiliates

<table>
<thead>
<tr>
<th>Location</th>
<th>Percentage Yes Respondents (n=1,715)</th>
<th>Percentage No Respondents (n=587)</th>
<th>Percentage Overall (n=2,302)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Bay</td>
<td>28.4%</td>
<td>44.3%</td>
<td>32.5%</td>
</tr>
<tr>
<td>North Bay</td>
<td>4.3%</td>
<td>5.5%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Peninsula</td>
<td>15.3%</td>
<td>14.5%</td>
<td>15.1%</td>
</tr>
<tr>
<td>San Francisco</td>
<td>52.0%</td>
<td>35.8%</td>
<td>47.8%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Respondents who did not provide a zip code or are located outside of the Bay Area are not included in this analysis. Approximately 17% of respondents are not included in this analysis.
4 CORDON COUNT

INTRODUCTION

As part of the University’s effort to comply with the MOU, the University sponsored a cordon count on Wednesday, April 6, 2016 to accompany the survey effort. The cordon count provides information on where University affiliates are entering and exiting the campus, and at what times of day they enter and exit. The data collected from the cordon count provides a sense of how many people come to campus each day. This year’s count represents the fourth conducted in recent years per the MOU between the University and City and County of San Francisco.

METHODOLOGY

The count was conducted from 7:00 a.m. to 7:30 p.m. at nine locations around the campus, as shown in Figure 4-1. This is the same time period used in 2014 and 2011. The locations were selected as they represent all public vehicle entry access points, including access to interior roadways and parking facilities. Eight of the nine locations used for the cordon counts in 2016 were in the same locations as those used in 2014 and 2011. The only location that changed can be seen in Figure 4-1.

At each location, vehicles were counted in 15-minute increments. Surveyors were instructed to distinguish between vehicles with only a single driver, carpools (vehicles with two or more persons), motorcycles, and other vehicles. Other vehicles included campus vehicles, delivery trucks, transit vehicles, and security vehicles. Surveyors were instructed to include drop-offs as a carpool vehicle. One surveyor was stationed at each location.
Figure 4-1: Cordon Count Locations

The cordon count locations are the same in 2016 as in 2014, with the exception of location 9, which has moved southwest on Winston Drive.
RESULTS

A total of 10,201 unique vehicle entries were counted entering and exiting campus during the count period. This is an approximate 6% increase in vehicle activity from the last cordon count, in 2014.

Figure 4-2 provides a breakdown of vehicles entering and exiting the campus by the nine cordon locations. Similar to 2014, the entry point at State Drive and Lake Merced Boulevard saw the largest number of vehicles entering and exiting, largely due to the fact that State Drive connects to the primary parking facility on campus. Holloway Avenue at Tapia Drive and Font Boulevard at Tapia Drive saw the second highest number of vehicle trips, partially due to the fact the area is a popular area for drop-offs. These three locations all saw increases in vehicle entries and exits from 2014 to 2016. The greatest increase in vehicle entries and exits occurred at Holloway Avenue and Administration Building, nearly doubling in activity.

Figure 4-2: Number of Vehicles Entering and Exiting by Location

<table>
<thead>
<tr>
<th>Location</th>
<th>2016</th>
<th>2014</th>
<th>% Change in Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entering</td>
<td>Exiting</td>
<td>Total</td>
</tr>
<tr>
<td>1 Holloway Ave & Administration Bldg</td>
<td>108</td>
<td>106</td>
<td>214</td>
</tr>
<tr>
<td>2 Holloway Ave & Cardenas</td>
<td>54</td>
<td>44</td>
<td>98</td>
</tr>
<tr>
<td>3 Holloway Ave & Arella</td>
<td>93</td>
<td>93</td>
<td>186</td>
</tr>
<tr>
<td>4 Holloway Ave & Tapia Dr¹⁰</td>
<td>1,210</td>
<td>--</td>
<td>1,211</td>
</tr>
<tr>
<td>5 Font Blvd & Tapia Dr¹¹</td>
<td>--</td>
<td>1,181</td>
<td>1,181</td>
</tr>
<tr>
<td>6 Font Blvd & Mary Wald Hall</td>
<td>110</td>
<td>82</td>
<td>192</td>
</tr>
<tr>
<td>7 State Dr. & Lake Merced Blvd</td>
<td>3,311</td>
<td>2,669</td>
<td>5,980</td>
</tr>
<tr>
<td>8 N. State Dr. & Lake Merced Blvd</td>
<td>394</td>
<td>681</td>
<td>1,075</td>
</tr>
<tr>
<td>9 Winston Dr. & Lot 25¹²</td>
<td>32</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Total</td>
<td>5,312</td>
<td>4,889</td>
<td>10,201</td>
</tr>
</tbody>
</table>

¹⁰ Vehicles may only enter at Holloway Avenue and Tapia
¹¹ Vehicles may only exit at Font and Tapia
¹² Location 9 changed in 2016 from 2014.
The distribution of vehicles entering and exiting by time varied by cordon count location. However, at most locations, vehicles peaked between 9:00 a.m. and 11:00 a.m. and 5:00 p.m. to 7:30 p.m. Figure 4-3 highlights the number of vehicles entering and exiting by time for the 2016 cordon count, and Figure 4-4 illustrates the percent change in the count of vehicles entering and exiting from 2014 to 2016.

Figure 4-3: Count of Vehicles Entering and Exiting by Location and Time in 2016

<table>
<thead>
<tr>
<th>Location</th>
<th>7:00 AM - 9:00 AM</th>
<th>9:00 AM - 11:00 AM</th>
<th>11:00 AM - 1:00 PM</th>
<th>1:00 PM - 3:00 PM</th>
<th>3:00 PM - 5:00 PM</th>
<th>5:00 PM - 7:30 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Holloway Ave & Administration Bldg</td>
<td>24</td>
<td>23</td>
<td>47</td>
<td>23</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>2 Holloway Ave & Cardenas</td>
<td>19</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>41</td>
</tr>
<tr>
<td>3 Holloway Ave & Arella</td>
<td>14</td>
<td>26</td>
<td>34</td>
<td>37</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>4 Holloway Ave & Tapia Dr</td>
<td>111</td>
<td>274</td>
<td>189</td>
<td>184</td>
<td>188</td>
<td>265</td>
</tr>
<tr>
<td>5 Font Blvd & Tapia Dr</td>
<td>71</td>
<td>268</td>
<td>194</td>
<td>170</td>
<td>197</td>
<td>281</td>
</tr>
<tr>
<td>6 Font Blvd & Mary Wald Hall</td>
<td>23</td>
<td>17</td>
<td>26</td>
<td>31</td>
<td>42</td>
<td>53</td>
</tr>
<tr>
<td>7 State Dr. & Lake Merced Blvd</td>
<td>1,061</td>
<td>1,043</td>
<td>951</td>
<td>807</td>
<td>1,090</td>
<td>1,028</td>
</tr>
<tr>
<td>8 N. State Dr. & Lake Merced Blvd</td>
<td>169</td>
<td>140</td>
<td>120</td>
<td>112</td>
<td>220</td>
<td>314</td>
</tr>
<tr>
<td>9 Winston Dr. & Lot 25</td>
<td>5</td>
<td>13</td>
<td>8</td>
<td>13</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>1,497</td>
<td>1,819</td>
<td>1,577</td>
<td>1,384</td>
<td>1,842</td>
<td>2,082</td>
</tr>
</tbody>
</table>

For the entry point at State Drive and Lake Merced Boulevard, which has the largest numbers of vehicles entering and exiting, there was an increase in the number of vehicles entering and exiting between 7:00 a.m. – 9:00 a.m., as well as 1:00 p.m. – 7:30 p.m., from 2014 to 2016. This may suggest that students, faculty, staff, and visitors to campus may be shifting driving behaviors earlier to secure a parking space at the primary parking facility on campus. This pattern is also notable at the Holloway Avenue at Tapia Drive and Font Boulevard at Tapia Drive entry and exit points.

Figure 4-4: Percent Change in the Count of Vehicles Entering and Exiting from 2014 to 2016

<table>
<thead>
<tr>
<th>Location</th>
<th>7:00 AM - 9:00 AM</th>
<th>9:00 AM - 11:00 AM</th>
<th>11:00 AM - 1:00 PM</th>
<th>1:00 PM - 3:00 PM</th>
<th>3:00 PM - 5:00 PM</th>
<th>5:00 PM - 7:30 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Holloway Ave & Administration Bldg</td>
<td>41%</td>
<td>-18%</td>
<td>194%</td>
<td>15%</td>
<td>400%</td>
<td>117%</td>
</tr>
<tr>
<td>2 Holloway Ave & Cardenas</td>
<td>-27%</td>
<td>15%</td>
<td>0%</td>
<td>0%</td>
<td>14%</td>
<td>8%</td>
</tr>
<tr>
<td>3 Holloway Ave & Arella</td>
<td>-30%</td>
<td>-19%</td>
<td>-15%</td>
<td>76%</td>
<td>12%</td>
<td>100%</td>
</tr>
</tbody>
</table>
When counting vehicles entering and exiting campus, surveyors noted if they were single occupancy vehicles (drive alone), carpools, motorcycles, or other vehicles such as campus vehicles, delivery trucks, or security vehicles. Figure 4-5 provides a count of vehicles by vehicle type for every hour of the cordon count. While the largest percentage of vehicle trips were single occupancy vehicle trips (77%), carpool trips made up more than 17% of all vehicle trips. Additionally, this was nearly a 4% reduction in single occupancy vehicle trips from 2014.

Overall, the highest number of vehicles entering and exiting campus occurred between 9:00 a.m. and 10:00 a.m., with 9.8% of vehicle trips occurring during this time period. This is slightly different to the peak hour for traffic in the area, which according to 511.org is about 7:45 am to 8:45 am. The afternoon/evening peak period for vehicle trips occurred between 4:00 p.m. and 5:00 p.m., with 9.5% of vehicle trips occurring during this time period. This overlaps with area’s peak hour, which 511.org reports as 4:30 pm to 5:30 pm.

Surveyors also noted the number of people in each vehicle, including the number of people for each carpool or in other campus vehicles. Figure 4-6 provides a count of person trips by vehicle type for every hour of the cordon count. In considering the number of person trips, 64% of all person trips were drive alone, while 30% of all person trips were carpools. In other words, from the cordon count, nearly a third of all person trips were conducted by carpool.
Figure 4-5: Count of Vehicles Entering and Exiting by Mode and by Hour

<table>
<thead>
<tr>
<th>Mode</th>
<th>Drive Alone</th>
<th>Carpool</th>
<th>Motorcycle</th>
<th>Other</th>
<th>Total</th>
<th>Total Trips</th>
<th>% Trips by Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter</td>
<td>Exit</td>
<td>Enter</td>
<td>Exit</td>
<td>Enter</td>
<td>Exit</td>
<td></td>
</tr>
<tr>
<td>7:00 - 7:59</td>
<td>362</td>
<td>58</td>
<td>132</td>
<td>31</td>
<td>10</td>
<td>2</td>
<td>622</td>
</tr>
<tr>
<td>8:00 - 8:59</td>
<td>655</td>
<td>135</td>
<td>256</td>
<td>28</td>
<td>4</td>
<td>1</td>
<td>1,137</td>
</tr>
<tr>
<td>9:00 - 9:59</td>
<td>590</td>
<td>219</td>
<td>216</td>
<td>48</td>
<td>2</td>
<td>2</td>
<td>1,153</td>
</tr>
<tr>
<td>10:00- 10:59</td>
<td>452</td>
<td>205</td>
<td>180</td>
<td>78</td>
<td>4</td>
<td>9</td>
<td>981</td>
</tr>
<tr>
<td>11:00- 11:59</td>
<td>286</td>
<td>231</td>
<td>116</td>
<td>103</td>
<td>2</td>
<td>3</td>
<td>792</td>
</tr>
<tr>
<td>12:00-12:59</td>
<td>315</td>
<td>334</td>
<td>244</td>
<td>179</td>
<td>4</td>
<td>1</td>
<td>1,164</td>
</tr>
<tr>
<td>1:00 - 1:59</td>
<td>294</td>
<td>281</td>
<td>152</td>
<td>183</td>
<td>5</td>
<td>3</td>
<td>938</td>
</tr>
<tr>
<td>2:00 - 2:59</td>
<td>227</td>
<td>272</td>
<td>126</td>
<td>148</td>
<td>3</td>
<td>0</td>
<td>791</td>
</tr>
<tr>
<td>3:00 - 3:59</td>
<td>293</td>
<td>390</td>
<td>137</td>
<td>175</td>
<td>5</td>
<td>6</td>
<td>1,048</td>
</tr>
<tr>
<td>4:00 - 4:59</td>
<td>251</td>
<td>520</td>
<td>196</td>
<td>176</td>
<td>0</td>
<td>7</td>
<td>1,200</td>
</tr>
<tr>
<td>5:00 - 5:59</td>
<td>206</td>
<td>541</td>
<td>107</td>
<td>236</td>
<td>4</td>
<td>6</td>
<td>1,186</td>
</tr>
<tr>
<td>6:00- 6:59</td>
<td>162</td>
<td>391</td>
<td>114</td>
<td>204</td>
<td>4</td>
<td>6</td>
<td>908</td>
</tr>
<tr>
<td>7:00 - 7:30</td>
<td>72</td>
<td>210</td>
<td>79</td>
<td>133</td>
<td>0</td>
<td>2</td>
<td>510</td>
</tr>
<tr>
<td>Total</td>
<td>4,165</td>
<td>3,787</td>
<td>2,055</td>
<td>1,722</td>
<td>47</td>
<td>48</td>
<td>6,521</td>
</tr>
<tr>
<td>% of Total</td>
<td>77.2%</td>
<td>17.2%</td>
<td>0.9%</td>
<td>4.7%</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4-6: Count of Persons Entering and Exiting by Mode and by Hour

| Mode | 7:00-7:59 | 8:00-8:59 | 9:00-9:59 | 10:00-10:59 | 11:00-11:59 | 12:00-12:59 | 1:00-1:59 | 2:00-2:59 | 3:00-3:59 | 4:00-4:59 | 5:00-5:59 | 6:00-6:59 | 7:00-7:30 | Total | Total Trips | % Trips by Hour |
|------------|-----------|-----------|-----------|-------------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|---------|-----------|----------------|
| Drive Alone| | | | | | | | | | | | | | | |
| Enter | 362 | 655 | 590 | 452 | 286 | 315 | 294 | 227 | 293 | 251 | 206 | 162 | 72 | 4,165 | 6,521 |
| Exit | 58 | 135 | 219 | 205 | 231 | 334 | 281 | 272 | 390 | 520 | 541 | 391 | 210 | 3,787 | 5,909 |
| Carpool | | | | | | | | | | | | | | 2,055 | |
| Enter | 132 | 256 | 216 | 180 | 116 | 244 | 152 | 126 | 137 | 196 | 107 | 114 | 79 | 2,055 | |
| Exit | 31 | 28 | 48 | 78 | 103 | 179 | 183 | 148 | 175 | 176 | 236 | 204 | 133 | 2,055 | |
| Motorcycle | | | | | | | | | | | | | | 1,722 | 6,521 |
| Enter | 10 | 4 | 2 | 4 | 3 | 4 | 5 | 0 | 5 | 0 | 4 | 4 | 0 | 1,722 | |
| Exit | 2 | 1 | 2 | 9 | 3 | 6 | 3 | 7 | 6 | 7 | 6 | 6 | 2 | 1,722 | 6,521 |
| Other | | | | | | | | | | | | | | 254 | 5,909 |
| Enter | 17 | 41 | 53 | 28 | 26 | 17 | 11 | 9 | 33 | 13 | 18 | 18 | 11 | 254 | |
| Exit | 10 | 17 | 23 | 25 | 25 | 10 | 9 | 6 | 33 | 37 | 68 | 18 | 11 | 254 | 5,909 |
| Total | | | | | | | | | | | | | | 6,521 | 12,430 |
| % of Total | 64.0% | 30.4% | 0.8% | 4.9% | | | | | | | | | 4.1% | 12,430 | |
The data collected in April 2008 was used to establish a baseline number of automobile trips for the entire campus population. Figure 4-7 shows the number of peak hour and total daily auto trips. The peak hour has changed throughout the years, from 4:00 p.m. to 5:00 p.m. in 2008, to 5:00 p.m. to 6:00 p.m. in 2011, to 3:00 p.m. to 4:00 p.m. in 2014, and back to 4:00 p.m. to 5:00 p.m. in 2016.

The number of peak hour trips decreased by 3% between 2008 and 2016, and the number of automobile trips per day decreased by 22% between 2008 and 2016.

Figure 4-7: Peak Hour and Total Auto Trips

<table>
<thead>
<tr>
<th>Time</th>
<th>Peak Hour Auto Trips</th>
<th>% of Total Daily Auto Trips</th>
<th>Total Daily Auto Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 PM – 4:00 PM</td>
<td>1,107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 PM – 5:00 PM</td>
<td>1,200</td>
<td>1,239</td>
<td>10%</td>
</tr>
<tr>
<td>5:00 PM – 6:00 PM</td>
<td>1,198</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 CARBON EMISSIONS

INTRODUCTION

San Francisco State University has committed to pursuing greenhouse gas (GHG) emissions reductions since 2007, a commitment that was reasserted in August 2012 when President Les Wong signed the American College & University Presidents Climate Commitment (ACUPCC).[1] The University created an inventory of greenhouse gas (GHG) emissions from 1990 to 2006 and conducted a second GHG inventory with data through 2008.

The GHG inventory shows that commuting accounts for almost 49% of the total emissions generated by the campus. After the 2008 GHG emissions inventory, Nelson\Nygaard analyzed surveys from 1970 and 1992 to compare results to historical patterns. Compared to the 2008 travel survey commute related emissions had decreased by an estimated 53% from 1990 levels.[3] Recognizing the important role that transportation plays in GHG emissions and the potential for reducing GHG emissions through changes in travel behavior, the online survey was designed to provide data which could be used to better understand University affiliates’ travel behavior, and help develop a strategic action plan for reducing GHG emissions.

Utilizing the data gathered in the online survey, this chapter provides an analysis of GHG emissions resulting from commute trips to and from campus. GHG emissions were measured in carbon dioxide equivalents (CO$_2$-e), which is a total of all GHGs converted into CO$_2$ at a rate based on the gas’ impact on ozone depletion.

METHODOLOGY

The online survey was designed in part to enable the University to calculate the emissions related to transportation. For each leg of their commute journeys, respondents were asked to provide both the mode they used and the distance travelled. The average distance traveled by students and staff on each mode was calculated, and each resulting value was multiplied by the weighted number of students and staff taking each mode on April 6, 2016. Data from the survey was scaled to estimate travel behavior for the entire population of students, faculty, and staff at the university in order to determine distances collectively traveled on each mode.

Carbon intensities (pounds of emissions per vehicle mile traveled measured in pounds of CO$_2$-e) were then calculated for each mode (assumptions are listed in the following section).

[1] www.presidentsclimatecommitment.org
[3] San Francisco State University Climate Action Plan 2010
The product of distance traveled on each mode and the mode's carbon intensity provide the total emissions attributable to the SF State commute for that mode on a given day.

\[\text{Miles} \times \text{CO}_2\text{-e/mile} = \text{CO}_2\text{-e (for each mode)} \]

Using the daily CO\textsubscript{2}-e inventory, an annual CO\textsubscript{2}-e inventory was determined.14

The scaling factor used in the previous reports was adjusted this year in order to reflect a per mode weighted scaling factor. All data from previous years was adjusted under the same methodology. In addition, the unit of measurement for CO\textsubscript{2} emissions was changed in 2014 to metric tons, which is the industry standard. This was maintained in the 2016 analysis. In previous survey years, short tons was used as the unit of measurement. The 2008 and 2011 numbers shown in this report reflect this change in metrics.

Assumptions

The following assumptions were used in creating the emissions inventory for SF State:

- For all modes except BART, only tailpipe emissions are counted. Other emissions, such as those associated with fuel production and refining, vehicle manufacture, construction and maintenance of roadway/guideway, etc., are excluded. It should be noted that, taken together, these add approximately 30% (bus) to 60% (private motor vehicle) to a mode’s average per-mile emissions (Chester & Horvath, 2008). In the one exception to this, emissions from the production of electricity used to power the BART system, including stations, trains, and other facilities, was counted.

- Average automobile fuel efficiency in 2016 is 21.6 MPG (Source: US EPA)

- Electric vehicle usage is assumed to be integrated into the US EPA MPG average fuel efficiency.

- Average carbon coefficients for a typical passenger vehicle in 2016 is 19.59 lbs CO\textsubscript{2} per gallon, respectively (Source: US EPA)

- Bus emissions:
 - Emissions from bus facilities excluded (due to lack of data)
 - Bus fuel efficiency of 4.5 MPG (typical for a 40-seat bus)
 - Trolleybus operation is assumed to produce zero emissions due to Muni’s use of exclusively hydroelectric power (Source: Muni)
 - Average overall bus ridership is calculated from Muni surveys on routes which directly serve the SF State campus (calculated per bus average on those lines was 14.4 passengers). Bus emissions divided by average load factor gives per passenger-mile emissions. It was assumed that the SamTrans line feeding SF State has similar ridership
 - Bus emissions were calculated from these assumptions to be 0.30 lbs of CO\textsubscript{2}-e per passenger mile (Source: Muni)

- BART pounds of CO\textsubscript{2}-e emissions per passenger mile are 0.11394. These include facilities energy use. (Source: BART)

14 The annual CO\textsubscript{2} emissions inventory is based on 174 days. This includes all regular school days and excludes weekends, holidays, summer break, winter break and spring break.
- Caltrain emissions of 0.12018 lbs of CO$_2$-e per passenger mile (Source: Caltrain)
- SF State Shuttle buses were upgraded in January 2015 to CNG buses with a capacity of 60 passengers. Assumptions were made that there are 6,000 daily rides (Source: SFSU campus shuttle improved bigger better buses), an assumed average of two miles traveled on the shuttle, a calculated average occupancy of 48 passengers. Occupancy was calculated by dividing the average daily rides, noted above, by the number of buses per day (hourly frequency by the number of hours of operation) An emissions of 8.06 lbs of CO$_2$-e per mile was used for SF State Shuttle was assumed (Source: US Department of Energy Wells-to-wheels GHG emissions)
RESULTS

On a typical travel day in 2016, University affiliates travelled approximately 201,400 miles commuting to and from the SF State compared to approximately 203,900 in 2014, approximately 185,200 miles in 2011, and approximately 204,900 miles in 2008 (Figure 5-1). This represents a 1.23% decrease in daily passenger miles between 2014 and 2016 and a 1.7% decrease in daily passenger miles between 2008 and 2016.

Of the total miles traveled in 2016, 38% (75,800 miles) were travelled on BART, which is the same percentage as in 2014. This represents a slight increase in mode share from 2008, when approximately 37% of daily miles were on BART. Forty-one percent of the average 2016 day’s miles are travelled in private vehicles, slightly more than 2014 and 2008 when 37% of daily miles were travelled in private vehicles. However, the overall numbers of miles travelled by drive alone vehicles has increased.
Figure 5-1: Total Passenger Miles Travelled per Day by Mode
BART commuters to SF State travel about 7,500 fewer miles per day than car drivers, but each emit only 650 pounds of CO$_2$-e in a day compared to approximately 6,000 pounds of CO$_2$-e emitted by those who drive alone. There was a decrease of approximately 20 pounds of CO$_2$-e emitted per day by BART riders between 2008 and 2016, which correlates with a decrease in BART ridership over the same time period (Figure 5-2).

The SF State Shuttle emits 75 pounds of CO$_2$-e per day, an almost one to 10 relationship to the number of passenger miles travelled (5,500 miles). The 2016 total represents a decrease in miles travelled over the last few years and a decrease in emissions. Part of the decrease could also be attributed due to the University obtaining new 60-passenger CNG buses in January of 2015. Muni electric vehicles do not produce any CO$_2$-e emissions given that they use hydroelectric power produced by Hetch Hetchy Dam. CO$_2$-e emissions generated by Caltrain are about the same as in 2016 as they were in 2008, as daily passenger miles have increased.
Figure 5-2: Total Pounds of CO2-e per Day by Mode
Private vehicles have the highest levels of average-day CO₂-e emissions per passenger mile (Figure 5-3) of all the modes evaluated. More than half of all daily passenger miles are travelled on BART, but only 12% of the total daily pounds of CO₂-e emissions are generated by BART. Thirty-eight percent of the total daily passenger miles are from drive alone, however persons driving alone are the largest contributors to SF State’s CO₂-e commute travel emissions, representing 70% of the total daily pounds of CO₂-e emissions (Figure 5-4).

Figure 5-3: Pounds of CO₂ Emissions per Passenger Mile
On an annual basis in 2016, University affiliates commute more than 35 million miles, compared to the approximately 35.4 million miles in 2014, 32.2 million miles in 2011, and 35.6 million miles in 2008. This represents a 65% change between 2008 and 2016 (Figure 5-4).

As result, in 2016, a total of 7,500 metric tons of CO₂-e were produced by university affiliates’ commutes compared to 7,700 metric tons of CO₂-e in 2014, 7,000 metric tons of CO₂-e in 2011, and 8,000 metric tons of CO₂-e in 2008, a 6% decrease in CO₂-e emissions between 2008 and 2016.

With the increase in the population, the raw number of University affiliates driving for some portion of their journey has increased, though the overall percentage of the population that drives alone has increased by 11% since 2008. The number of miles travelled by BART commuters has decreased by approximately 1,000 miles since 2008 but only resulted in a decrease of approximately 20 metric tons of CO₂-e since 2008.
Figure 5-5: Passenger-miles travelled, pounds CO\(_2\) per mile, and total CO\(_2\) per year\(^{15}\) by mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Daily Passenger Miles</th>
<th>Annual Passenger Miles</th>
<th>Total Metric Tons CO(_2) per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Alone</td>
<td>83,300</td>
<td>76,000</td>
<td>68,300</td>
</tr>
<tr>
<td>BART</td>
<td>75,800</td>
<td>77,100</td>
<td>74,200</td>
</tr>
<tr>
<td>Muni (Diesel Vehicles)</td>
<td>16,800</td>
<td>23,600</td>
<td>21,600</td>
</tr>
<tr>
<td>Muni (Electric Vehicles)</td>
<td>10,100</td>
<td>3,800</td>
<td>2,500</td>
</tr>
<tr>
<td>Carpool</td>
<td>4,900</td>
<td>14,500</td>
<td>11,300</td>
</tr>
<tr>
<td>SF State Shuttle Bus</td>
<td>5,500</td>
<td>5,500</td>
<td>5,500</td>
</tr>
<tr>
<td>Caltrain</td>
<td>2,600</td>
<td>3,300</td>
<td>1,700</td>
</tr>
<tr>
<td>TNC/Taxi</td>
<td>2,400</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Walk</td>
<td>11,600</td>
<td>9,500</td>
<td>4,100</td>
</tr>
<tr>
<td>Bike</td>
<td>4,600</td>
<td>5,800</td>
<td>5,300</td>
</tr>
<tr>
<td>Total</td>
<td>217,600</td>
<td>219,200</td>
<td>194,500</td>
</tr>
</tbody>
</table>

\(^{15}\) The annual CO\(_2\) emissions inventory is based on 174 days. This includes all regular school days and excludes weekends, holidays, summer break, winter break and spring break.
Appendix A Survey Instruments
ONLINE SURVEY
SF State Transportation Survey 2016 - Nelson\Nygaard

SF State Transportation Survey. Please complete this survey about your commute and general travel to and from SF State's main campus at 1600 Holloway on Wednesday, April 6, 2016. The survey takes approximately 5 minutes to complete, and your response is greatly appreciated. The survey will close on April 14, 2016. Upon completing the survey you will have an opportunity to enter for a chance to win a $100 gift card to the SF State Bookstore. Thank you for helping us improve the quality of our campus!

q1 What is your primary affiliation with SF State?
 Freshman (1)
 Other undergraduate (2)
 Graduate student (3)
 Staff or Administrator (4)
 Faculty (5)
 Visitor/contractor (6)
 Other (7)

q2 Are you full-time or part-time?
 Full-time (1)
 Part-time (2)
 Not Applicable (3)

q3 On average, how many days a week do you come to the SF State main campus at 1600 Holloway?
 0 (0)
 1 (1)
 2 (2)
 3 (3)
 4 (4)
 5 (5)
 6 (6)
7 (7)

q4 Where do you live?
On campus (1)
Off campus (2)

Answer If Where do you live? On campus Is Selected
q4a Specify dorm/apartment
 Mary Ward Hall (1)
 Mary Park Hall (2)
 Towers at Centennial Square (3)
 Science & Technology Theme Community (4)
 University Park North (5)
 University Park South (6)
 Village at Centennial Square (7)

Answer If Where do you live? Off campus Is Selected
q4b Specify zip code

q4c What is your average cost for your round trip commute to and from SF State? Please round to the nearest dollar.
 No Cost (0)
 $1 (1)
 $2 (2)
 $3 (3)
 $4 (4)
 $5 (5)
 $6 (6)
 $7 (7)
 $8 (8)
 $9 (9)
 $10 (10)
 $11 (11)
Q151 Were you on campus on Wednesday, April 6th 2016?

 Yes (1)
 No (2)

Answer If Were you on campus on Wednesday, April 6th 2016? No Is Selected

Q159 Have you participated in or used / do you currently participate in or use any of the following programs and services?

 I wasn't aware of this service (1) I've heard of this service but never used it (2) I occasionally (1-2 times a week) use this service (3) I frequently (3-5 days a week) use this service (4)

Free round trip transfer on Muni 28/28R from Daly City BART when using Clipper Card (1)

Bike Barn (2)
Bike Racks (7)
511 RideMatch Service (3)
Zipcar (9)
Electric Vehicle Charging Stations (10)
Answer If What is your primary affiliation with SF State? Staff or Administrator Is Selected Or What is your primary affiliation with SF State? Faculty Is Selected And Were you on campus on Wednesday, April 6th 2016? No Is Selected

Q160 For Employees: Have you participated in or used / do you currently participate in or use any of the following programs and services?

- I wasn't aware of this service (1)
- I've heard of this service but never used it (2)
- I occasionally (1-2 times a week) use this service (3)
- I frequently (3-5 days a week) use this service (4)

Commuter Check Pre-Tax Transit Benefit (pre-tax purchase of transit passes) (1)
Vanpool (2)
Emergency Ride Home Program (3)
Pre-Tax Parking Benefit (pre-tax purchase of parking) (4)

Answer If Were you on campus on Wednesday, April 6th 2016? No Is Selected

Q156 Do you know where to go if you have questions about your commute or need other transportation information?

- Yes, and I have used the resources available to me before (1)
- Yes, but I have not used the resources available to me (2)
- No, I do not know what resources are available to me (3)

Answer If Were you on campus on Wednesday, April 6th 2016? No Is Selected

Q157 Which resources have you used to get transportation and commute information? (please check all that apply)

- SF State Website home page (1)
- Parking & Transportation Website (2)
- Word of mouth (fellow student or coworker) (3)
- My manager (5)
- Human resources (6)
- Hiring materials (7)
- A distribution list that I signed up for (8)
- Digital screens found around campus (9)
- Other (please specify) (10) ____________________
Q158 In an effort to reduce parking demand and to expand affordable transportation options, SF State is exploring the possibility of pursuing discounts for our students, faculty, and staff for on-demand taxi services known as TNCs such as Uber and Lyft. Would you be interested in such a benefit?

 Yes (1)
 No (2)

Q153 Please provide any additional comments about transportation issues that relate to SF State.

Q154 If you would like to be entered for a chance to receive a $100 gift card to the SF State Bookstore, please enter your email address.

Q133 For your trip to the main campus, where did you start your trip?(For example, Main Campus and On-Campus Dorms = 94132).

Q136 For your trip to the main campus, what time did you arrive at the main campus? Please enter time in the following format: HH:MM AM

 HH (9)
 MM (10)
 AM/PM (11)

q5pre Select the mode of transportation for your first segment:

 Walk, bike, or other active transport (1)
q5 Which mode of transportation did you use?

If Select your first mode of transportation: Walk, bike, or other active transport Is Selected

Walk (1)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

Bicycle (2)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

Other (3)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

Muni (4)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

BART (5)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

SF State Shuttle (6)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

Caltrain (7)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) (8)
If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

5. Select your first mode of transportation: Private Vehicle Is Selected
 Drove Alone (9)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

Private Vehicle Is Selected
 Dropped Off / Picked Up (10)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

Private Vehicle Is Selected
 Motorcycle/Moped (11)

If Describe your trip to the main campus on Wednesday, April 23, 2014. If you used more than one mode of transportation, please start with the first mode.

Private Vehicle Is Selected
 Carpool/Vanpool (12)

If Select your first mode of transportation: Taxi or TNC (Uber, Lyft, etc.) Is Selected
 Taxi (19)

If Select your first mode of transportation: Taxi or TNC (Uber, Lyft, etc.) Is Selected
 Uber (20)

If Select your first mode of transportation: Taxi or TNC (Uber, Lyft, etc.) Is Selected
 Lyft (21)

If Select your first mode of transportation: Taxi or TNC (Uber, Lyft, etc.) Is Selected
 Other on-demand taxi or real-time ride-sharing service (22)

Answer If Which mode of transportation did you use? Walk Is Selected
Or Which mode of transportation did you use? Bicycle Is Selected
Or Which mode of transportation did you use? Other Is Selected

q5a Please estimate (in miles) the distance you traveled for this segment of your trip (E.g. If you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Muni Is Selected

q5b Specify Muni Line
 1-California (1)
 1AX-California 'A' Express (2)
 1BX-California 'B' Express (3)
2-Clement (4)
3-Jackson (5)
5-Fulton (7)
5R-Fulton Rapid (98)
6-Haight-Parnassus (8)
7-Haight-Noriega (61)
7R-Haight-Noriega Rapid (62)
7X-Noriega Express (75)
8AX Bayshore 'A' Express (90)
8BX Bayshore 'B' Express (91)
8-Bayshore (92)
9-San Bruno (10)
9R-San Bruno Rapid (93)
10-Townsend (14)
12-Folsom/Pacific (15)
14-Mission (16)
14R-Mission Rapid (17)
14X-Mission Express (18)
18-46th Avenue (94)
19-Polk (23)
21-Hayes (25)
22-Fillmore (26)
23-Monterey (27)
24-Divisadero (28)
25-Treasure Island (76)
27-Bryant (30)
28-19th Avenue (77)
28R-19th Avenue Rapid (32)
29-Sunset (78)
30-Stockton (30)
30X-Marina Express (35)
31-Balboa (36)
31AX-Balboa 'A' Express (37)
31BX-Balboa 'B' Express (38)
33-Ashbury-18th (39)
35-Eureka (40)
36-Teresita (41)
37-Corbett (42)
38-Geary (43)
38AX-Geary 'A' Express (44)
38BX-Geary 'B' Express (45)
38R-Geary Rapid (46)
39-Coit Tower (47)
41-Union (48)
43-Masonic (49)
44-O'Shaughnessy (50)
45-Union-Stockton (51)
47-Van Ness (52)
48-24th Street (53)
49-Van Ness-Mission (54)
52-Excelsior (55)
54-Felton (57)
55-16th Street (101)
56-Rutland (58)
57-Parkmerced (12)
66-Quintara (59)
67-Bernal Heights (60)
76X-Marin Headlands Express (63)
81X-Caltrain Express (65)
82X-Levi Plaza Express (66)
83X-Mid-Market Express (99)
88-BART Shuttle (67)
90-San Bruno Owl (69)
91-Owl (70)
108-Treasure Island (73)
F-Market & Wharves (79)
J-Church (80)
KT-Ingleside/Third Street (100)
L-Taraval (82)
M-Ocean View (74)
N-Judah (84)
California-Cable Car (87)
Powell-Hyde-Cable Car (88)
Powell-Mason-Cable Car (89)

Answer If Which mode of transportation did you use? Muni Is Selected
q5c Please estimate (in miles) the distance you traveled in this segment of your trip (E.g. If you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? BART Is Selected
q5d Specify BART start station
 12th St. Oakland City Center (1)
 16th St. Mission (2)
 19th St. Oakland (3)
 24th St. Mission (4)
 Ashby (5)
 Balboa Park (6)
 Bay Fair (7)
 Castro Valley (8)
 Civic Center (9)
 Coliseum/Oakland Airport (10)
 Colma (11)
 Concord (12)
 Daly City (13)
 Downtown Berkeley (14)
 Dublin/Pleasanton (15)
 El Cerrito del Norte (16)
 El Cerrito Plaza (17)
 Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of transportation did you use? BART Is Selected
q5e Specify BART end station
 12th St. Oakland City Center (1)
 16th St. Mission (2)
 19th St. Oakland (3)
 24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int’l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of transportation did you use? Caltrain Is Selected

q5f Specify Caltrain start station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
 Blossom Hill (5)
 Broadway (6)
 Burlingame (7)
 California Ave (8)
 Capitol (9)
 College Park (10)
 Diridon (11)
 Gilroy (12)
 Hayward Park (13)
 Hillsdale (14)
 Lawrence (15)
 Menlo Park (16)
 Millbrae (17)
 Morgan Hill (18)
 Mountain View (19)
 Palo Alto (20)
 Redwood City (21)
 San Antonio (22)
 San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of transportation did you use? Caltrain Is Selected
q5g Specify Caltrain end station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
 Blossom Hill (5)
 Broadway (6)
 Burlingame (7)
 California Ave (8)
 Capitol (9)
 College Park (10)
 Diridon (11)
 Gilroy (12)
 Hayward Park (13)
 Hillsdale (14)
 Lawrence (15)
 Menlo Park (16)
 Millbrae (17)
 Morgan Hill (18)
 Mountain View (19)
 Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of transportation did you use? Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) Is Selected
q5h Please estimate (in miles) the distance you traveled for this segment of your trip (E.g. If you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected
q5i I was the:
 Passenger (1)
 Driver (2)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected
q5i Number of people in the carpool/vanpool on Wednesday April, 6, 2016:
 2 (2)
 3 (3)
 4 (4)
 5 (5)
 6 (6)
 7 (7)
 More than 7 (8)
Answer If Select your first mode of transportation: Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

q5j Please estimate (in miles) the distance you traveled for this segment of your trip (E.g. If you traveled 1 1/2 miles, enter 1.5)

Answer If Select your first mode of transportation: Taxi, Uber, Lyft, or other on-demand taxi or real-time ridesharing services known as TNCs Is Selected

Q137 Please estimate (in miles) the distance you traveled for this segment of your trip (E.g. If you traveled 1 1/2 miles, enter 1.5)

Q230 On your trip to SF State's main campus, what was the mode of transportation for your second segment? If you used BART previously, please use this question to tell us how you got from BART to campus.

Walk, bike, or other active transport (1)

Public transportation / shuttle (2)

Private vehicle (cars, carpool, motorcycle, etc.) (3)

Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs (4)

None (5)

If None Is Selected, Then Skip To End of Block

Q231 Which mode of transportation did you use?

If On your trip to SF State's main campus, what was your second mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you g... Walk, bike, or other active transport Is Selected

Walk (1)

If On your trip to SF State's main campus, what was your second mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you g... Walk, bike, or other active transport Is Selected

Bicycle (2)

If On your trip to SF State's main campus, what was your second mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you g... Walk, bike, or other active transport Is Selected

Other (3)

If On your trip to SF State's main campus, what was your second mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you g... Public transportation / shuttle Is Selected

Muni (4)
If on your trip to SF State's main campus, what was your second mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you got there...)

- **Public transportation / shuttle** Is Selected
 - BART (5)
 - SF State Shuttle (6)
 - Caltrain (7)
 - Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) (8)

- **Private vehicle (cars, carpool, motorcycle, etc.)** Is Selected
 - Drove Alone (9)
 - Dropped Off / Picked Up (10)
 - Motorcycle/Moped (11)
 - Carpool/Vanpool (12)

- **Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs** Is Selected
 - Taxi (19)

If on your trip to SF State's main campus, what was your second mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you got there...)

- **Private vehicle (cars, carpool, motorcycle, etc.)** Is Selected
 - Drove Alone (9)
 - Dropped Off / Picked Up (10)
 - Motorcycle/Moped (11)
 - Carpool/Vanpool (12)

- **Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs** Is Selected
 - Taxi (19)
opportunity to tell us how you g... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Uber (20)

If On your trip to SF State's main campus, what was your second mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you g... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Lyft (21)

If On your trip to SF State's main campus, what was your second mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you g... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Other on-demand taxi or real-time ride-sharing service (22)

Answer If Which mode of transportation did you use? Walk Is Selected Or Which mode of transportation did you use? Bicycle Is Selected Or Which mode of transportation did you use? Other Is Selected

Q232 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Muni Is Selected

Q205 Specify Muni Line

1-California (1)
1AX-California 'A' Express (2)
1BX-California 'B' Express (3)
2-Clement (4)
3-Jackson (5)
5-Fulton (7)
5R-Fulton Rapid (98)
6-Haight-Parnassus (8)
7-Haight-Noriega (61)
7R-Haight-Noriega Rapid (62)
7X-Noriega Express (75)
8AX Bayshore 'A' Express (90)
8BX Bayshore 'B' Express (91)
8-Bayshore (92)
<table>
<thead>
<tr>
<th>Route</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>San Bruno (10)</td>
</tr>
<tr>
<td>9R</td>
<td>San Bruno Rapid (93)</td>
</tr>
<tr>
<td>10</td>
<td>Townsend (14)</td>
</tr>
<tr>
<td>12</td>
<td>Folsom/Pacific (15)</td>
</tr>
<tr>
<td>14</td>
<td>Mission (16)</td>
</tr>
<tr>
<td>14R</td>
<td>Mission Rapid (17)</td>
</tr>
<tr>
<td>14X</td>
<td>Mission Express (18)</td>
</tr>
<tr>
<td>18</td>
<td>46th Avenue (94)</td>
</tr>
<tr>
<td>19</td>
<td>Polk (23)</td>
</tr>
<tr>
<td>21</td>
<td>Hayes (25)</td>
</tr>
<tr>
<td>22</td>
<td>Fillmore (26)</td>
</tr>
<tr>
<td>23</td>
<td>Monterey (27)</td>
</tr>
<tr>
<td>24</td>
<td>Divisadero (28)</td>
</tr>
<tr>
<td>25</td>
<td>Treasure Island (76)</td>
</tr>
<tr>
<td>27</td>
<td>Bryant (30)</td>
</tr>
<tr>
<td>28</td>
<td>19th Avenue (77)</td>
</tr>
<tr>
<td>28R</td>
<td>19th Avenue Rapid (32)</td>
</tr>
<tr>
<td>29</td>
<td>Sunset (78)</td>
</tr>
<tr>
<td>30</td>
<td>Stockton (30)</td>
</tr>
<tr>
<td>30X</td>
<td>Marina Express (35)</td>
</tr>
<tr>
<td>31</td>
<td>Balboa (36)</td>
</tr>
<tr>
<td>31AX</td>
<td>Balboa 'A' Express (37)</td>
</tr>
<tr>
<td>31BX</td>
<td>Balboa 'B' Express (38)</td>
</tr>
<tr>
<td>33</td>
<td>Ashbury-18th (39)</td>
</tr>
<tr>
<td>35</td>
<td>Eureka (40)</td>
</tr>
<tr>
<td>36</td>
<td>Teresita (41)</td>
</tr>
<tr>
<td>37</td>
<td>Corbett (42)</td>
</tr>
<tr>
<td>38</td>
<td>Geary (43)</td>
</tr>
<tr>
<td>38AX</td>
<td>Geary 'A' Express (44)</td>
</tr>
<tr>
<td>38BX</td>
<td>Geary 'B' Express (45)</td>
</tr>
<tr>
<td>38R</td>
<td>Geary Rapid (46)</td>
</tr>
<tr>
<td>39</td>
<td>Coit Tower (47)</td>
</tr>
<tr>
<td>41</td>
<td>Union (48)</td>
</tr>
</tbody>
</table>
43-Masonic (49)
44-O'Shaughnessy (50)
45-Union-Stockton (51)
47-Van Ness (52)
48-24th Street (53)
49-Van Ness-Mission (54)
52-Excelsior (55)
54-Felton (57)
55-16th Street (101)
56-Rutland (58)
57-Parkmerced (12)
66-Quintara (59)
67-Bernal Heights (60)
76X-Marin Headlands Express (63)
81X-Caltrain Express (65)
82X-Levi Plaza Express (66)
83X-Mid-Market Express (99)
88-BART Shuttle (67)
90-San Bruno Owl (69)
91-Owl (70)
108-Treasure Island (73)
F-Market & Wharves (79)
J-Church (80)
KT-Ingleside/Third Street (100)
L-Taraval (82)
M-Ocean View (74)
N-Judah (84)
California-Cable Car (87)
Powell-Hyde-Cable Car (88)
Powell-Mason-Cable Car (89)

Answer If Which mode of transportation did you use? Muni Is Selected
Q234 Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? BART Is Selected

Q235 Specify BART start station

12th St. Oakland City Center (1)
16th St. Mission (2)
19th St. Oakland (3)
24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of transportation did you use? BART Is Selected
Q236 Specify BART end station
12th St. Oakland City Center (1)
16th St. Mission (2)
19th St. Oakland (3)
24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Answer If Which mode of transportation did you use? Caltrain Is Selected
Q237 Specify Caltrain start station

Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int’l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)
22nd Street (1)
Atherton (2)
Bayshore (3)
Belmont (4)
Blossom Hill (5)
Broadway (6)
Burlingame (7)
California Ave (8)
Capitol (9)
College Park (10)
Diridon (11)
Gilroy (12)
Hayward Park (13)
Hillsdale (14)
Lawrence (15)
Menlo Park (16)
Millbrae (17)
Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)
Answer: If Which mode of transportation did you use? Caltrain is selected.

Q238 Specify Caltrain end station

- 22nd Street (1)
- Atherton (2)
- Bayshore (3)
- Belmont (4)
- Blossom Hill (5)
- Broadway (6)
- Burlingame (7)
- California Ave (8)
- Capitol (9)
- College Park (10)
- Diridon (11)
- Gilroy (12)
- Hayward Park (13)
- Hillsdale (14)
- Lawrence (15)
- Menlo Park (16)
- Millbrae (17)
- Morgan Hill (18)
- Mountain View (19)
- Palo Alto (20)
- Redwood City (21)
- San Antonio (22)
- San Bruno (23)
- San Carlos (24)
- San Francisco (25)
- San Jose (26)
- San Martin (27)
- San Mateo (28)
- Santa Clara (29)
- South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of transportation did you use? Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) Is Selected
Q239 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected
Q240 I was the:
Passenger (1)
Driver (2)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected
Q241 Number of people in the carpool/vanpool on Wednesday April, 6, 2016:
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
More than 7 (8)

Answer If On your trip to SF State's main campus, what was your second mode of transportation? (If your las... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected
Q242 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If On your trip to SF State's main campus, what was your second mode of transportation? (If your las... Taxi, Uber, Lyft, or other on-demand taxi or real-time ridesharing services known as TNCs Is Selected
Q243 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
Q122 On your trip to SF State's main campus, what was the mode of transportation for your third segment? If you used BART previously, please use this question to tell us how you got from BART to campus.

- Walk, bike, or other active transport (1)
- Public transportation / shuttle (2)
- Private vehicle (cars, carpool, motorcycle, etc.) (3)
- Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs (4)
- None (5)

If None Is Selected, Then Skip To End of Block

Q109 Which mode of transportation did you use?

If On your trip to SF State's main campus, what was your third mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you got from... Walk, bike, or other active transport Is Selected

- Walk (1)

If On your trip to SF State's main campus, what was your third mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you got from... Walk, bike, or other active transport Is Selected

- Bicycle (2)

If On your trip to SF State's main campus, what was your third mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you got from... Walk, bike, or other active transport Is Selected

- Other (3)

If On your trip to SF State's main campus, what was your third mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you got from... Public transportation / shuttle Is Selected

- Muni (4)

If On your trip to SF State's main campus, what was your third mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you got from... Public transportation / shuttle Is Selected

- BART (5)

If On your trip to SF State's main campus, what was your third mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you got from... Public transportation / shuttle Is Selected

- SF State Shuttle (6)

If On your trip to SF State's main campus, what was your third mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us how you got from... Public transportation / shuttle Is Selected

- Caltrain (7)
If On your trip to SF State’s main campus, what was your third mode of transportation? (If your prev...
 Public transportation / shuttle Is Selected
 Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) (8)
If On your trip to SF State’s main campus, what was your third mode of transportation? (If your prev...
 Private vehicle (cars, carpool, motorcycle, etc.) Is Selected
 Drove Alone (9)
If On your trip to SF State’s main campus, what was your third mode of transportation? (If your prev...
 Private vehicle (cars, carpool, motorcycle, etc.) Is Selected
 Dropped Off / Picked Up (10)
If On your trip to SF State’s main campus, what was your third mode of transportation? (If your prev...
 Private vehicle (cars, carpool, motorcycle, etc.) Is Selected
 Motorcycle/Moped (11)
If On your trip to SF State’s main campus, what was your third mode of transportation? (If your prev...
 Private vehicle (cars, carpool, motorcycle, etc.) Is Selected
 Carpool/Vanpool (12)
If On your trip to SF State’s main campus, what was your third mode of transportation? (If your prev...
 Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected
 Taxi (19)
If On your trip to SF State’s main campus, what was your third mode of transportation? (If your prev...
 Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected
 Uber (20)
If On your trip to SF State’s main campus, what was your third mode of transportation? (If your prev...
 Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected
 Lyft (21)
If On your trip to SF State’s main campus, what was your third mode of transportation? (If your prev...
 Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected
 Other on-demand taxi or real-time ride-sharing service (22)

Answer If Which mode of Transportation did you use? Walk Is Selected Or Which mode of Transportation did you use? Bicycle Is Selected Or Which mode of Transportation did you use? Other Is Selected
Q110 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
Answer If Which mode of Transportation did you use? Muni Is Selected
Q206 Specify Muni Line

1-California (1)
 1AX-California 'A' Express (2)
 1BX-California 'B' Express (3)
2-Clement (4)
3-Jackson (5)
5-Fulton (7)
5R-Fulton Rapid (98)
6-Haight-Parnassus (8)
7-Haight-Noriega (61)
7R-Haight-Noriega Rapid (62)
7X-Noriega Express (75)
8AX Bayshore 'A' Express (90)
8BX Bayshore 'B' Express (91)
8-Bayshore (92)
9-San Bruno (10)
9R-San Bruno Rapid (93)
10-Townsend (14)
12-Folsom/Pacific (15)
14-Mission (16)
14R-Mission Rapid (17)
14X-Mission Express (18)
18-46th Avenue (94)
19-Polk (23)
21-Hayes (25)
22-Fillmore (26)
23-Monterey (27)
24-Divisadero (28)
25-Treasure Island (76)
27-Bryant (30)
28-19th Avenue (77)
28R-19th Avenue Rapid (32)
<table>
<thead>
<tr>
<th>Route</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Sunset (78)</td>
</tr>
<tr>
<td>30</td>
<td>Stockton (30)</td>
</tr>
<tr>
<td>30X</td>
<td>Marina Express (35)</td>
</tr>
<tr>
<td>31</td>
<td>Balboa (36)</td>
</tr>
<tr>
<td>31AX</td>
<td>Balboa 'A' Express (37)</td>
</tr>
<tr>
<td>31BX</td>
<td>Balboa 'B' Express (38)</td>
</tr>
<tr>
<td>33</td>
<td>Ashbury-18th (39)</td>
</tr>
<tr>
<td>35</td>
<td>Eureka (40)</td>
</tr>
<tr>
<td>36</td>
<td>Teresita (41)</td>
</tr>
<tr>
<td>37</td>
<td>Corbett (42)</td>
</tr>
<tr>
<td>38</td>
<td>Geary (43)</td>
</tr>
<tr>
<td>38AX</td>
<td>Geary 'A' Express (44)</td>
</tr>
<tr>
<td>38BX</td>
<td>Geary 'B' Express (45)</td>
</tr>
<tr>
<td>38R</td>
<td>Geary Rapid (46)</td>
</tr>
<tr>
<td>39</td>
<td>Coit Tower (47)</td>
</tr>
<tr>
<td>41</td>
<td>Union (48)</td>
</tr>
<tr>
<td>43</td>
<td>Masonic (49)</td>
</tr>
<tr>
<td>44</td>
<td>O'Shaughnessy (50)</td>
</tr>
<tr>
<td>45</td>
<td>Union-Stockton (51)</td>
</tr>
<tr>
<td>47</td>
<td>Van Ness (52)</td>
</tr>
<tr>
<td>48</td>
<td>24th Street (53)</td>
</tr>
<tr>
<td>49</td>
<td>Van Ness-Mission (54)</td>
</tr>
<tr>
<td>52</td>
<td>Excelsior (55)</td>
</tr>
<tr>
<td>54</td>
<td>Felton (57)</td>
</tr>
<tr>
<td>55</td>
<td>16th Street (101)</td>
</tr>
<tr>
<td>56</td>
<td>Rutland (58)</td>
</tr>
<tr>
<td>57</td>
<td>Parkmerced (12)</td>
</tr>
<tr>
<td>66</td>
<td>Quintara (59)</td>
</tr>
<tr>
<td>67</td>
<td>Bernal Heights (60)</td>
</tr>
<tr>
<td>76X</td>
<td>Marin Headlands Express (63)</td>
</tr>
<tr>
<td>81X</td>
<td>Caltrain Express (65)</td>
</tr>
<tr>
<td>82X</td>
<td>Levi Plaza Express (66)</td>
</tr>
<tr>
<td>83X</td>
<td>Mid-Market Express (99)</td>
</tr>
</tbody>
</table>
88-BART Shuttle (67)
90-San Bruno Owl (69)
91-Owl (70)
108-Treasure Island (73)
F-Market & Wharves (79)
J-Church (80)
KT-Ingleside/Third Street (100)
L-Taraval (82)
M-Ocean View (74)
N-Judah (84)
California-Cable Car (87)
Powell-Hyde-Cable Car (88)
Powell-Mason-Cable Car (89)

Answer If Which mode of Transportation did you use? Muni Is Selected

Q112 Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of Transportation did you use? BART Is Selected

Q113 Specify BART start station
 12th St. Oakland City Center (1)
 16th St. Mission (2)
 19th St. Oakland (3)
 24th St. Mission (4)
 Ashby (5)
 Balboa Park (6)
 Bay Fair (7)
 Castro Valley (8)
 Civic Center (9)
 Coliseum/Oakland Airport (10)
 Colma (11)
 Concord (12)
 Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of Transportation did you use? BART Is Selected
Q114 Specify BART end station

12th St. Oakland City Center (1)
16th St. Mission (2)
19th St. Oakland (3)
24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of Transportation did you use? Caltrain Is Selected
Q115 Specify Caltrain start station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
 Blossom Hill (5)
 Broadway (6)
 Burlingame (7)
 California Ave (8)
 Capitol (9)
 College Park (10)
 Diridon (11)
 Gilroy (12)
 Hayward Park (13)
 Hillsdale (14)
 Lawrence (15)
 Menlo Park (16)
 Millbrae (17)
 Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of Transportation did you use? Caltrain Is Selected

Q116 Specify Caltrain end station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
 Blossom Hill (5)
 Broadway (6)
 Burlingame (7)
 California Ave (8)
 Capitol (9)
 College Park (10)
 Diridon (11)
 Gilroy (12)
 Hayward Park (13)
 Hillsdale (14)
 Lawrence (15)
Menlo Park (16)
Millbrae (17)
Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of Transportation did you use? Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) Is Selected

Q117 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of Transportation did you use? Carpool/Vanpool Is Selected

Q118 I was the:

 Passenger (1)
 Driver (2)

Answer If Which mode of Transportation did you use? Carpool/Vanpool Is Selected

Q119 Number of people in the carpool/vanpool on Wednesday April, 6, 2016:

 2 (2)
 3 (3)
 4 (4)
5 (5)
6 (6)
7 (7)
More than 7 (8)

Answer If On your trip to SF State's main campus, what was your third mode of transportation? (If your last... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Q120 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If On your trip to SF State's main campus, what was your third mode of transportation? (If your last... Taxi, Uber, Lyft, or other on-demand taxi or real-time ridesharing services known as TNCs Is Selected

Q121 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Q123 On your trip to SF State's main campus, what was the mode of transportation for your fourth segment? If you used BART previously, please use this question to tell us how you got from BART to campus.

 Walk, bike, or other active transport (1)
 Public transportation / shuttle (2)
 Private vehicle (cars, carpool, motorcycle, etc.) (3)
 Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs (4)
 None (5)

If None Is Selected, Then Skip To End of Block

Q124 Which mode of transportation did you use?

If On your trip to SF State’s main campus, what was your fourth mode of transportation? (If your pre... Walk, bike, or other active transport Is Selected

 Walk (1)

If On your trip to SF State’s main campus, what was your fourth mode of transportation? (If your pre... Walk, bike, or other active transport Is Selected

 Bicycle (2)

If On your trip to SF State’s main campus, what was your fourth mode of transportation? (If your pre... Walk, bike, or other active transport Is Selected
Other (3)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Public transportation / shuttle Is Selected

Muni (4)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Public transportation / shuttle Is Selected

BART (5)
If On your trip to SF State's main campus, what was the mode of transportation for your fourth segme... Public transportation / shuttle Is Selected

SF State Shuttle (6)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Public transportation / shuttle Is Selected

Caltrain (7)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Public transportation / shuttle Is Selected

Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) (8)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Drove Alone (9)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Dropped Off / Picked Up (10)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Motorcycle/Moped (11)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Carpool/Vanpool (12)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Taxi (19)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Uber (20)
If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre...

Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

 Lyft (21)

If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre...

Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

 Other on-demand taxi or real-time ride-sharing service (22)

If SF State Shuttle Is Selected, Then Skip To End of Block

Answer If Which mode of transportation did you use? Walk Is Selected Or Which mode of transportation did you use? Bicycle Is Selected Or Which mode of transportation did you use? Other Is Selected

Q125 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Muni Is Selected

Q207 Specify Muni Line

 1-California (1)
 1AX-California 'A' Express (2)
 1BX-California 'B' Express (3)
 2-Clement (4)
 3-Jackson (5)
 5-Fulton (7)
 5R-Fulton Rapid (98)
 6-Haight-Parnassus (8)
 7-Haight-Noriega (61)
 7R-Haight-Noriega Rapid (62)
 7X-Noriega Express (75)
 8AX Bayshore 'A' Express (90)
 8BX Bayshore 'B' Express (91)
 8-Bayshore (92)
 9-San Bruno (10)
 9R-San Bruno Rapid (93)
 10-Townsend (14)
12-Folsom/Pacific (15)
14-Mission (16)
14R-Mission Rapid (17)
14X-Mission Express (18)
18-46th Avenue (94)
19-Polk (23)
21-Hayes (25)
22-Fillmore (26)
23-Monterey (27)
24-Divisadero (28)
25-Treasure Island (76)
27-Bryant (30)
28-19th Avenue (77)
28R-19th Avenue Rapid (32)
29-Sunset (78)
30-Stockton (30)
30X-Marina Express (35)
31-Balboa (36)
31AX-Balboa 'A' Express (37)
31BX-Balboa 'B' Express (38)
33-Ashbury-18th (39)
35-Eureka (40)
36-Teresita (41)
37-Corbett (42)
38-Geary (43)
38AX-Geary 'A' Express (44)
38BX-Geary 'B' Express (45)
38R-Geary Rapid (46)
39-Coit Tower (47)
41-Union (48)
43-Masonic (49)
44-O'Shaughnessy (50)
45-Union-Stockton (51)
47-Van Ness (52)
48-24th Street (53)
49-Van Ness-Mission (54)
52-Excelsior (55)
54-Felton (57)
55-16th Street (101)
56-Rutland (58)
57-Parkmerced (12)
66-Quintara (59)
67-Bernal Heights (60)
76X-Marin Headlands Express (63)
81X-Caltrain Express (65)
82X-Levi Plaza Express (66)
83X-Mid-Market Express (99)
88-BART Shuttle (67)
90-San Bruno Owl (69)
91-Owl (70)
108-Treasure Island (73)
F-Market & Wharves (79)
J-Church (80)
KT-Ingleside/Third Street (100)
L-Taraval (82)
M-Ocean View (74)
N-Judah (84)
California-Cable Car (87)
Powell-Hyde-Cable Car (88)
Powell-Mason-Cable Car (89)

Answer If Which mode of transportation did you use? Muni Is Selected
Q127 Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? BART Is Selected
Q128 Specify BART start station

12th St. Oakland City Center (1)
16th St. Mission (2)
19th St. Oakland (3)
24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of transportation did you use? BART Is Selected

Q129 Specify BART end station
 12th St. Oakland City Center (1)
 16th St. Mission (2)
 19th St. Oakland (3)
 24th St. Mission (4)
 Ashby (5)
 Balboa Park (6)
 Bay Fair (7)
 Castro Valley (8)
 Civic Center (9)
 Coliseum/Oakland Airport (10)
 Colma (11)
 Concord (12)
 Daly City (13)
 Downtown Berkeley (14)
 Dublin/Pleasanton (15)
 El Cerrito del Norte (16)
 El Cerrito Plaza (17)
 Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of transportation did you use? Caltrain Is Selected

Q130 Specify Caltrain start station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
Blossom Hill (5)
Broadway (6)
Burlingame (7)
California Ave (8)
Capitol (9)
College Park (10)
Diridon (11)
Gilroy (12)
Hayward Park (13)
Hillsdale (14)
Lawrence (15)
Menlo Park (16)
Millbrae (17)
Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of transportation did you use? Caltrain Is Selected
Q131 Specify Caltrain end station
22nd Street (1)
Atherton (2)
Bayshore (3)
Belmont (4)
Blossom Hill (5)
Broadway (6)
Burlingame (7)
California Ave (8)
Capitol (9)
College Park (10)
Diridon (11)
Gilroy (12)
Hayward Park (13)
Hillsdale (14)
Lawrence (15)
Menlo Park (16)
Millbrae (17)
Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)
Answer If Which mode of transportation did you use? Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) Is Selected

Q132 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected

Q133 I was the:

- Passenger (1)
- Driver (2)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected

Q134 Number of people in the carpool/vanpool on Wednesday April, 6, 2016:

- 2 (2)
- 3 (3)
- 4 (4)
- 5 (5)
- 6 (6)
- 7 (7)
- More than 7 (8)

Answer If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your las... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Q135 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If On your trip to SF State's main campus, what was your fourth mode of transportation? (If your las... Taxi, Uber, Lyft, or other on-demand taxi or real-time ridesharing services known as TNCs Is Selected

Q136 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Select your first mode of transportation: Private vehicle (cars, carpool, motorcycle, etc.) Is Selected Or On your trip to SF State's main campus, what was your third mode of transportation? (If your prev... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected Or On your trip to SF State's main campus, what was your fourth mode of transportation? (If your pre...
campus, what was your second mode of transportation? (If your pre... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

q9 Did you park on the street or in a parking lot / garage?
 Parking lot / garage (1)
 On the street (2)
 I did not drive today. (3)

Answer If Did you park on the street or in a parking lot / garage? Parking lot / garage Is Selected
Or Did you park on the street or in a parking lot / garage? On the street Is Selected

q10 Where did you park when you came to the main campus on Wednesday, April 6, 2016?
 On Campus (1)
 Near Campus (2)
 Near Daly City BART station (3)
 Near another BART station (4)
 Park & Ride lot (5)
 Other (6) ____________________

Answer If Where did you park when you came to the main campus on Wednesday, April 6, 2016?
On Campus Is Selected Or Where did you park when you came to the main campus on Wednesday, April 6, 2016? Near Campus Is Selected

q11 Please choose a zone where you parked (map below) Enlarge SF State Parking Zones Image (New window)
 A: Lot 25 (1)
 B: SF State Parking Structure (2)
 C: SF State Campus, aside from Parking Structure or Lot 25 (3)
 D: Buckingham Way (4)
 E: Stonestown Galleria Parking Lot (5)
 F: Winston Drive (6)
 G: Lake Shore / Merced Manor (South of Eucalyptus) (20)
 H: Lake Merced Boulevard (8)
 I: Holloway Avenue or Font Boulevard (9)
 J: 19th Avenue (10)
 K: Lakeside (11)
 L: Junipero Serra Boulevard (12)
M: Ingleside Terraces / Ingleside / Oceanview / Merced Heights (13)
N: Lakeshore / Merced Manor (North of Eucalyptus) (14)
O: North of Sloat Boulevard (15)
P: Parkmerced (16)
Q: Lake Merced Hill (17)
R: Oceanview / Merced Heights (18)
S: University Park South (19)

Answer:

If Where did you park when you came to the main campus on Wednesday, April 6, 2016?

On Campus Is Selected

Or Where did you park when you came to the main campus on Wednesday, April 6, 2016? Near Campus Is Selected

q12 How much did it cost you to park on Wednesday, April 6, 2016?

- Free (1)
- Less than $1 (2)
- $1-$2 (3)
- $2-$4 (4)
- $4-$7 (5)
- $7-$10 (6)
- More than $10 (7)
- I have a SF State Semester / Yearly Parking Pass (8)

q12a1 Which of the following programs, if any, would encourage you to commute to campus via a mode of travel other than driving alone? Please rank your first, second, and third choices. First choice:

- Rideshare or carpool with someone who lives near me (1)
- Reduced transit fare pass for MUNI and BART (2)
- Emergency guaranteed ride home program (3)
- Improved bicycle amenities (4)
- Improved pedestrian amenities (5)
- Improved shuttle service from BART to the university (6)
- None (7)
q12a2 Second choice:

- Rideshare or carpool with someone who lives near me (1)
- Reduced transit fare pass for MUNI and BART (2)
- Emergency guaranteed ride home program (3)
- Improved bicycle amenities (4)
- Improved pedestrian amenities (5)
- Improved shuttle service from BART to the university (6)
- None (7)

q12a3 Third choice:

- Rideshare or carpool with someone who lives near me (1)
- Reduced transit fare pass for MUNI and BART (2)
- Emergency guaranteed ride home program (3)
- Improved bicycle amenities (4)
- Improved pedestrian amenities (5)
- Improved shuttle service from BART to the university (6)
- None (7)

Q155 Your Trip from Campus The following questions are about your trip from the main campus at 1600 Holloway. You will be asked to describe your commute away from campus by indicating the mode of transportation used for each segment of your trip. For example, your trip might have only one segment if you drove, walked, or biked directly from campus. Or, it might have three segments if you 1) took the shuttle to BART, 2) took BART to the East Bay and 3) walked home. Please describe your trip from campus on Wednesday, April 6, 2016. If you took more than one mode/ have multiple segments, please start the survey by selecting your first segment.

Q279 For your trip from the main campus, what time did you depart from the main campus? Please enter time in the following format: HH:MM AM

HH (1)
MM (2)
AM/PM (3)

Q156 Did you use the exact same means of transportation when you left the campus on Wednesday, April 6, 2016 as you did when coming to campus? If any segment of your trip from campus was different from your trip to campus, please select No.

Yes (1)
No (2)
If Yes Is Selected, Then Skip To End of Block

Q277 For your trip from the main campus, where did you end your trip?
Zipcode (1)

Q280 Select the mode of transportation for your first segment: If your next segment is via BART, please use this question to tell us how you got from campus to the BART station.
- Walk, bike, or other active transport (1)
- Public transportation / shuttle (2)
- Private vehicle (cars, carpool, motorcycle, etc.) (3)
- Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs (4)

Q281 Which mode of transportation did you use?
If Select your first mode of transportation: (If your next segment is via BART please use this ques... Walk, bike, or other active transport Is Selected
- Walk (1)
If Select your first mode of transportation: (If your next segment is via BART please use this ques... Walk, bike, or other active transport Is Selected
- Bicycle (2)
If Select your first mode of transportation: (If your next segment is via BART please use this ques... Walk, bike, or other active transport Is Selected
- Other (3)
If Select your first mode of transportation: (If your next segment is via BART please use this ques... Public transportation / shuttle Is Selected
- Muni (4)
If Select your first mode of transportation: (If your next segment is via BART please use this ques... Public transportation / shuttle Is Selected
- BART (5)
If Select your first mode of transportation: (If your next segment is via BART please use this ques... Public transportation / shuttle Is Selected
- SF State Shuttle (6)
If Select your first mode of transportation: (If your next segment is via BART please use this ques... Public transportation / shuttle Is Selected
- Caltrain (7)
If Select your first mode of transportation: (If your next segment is via BART please use this ques... Public transportation / shuttle Is Selected

Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) (8)

If Select your first mode of transportation: (If your next segment is via BART please use this ques... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Drove Alone (9)

If Select your first mode of transportation: (If your next segment is via BART please use this ques... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Dropped Off / Picked Up (10)

If Select your first mode of transportation: (If your next segment is via BART please use this ques... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Motorcycle/Moped (11)

If Select your first mode of transportation: (If your next segment is via BART please use this ques... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Carpool/Vanpool (12)

If Select your first mode of transportation: (If your next segment is via BART please use this ques... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Taxi (19)

If Select your first mode of transportation: (If your next segment is via BART please use this ques... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Uber (20)

If Select your first mode of transportation: (If your next segment is via BART please use this ques... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Lyft (21)

If Select your first mode of transportation: (If your next segment is via BART please use this ques... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Other TNC (22)

Answer If Which mode of transportation did you use? Walk Is Selected Or Which mode of transportation did you use? Bicycle Is Selected Or Which mode of transportation did you use? Other Is Selected

Q282 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
Answer: If Which mode of transportation did you use? Muni is selected.

Q208 Specify Muni Line

1-California (1)
 1AX-California 'A' Express (2)
 1BX-California 'B' Express (3)
2-Clement (4)
3-Jackson (5)
5-Fulton (7)
5R-Fulton Rapid (98)
6-Haight-Parnassus (8)
7-Haight-Noriega (61)
7R-Haight-Noriega Rapid (62)
7X-Noriega Express (75)
8AX Bayshore 'A' Express (90)
8BX Bayshore 'B' Express (91)
8-Bayshore (92)
9-San Bruno (10)
9R-San Bruno Rapid (93)
10-Townsend (14)
12-Folsom/Pacific (15)
14-Mission (16)
14R-Mission Rapid (17)
14X-Mission Express (18)
18-46th Avenue (94)
19-Polk (23)
21-Hayes (25)
22-Fillmore (26)
23-Monterey (27)
24-Divisadero (28)
25-Treasure Island (76)
27-Bryant (30)
28-19th Avenue (77)
28R-19th Avenue Rapid (32)
29-Sunset (78)
30-Stockton (30)
30X-Marina Express (35)
31-Balboa (36)
31AX-Balboa 'A' Express (37)
31BX-Balboa 'B' Express (38)
33-Ashbury-18th (39)
35-Eureka (40)
36-Teresita (41)
37-Corbett (42)
38-Geary (43)
38AX-Geary 'A' Express (44)
38BX-Geary 'B' Express (45)
38R-Geary Rapid (46)
39-Coit Tower (47)
41-Union (48)
43-Masonic (49)
44-O'Shaughnessy (50)
45-Union-Stockton (51)
47-Van Ness (52)
48-24th Street (53)
49-Van Ness-Mission (54)
52-Excelsior (55)
54-Felton (57)
55-16th Street (101)
56-Rutland (58)
57-Parkmerced (12)
66-Quintara (59)
67-Bernal Heights (60)
76X-Marin Headlands Express (63)
81X-Caltrain Express (65)
82X-Levi Plaza Express (66)
83X-Mid-Market Express (99)
88-BART Shuttle (67)
90-San Bruno Owl (69)
91-Owl (70)
108-Treasure Island (73)
F-Market & Wharves (79)
J-Church (80)
KT-Ingleside/Third Street (100)
L-Taraval (82)
M-Ocean View (74)
N-Judah (84)
California-Cable Car (87)
Powell-Hyde-Cable Car (88)
Powell-Mason-Cable Car (89)

Answer If Which mode of transportation did you use? Muni Is Selected
Q284 Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? BART Is Selected
Q285 Specify BART start station
 12th St. Oakland City Center (1)
 16th St. Mission (2)
 19th St. Oakland (3)
 24th St. Mission (4)
 Ashby (5)
 Balboa Park (6)
 Bay Fair (7)
 Castro Valley (8)
 Civic Center (9)
 Coliseum/Oakland Airport (10)
 Colma (11)
 Concord (12)
 Daly City (13)
Answer If Which mode of transportation did you use? BART Is Selected
Q286 Specify BART end station

12th St. Oakland City Center (1)
16th St. Mission (2)
19th St. Oakland (3)
24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of transportation did you use? Caltrain Is Selected
Q287 Specify Caltrain start station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
 Blossom Hill (5)
 Broadway (6)
 Burlingame (7)
 California Ave (8)
 Capitol (9)
 College Park (10)
 Diridon (11)
 Gilroy (12)
 Hayward Park (13)
 Hillsdale (14)
 Lawrence (15)
 Menlo Park (16)
 Millbrae (17)
 Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of transportation did you use? Caltrain Is Selected
Q288 Specify Caltrain end station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
 Blossom Hill (5)
 Broadway (6)
 Burlingame (7)
 California Ave (8)
 Capitol (9)
 College Park (10)
 Diridon (11)
 Gilroy (12)
 Hayward Park (13)
 Hillsdale (14)
 Lawrence (15)
Menlo Park (16)
Millbrae (17)
Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of transportation did you use? Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) Is Selected

Q289 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected

Q290 I was the:

 Passenger (1)
 Driver (2)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected

Q291 Number of people in the carpool/vanpool on Wednesday, April, 6, 2016:

 2 (2)
 3 (3)
 4 (4)
Answer If Select your first mode of transportation: (If your next segment is via BART please use this ques... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Q292 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Select your first mode of transportation: Taxi or TNC (Uber, Lyft, etc.) Is Selected

Q293 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Q296 On your trip from SF State’s main campus, what was the mode of transportation for your second segment? If your next segment is via BART, please use this question to tell us how you got from campus to the BART station.

Walk, bike, or other active transport (1)
Public transportation / shuttle (2)
Private vehicle (cars, carpool, motorcycle, etc.) (3)
Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs (4)
None (5)
If None Is Selected, Then Skip To End of Block

Q297 Which mode of transportation did you use?

If On your trip from SF State’s main campus, what was your second mode of transportation? (If your l... Walk, bike, or other active transport Is Selected
Walk (1)
If On your trip from SF State’s main campus, what was your second mode of transportation? (If your l... Walk, bike, or other active transport Is Selected
Bicycle (2)
If On your trip from SF State’s main campus, what was your second mode of transportation? (If your l... Walk, bike, or other active transport Is Selected
Other (3)
If On your trip from SF State's main campus, what was your second mode of transportation? (If your l... Public transportation / shuttle Is Selected

Muni (4)

BART (5)

SF State Shuttle (6)

Caltrain (7)

Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) (8)

Drove Alone (9)

Dropped Off / Picked Up (10)

Motorcycle/Moped (11)

Carpool/Vanpool (12)

Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Taxi (19)

Uber (20)
Lyft (21)
If On your trip from SF State's main campus, what was your second mode of transportation? (If your l... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected
Other TNC (22)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Walk Is Selected Or Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Bicycle Is Selected Or Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Other Is Selected

Q298 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Muni Is Selected

Q209 Specify Muni Line
1-California (1)
1AX-California 'A' Express (2)
1BX-California 'B' Express (3)
2-Clement (4)
3-Jackson (5)
5-Fulton (7)
5R-Fulton Rapid (98)
6-Haight-Parnassus (8)
7-Haight-Noriega (61)
7R-Haight-Noriega Rapid (62)
7X-Noriega Express (75)
8AX Bayshore 'A' Express (90)
8BX Bayshore 'B' Express (91)
8-Bayshore (92)
9-San Bruno (10)
9R-San Bruno Rapid (93)
10-Townsend (14)
12-Folsom/Pacific (15)
14-Mission (16)
14R-Mission Rapid (17)
<table>
<thead>
<tr>
<th>Route</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14X</td>
<td>Mission Express (18)</td>
</tr>
<tr>
<td>18</td>
<td>46th Avenue (94)</td>
</tr>
<tr>
<td>19</td>
<td>Polk (23)</td>
</tr>
<tr>
<td>21</td>
<td>Hayes (25)</td>
</tr>
<tr>
<td>22</td>
<td>Fillmore (26)</td>
</tr>
<tr>
<td>23</td>
<td>Monterey (27)</td>
</tr>
<tr>
<td>24</td>
<td>Divisadero (28)</td>
</tr>
<tr>
<td>25</td>
<td>Treasure Island (76)</td>
</tr>
<tr>
<td>27</td>
<td>Bryant (30)</td>
</tr>
<tr>
<td>28</td>
<td>19th Avenue (77)</td>
</tr>
<tr>
<td>28R</td>
<td>19th Avenue Rapid (32)</td>
</tr>
<tr>
<td>29</td>
<td>Sunset (78)</td>
</tr>
<tr>
<td>30</td>
<td>Stockton (30)</td>
</tr>
<tr>
<td>30X</td>
<td>Marina Express (35)</td>
</tr>
<tr>
<td>31</td>
<td>Balboa (36)</td>
</tr>
<tr>
<td>31AX</td>
<td>Balboa 'A' Express (37)</td>
</tr>
<tr>
<td>31BX</td>
<td>Balboa 'B' Express (38)</td>
</tr>
<tr>
<td>33</td>
<td>Ashbury-18th (39)</td>
</tr>
<tr>
<td>35</td>
<td>Eureka (40)</td>
</tr>
<tr>
<td>36</td>
<td>Teresita (41)</td>
</tr>
<tr>
<td>37</td>
<td>Corbett (42)</td>
</tr>
<tr>
<td>38</td>
<td>Geary (43)</td>
</tr>
<tr>
<td>38AX</td>
<td>Geary 'A' Express (44)</td>
</tr>
<tr>
<td>38BX</td>
<td>Geary 'B' Express (45)</td>
</tr>
<tr>
<td>38R</td>
<td>Geary Rapid (46)</td>
</tr>
<tr>
<td>39</td>
<td>Coit Tower (47)</td>
</tr>
<tr>
<td>41</td>
<td>Union (48)</td>
</tr>
<tr>
<td>43</td>
<td>Masonic (49)</td>
</tr>
<tr>
<td>44</td>
<td>O'Shaughnessy (50)</td>
</tr>
<tr>
<td>45</td>
<td>Union-Stockton (51)</td>
</tr>
<tr>
<td>47</td>
<td>Van Ness (52)</td>
</tr>
<tr>
<td>48</td>
<td>24th Street (53)</td>
</tr>
<tr>
<td>49</td>
<td>Van Ness-Mission (54)</td>
</tr>
</tbody>
</table>
52-Excelsior (55)
54-Felton (57)
55-16th Street (101)
56-Rutland (58)
57-Parkmerced (12)
66-Quintara (59)
67-Bernal Heights (60)
76X-Marin Headlands Express (63)
81X-Caltrain Express (65)
82X-Levi Plaza Express (66)
83X-Mid-Market Express (99)
88-BART Shuttle (67)
90-San Bruno Owl (69)
91-Owl (70)
108-Treasure Island (73)
F-Market & Wharves (79)
J-Church (80)
KT-Ingleside/Third Street (100)
L-Taraval (82)
M-Ocean View (74)
N-Judah (84)
California-Cable Car (87)
Powell-Hyde-Cable Car (88)
Powell-Mason-Cable Car (89)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Muni Is
Selected
Q300 Please estimate (in miles) the distance you traveled in this segment of your trip (for
instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? BART Is
Selected
Q301 Specify BART start station
 12th St. Oakland City Center (1)
16th St. Mission (2)
19th St. Oakland (3)
24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? BART Is Selected

Q302 Specify BART end station
 12th St. Oakland City Center (1)
 16th St. Mission (2)
 19th St. Oakland (3)
 24th St. Mission (4)
 Ashby (5)
 Balboa Park (6)
 Bay Fair (7)
 Castro Valley (8)
 Civic Center (9)
 Coliseum/Oakland Airport (10)
 Colma (11)
 Concord (12)
 Daly City (13)
 Downtown Berkeley (14)
 Dublin/Pleasanton (15)
 El Cerrito del Norte (16)
 El Cerrito Plaza (17)
 Embarcadero (18)
 Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int’l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Caltrain Is Selected
Q303 Specify Caltrain start station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
Blossom Hill (5)
Broadway (6)
Burlingame (7)
California Ave (8)
Capitol (9)
College Park (10)
Diridon (11)
Gilroy (12)
Hayward Park (13)
Hillsdale (14)
Lawrence (15)
Menlo Park (16)
Millbrae (17)
Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Caltrain Is Selected
Q304 Specify Caltrain end station
22nd Street (1)
Atherton (2)
Bayshore (3)
Belmont (4)
Blossom Hill (5)
Broadway (6)
Burlingame (7)
California Ave (8)
Capitol (9)
College Park (10)
Diridon (11)
Gilroy (12)
Hayward Park (13)
Hillsdale (14)
Lawrence (15)
Menlo Park (16)
Millbrae (17)
Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)
Answer If Which mode of \{q://QID296/ChoiceGroup/SelectedChoices\} did you use? Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) Is Selected

Q305 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of \{q://QID296/ChoiceGroup/SelectedChoices\} did you use? Carpool/Vanpool Is Selected

Q306 I was the:

- Passenger (1)
- Driver (2)

Answer If Which mode of \{q://QID296/ChoiceGroup/SelectedChoices\} did you use? Carpool/Vanpool Is Selected

Q307 Number of people in the carpool/vanpool on Wednesday, April 6, 2016:

- 2 (2)
- 3 (3)
- 4 (4)
- 5 (5)
- 6 (6)
- 7 (7)
- More than 7 (8)

Answer If On your trip from SF State's main campus, what was your second mode of transportation? (If your list... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Q308 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If On your trip from SF State's main campus, what was your second mode of transportation? (If your list... Taxi, Uber, Lyft, or other on-demand taxi or real-time ridesharing services known as TNCs Is Selected

Q309 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
Q310 On your trip from SF State's main campus, what was the mode of transportation for your third segment? If your next segment is via BART, please use this question to tell us how you got from campus to the BART station.

- Walk, bike, or other active transport (1)
- Public transportation / shuttle (2)
- Private vehicle (cars, carpool, motorcycle, etc.) (3)
- Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs (4)
- None (5)

If None Is Selected, Then Skip To End of Block

Q311 Which mode of transportation did you use?

If On your trip from SF State's main campus, what was your third mode of transportation? (If your last... Walk, bike, or other active transport Is Selected

- Walk (1)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your last... Walk, bike, or other active transport Is Selected

- Bicycle (2)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your last... Walk, bike, or other active transport Is Selected

- Other (3)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your last... Public transportation / shuttle Is Selected

- Muni (4)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your last... Public transportation / shuttle Is Selected

- BART (5)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your last... Public transportation / shuttle Is Selected

- SF State Shuttle (6)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your last... Public transportation / shuttle Is Selected

- Caltrain (7)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your last... Public transportation / shuttle Is Selected

- Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) (8)
If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

 Drove Alone (9)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

 Dropped Off / Picked Up (10)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

 Motorcycle/Moped (11)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

 Carpool/Vanpool (12)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

 Taxi (19)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

 Uber (20)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

 Lyft (21)

If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

 Other on-demand taxi or real-time ride-sharing service (22)

Answer If Which mode of transportation did you use? Walk Is Selected Or Which mode of transportation did you use? Bicycle Is Selected Or Which mode of transportation did you use? Other Is Selected

Q312 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Muni Is Selected

Q210 Specify Muni Line

 1-California (1)
<table>
<thead>
<tr>
<th>Route Code</th>
<th>Route Description</th>
<th>Route Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AX</td>
<td>California 'A' Express</td>
<td>2</td>
</tr>
<tr>
<td>1BX</td>
<td>California 'B' Express</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Clement</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Jackson</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Fulton</td>
<td>7</td>
</tr>
<tr>
<td>5R</td>
<td>Fulton Rapid</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>Haight-Parnassus</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Haight-Noriega</td>
<td>61</td>
</tr>
<tr>
<td>7R</td>
<td>Haight-Noriega Rapid</td>
<td>62</td>
</tr>
<tr>
<td>7X</td>
<td>Noriega Express</td>
<td>75</td>
</tr>
<tr>
<td>8AX</td>
<td>Bayshore 'A' Express</td>
<td>90</td>
</tr>
<tr>
<td>8BX</td>
<td>Bayshore 'B' Express</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>Bayshore</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>San Bruno</td>
<td>10</td>
</tr>
<tr>
<td>9R</td>
<td>San Bruno Rapid</td>
<td>93</td>
</tr>
<tr>
<td>10</td>
<td>Townsend</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>Folsom/Pacific</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>Mission</td>
<td>16</td>
</tr>
<tr>
<td>14R</td>
<td>Mission Rapid</td>
<td>17</td>
</tr>
<tr>
<td>14X</td>
<td>Mission Express</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>46th Avenue</td>
<td>94</td>
</tr>
<tr>
<td>19</td>
<td>Polk</td>
<td>23</td>
</tr>
<tr>
<td>21</td>
<td>Hayes</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>Fillmore</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>Monterey</td>
<td>27</td>
</tr>
<tr>
<td>24</td>
<td>Divisadero</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>Treasure Island</td>
<td>76</td>
</tr>
<tr>
<td>27</td>
<td>Bryant</td>
<td>30</td>
</tr>
<tr>
<td>28</td>
<td>19th Avenue</td>
<td>77</td>
</tr>
<tr>
<td>28R</td>
<td>19th Avenue Rapid</td>
<td>32</td>
</tr>
<tr>
<td>29</td>
<td>Sunset</td>
<td>78</td>
</tr>
<tr>
<td>30</td>
<td>Stockton</td>
<td>30</td>
</tr>
<tr>
<td>30X</td>
<td>Marina Express</td>
<td>35</td>
</tr>
</tbody>
</table>
31-Balboa (36)
31AX-Balboa 'A' Express (37)
31BX-Balboa 'B' Express (38)
33-Ashbury-18th (39)
35-Eureka (40)
36-Teresita (41)
37-Corbett (42)
38-Geary (43)
38AX-Geary 'A' Express (44)
38BX-Geary 'B' Express (45)
38R-Geary Rapid (46)
39-Coit Tower (47)
41-Union (48)
43-Masonic (49)
44-O'Shaughnessy (50)
45-Union-Stockton (51)
47-Van Ness (52)
48-24th Street (53)
49-Van Ness-Mission (54)
52-Excelsior (55)
54-Felton (57)
55-16th Street (101)
56-Rutland (58)
57-Parkmerced (12)
66-Quintara (59)
67-Bernal Heights (60)
76X-Marin Headlands Express (63)
81X-Caltrain Express (65)
82X-Levi Plaza Express (66)
83X-Mid-Market Express (99)
88-BART Shuttle (67)
90-San Bruno Owl (69)
91-Owl (70)
108-Treasure Island (73)
F-Market & Wharves (79)
J-Church (80)
KT-Ingleside/Third Street (100)
L-Taraval (82)
M-Ocean View (74)
N-Judah (84)
California-Cable Car (87)
Powell-Hyde-Cable Car (88)
Powell-Mason-Cable Car (89)

Answer If Which mode of transportation did you use? Muni Is Selected
Q314 Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? BART Is Selected
Q315 Specify BART start station
 12th St. Oakland City Center (1)
 16th St. Mission (2)
 19th St. Oakland (3)
 24th St. Mission (4)
 Ashby (5)
 Balboa Park (6)
 Bay Fair (7)
 Castro Valley (8)
 Civic Center (9)
 Coliseum/Oakland Airport (10)
 Colma (11)
 Concord (12)
 Daly City (13)
 Downtown Berkeley (14)
 Dublin/Pleasanton (15)
 El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of transportation did you use? BART Is Selected
Q316 Specify BART end station
 12th St. Oakland City Center (1)
 16th St. Mission (2)
19th St. Oakland (3)
24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int’l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of transportation did you use? Caltrain Is Selected

Q317 Specify Caltrain start station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
 Blossom Hill (5)
 Broadway (6)
 Burlingame (7)
 California Ave (8)
 Capitol (9)
 College Park (10)
 Diridon (11)
 Gilroy (12)
 Hayward Park (13)
 Hillsdale (14)
 Lawrence (15)
 Menlo Park (16)
 Millbrae (17)
 Morgan Hill (18)
 Mountain View (19)
 Palo Alto (20)
 Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of transportation did you use? Caltrain Is Selected
Q318 Specify Caltrain end station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
 Blossom Hill (5)
 Broadway (6)
 Burlingame (7)
 California Ave (8)
 Capitol (9)
 College Park (10)
 Diridon (11)
 Gilroy (12)
 Hayward Park (13)
 Hillsdale (14)
 Lawrence (15)
 Menlo Park (16)
 Millbrae (17)
 Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of transportation did you use? Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) Is Selected
Q319 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected
Q320 I was the:
 Passenger (1)
 Driver (2)

Answer If Which mode of transportation did you use? Carpool/Vanpool Is Selected
Q321 Number of people in the carpool/vanpool on Wednesday, April, 6, 2016:
 2 (2)
 3 (3)
 4 (4)
 5 (5)
 6 (6)
 7 (7)
More than 7 (8)

Answer If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Q322 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If On your trip from SF State's main campus, what was your third mode of transportation? (If your la... Taxi, Uber, Lyft, or other on-demand taxi or real-time ridesharing services known as TNCs Is Selected

Q323 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Q324 On your trip from SF State's main campus, what was the mode of transportation for your fourth segment? If your next segment is via BART, please use this question to tell us how you got from campus to the BART station.

 Walk, bike, or other active transport (1)
 Public transportation / shuttle (2)
 Private vehicle (cars, carpool, motorcycle, etc.) (3)
 Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs (4)

 None (5)

If None Is Selected, Then Skip To End of Block

Q325 Which mode of transportation did you use?

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Walk, bike, or other active transport Is Selected

 Walk (1)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Walk, bike, or other active transport Is Selected

 Bicycle (2)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Walk, bike, or other active transport Is Selected

 Other (3)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Public transportation / shuttle Is Selected

 Muni (4)
If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Public transportation / shuttle Is Selected

BART (5)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Public transportation / shuttle Is Selected

SF State Shuttle (6)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Public transportation / shuttle Is Selected

Caltrain (7)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Public transportation / shuttle Is Selected

Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SamTrans) (8)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Drove Alone (9)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Dropped Off / Picked Up (10)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Motorcycle/Moped (11)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Carpool/Vanpool (12)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Taxi (19)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Uber (20)

If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Lyft (21)
If on your trip from SF State's main campus, what was your fourth mode of transportation? (If your p... Taxi, Uber, Lyft, or other on-demand taxi or real-time ride-sharing services known as TNCs Is Selected

Other on-demand taxi or real-time ride-sharing service (22)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Walk Is Selected Or Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Bicycle Is Selected Or Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Other Is Selected

Q326 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Muni Is Selected

Q211 Specify Muni Line

1-California (1)
1AX-California 'A' Express (2)
1BX-California 'B' Express (3)
2-Clement (4)
3-Jackson (5)
5-Fulton (7)
5R-Fulton Rapid (98)
6-Haight-Parnassus (8)
7-Haight-Noriega (61)
7R-Haight-Noriega Rapid (62)
7X-Noriega Express (75)
8AX Bayshore 'A' Express (90)
8BX Bayshore 'B' Express (91)
8-Bayshore (92)
9-San Bruno (10)
9R-San Bruno Rapid (93)
10-Townsend (14)
12-Folsom/Pacific (15)
14-Mission (16)
14R-Mission Rapid (17)
<table>
<thead>
<tr>
<th>Route Code</th>
<th>Description</th>
<th>Number of Stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>14X</td>
<td>Mission Express (18)</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>46th Avenue (94)</td>
<td>94</td>
</tr>
<tr>
<td>19</td>
<td>Polk (23)</td>
<td>23</td>
</tr>
<tr>
<td>21</td>
<td>Hayes (25)</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>Fillmore (26)</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>Monterey (27)</td>
<td>27</td>
</tr>
<tr>
<td>24</td>
<td>Divisadero (28)</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>Treasure Island (76)</td>
<td>76</td>
</tr>
<tr>
<td>27</td>
<td>Bryant (30)</td>
<td>30</td>
</tr>
<tr>
<td>28</td>
<td>19th Avenue (77)</td>
<td>77</td>
</tr>
<tr>
<td>28R</td>
<td>19th Avenue Rapid (32)</td>
<td>32</td>
</tr>
<tr>
<td>29</td>
<td>Sunset (78)</td>
<td>78</td>
</tr>
<tr>
<td>30</td>
<td>Stockton (30)</td>
<td>30</td>
</tr>
<tr>
<td>30X</td>
<td>Marina Express (35)</td>
<td>35</td>
</tr>
<tr>
<td>31</td>
<td>Balboa (36)</td>
<td>36</td>
</tr>
<tr>
<td>31AX</td>
<td>Balboa 'A' Express (37)</td>
<td>37</td>
</tr>
<tr>
<td>31BX</td>
<td>Balboa 'B' Express (38)</td>
<td>38</td>
</tr>
<tr>
<td>33</td>
<td>Ashbury-18th (39)</td>
<td>39</td>
</tr>
<tr>
<td>35</td>
<td>Eureka (40)</td>
<td>40</td>
</tr>
<tr>
<td>36</td>
<td>Teresita (41)</td>
<td>41</td>
</tr>
<tr>
<td>37</td>
<td>Corbett (42)</td>
<td>42</td>
</tr>
<tr>
<td>38</td>
<td>Geary (43)</td>
<td>43</td>
</tr>
<tr>
<td>38AX</td>
<td>Geary 'A' Express (44)</td>
<td>44</td>
</tr>
<tr>
<td>38BX</td>
<td>Geary 'B' Express (45)</td>
<td>45</td>
</tr>
<tr>
<td>38R</td>
<td>Geary Rapid (46)</td>
<td>46</td>
</tr>
<tr>
<td>39</td>
<td>Coit Tower (47)</td>
<td>47</td>
</tr>
<tr>
<td>41</td>
<td>Union (48)</td>
<td>48</td>
</tr>
<tr>
<td>43</td>
<td>Masonic (49)</td>
<td>49</td>
</tr>
<tr>
<td>44</td>
<td>O'Shaughnessy (50)</td>
<td>50</td>
</tr>
<tr>
<td>45</td>
<td>Union-Stockton (51)</td>
<td>51</td>
</tr>
<tr>
<td>47</td>
<td>Van Ness (52)</td>
<td>52</td>
</tr>
<tr>
<td>48</td>
<td>24th Street (53)</td>
<td>53</td>
</tr>
<tr>
<td>49</td>
<td>Van Ness-Mission (54)</td>
<td>54</td>
</tr>
<tr>
<td>Number</td>
<td>Destination</td>
<td>Code</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>52</td>
<td>Excelsior</td>
<td>55</td>
</tr>
<tr>
<td>54</td>
<td>Felton</td>
<td>57</td>
</tr>
<tr>
<td>55</td>
<td>16th Street</td>
<td>101</td>
</tr>
<tr>
<td>56</td>
<td>Rutland</td>
<td>58</td>
</tr>
<tr>
<td>57</td>
<td>Parkmerced</td>
<td>12</td>
</tr>
<tr>
<td>66</td>
<td>Quintara</td>
<td>59</td>
</tr>
<tr>
<td>67</td>
<td>Bernal Heights</td>
<td>60</td>
</tr>
<tr>
<td>76X</td>
<td>Marin Headlands Express</td>
<td>63</td>
</tr>
<tr>
<td>81X</td>
<td>Caltrain Express</td>
<td>65</td>
</tr>
<tr>
<td>82X</td>
<td>Levi Plaza Express</td>
<td>66</td>
</tr>
<tr>
<td>83X</td>
<td>Mid-Market Express</td>
<td>99</td>
</tr>
<tr>
<td>88</td>
<td>BART Shuttle</td>
<td>67</td>
</tr>
<tr>
<td>90</td>
<td>San Bruno Owl</td>
<td>69</td>
</tr>
<tr>
<td>91</td>
<td>Owl</td>
<td>70</td>
</tr>
<tr>
<td>108</td>
<td>Treasure Island</td>
<td>73</td>
</tr>
<tr>
<td>F</td>
<td>Market & Wharves</td>
<td>79</td>
</tr>
<tr>
<td>J</td>
<td>Church</td>
<td>80</td>
</tr>
<tr>
<td>KT</td>
<td>Ingleside/Third Street</td>
<td>100</td>
</tr>
<tr>
<td>L</td>
<td>Taraval</td>
<td>82</td>
</tr>
<tr>
<td>M</td>
<td>Ocean View</td>
<td>74</td>
</tr>
<tr>
<td>N</td>
<td>Judah</td>
<td>84</td>
</tr>
<tr>
<td>C</td>
<td>California-Cable Car</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Powell-Hyde-Cable Car</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Powell-Mason-Cable Car</td>
<td>89</td>
</tr>
</tbody>
</table>

Answer If Which mode of $\{q://QID296/ChoiceGroup/SelectedChoices\} did you use? Muni Is Selected

Q328 Please estimate (in miles) the distance you traveled in this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of $\{q://QID296/ChoiceGroup/SelectedChoices\} did you use? BART Is Selected

Q329 Specify BART start station

12th St. Oakland City Center (1)
16th St. Mission (2)
19th St. Oakland (3)
24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of $\{q://QID296/ChoiceGroup/SelectedChoices\} did you use? BART Is Selected

Q330 Specify BART end station

12th St. Oakland City Center (1)
16th St. Mission (2)
19th St. Oakland (3)
24th St. Mission (4)
Ashby (5)
Balboa Park (6)
Bay Fair (7)
Castro Valley (8)
Civic Center (9)
Coliseum/Oakland Airport (10)
Colma (11)
Concord (12)
Daly City (13)
Downtown Berkeley (14)
Dublin/Pleasanton (15)
El Cerrito del Norte (16)
El Cerrito Plaza (17)
Embarcadero (18)
Fremont (19)
Fruitvale (20)
Glen Park (21)
Hayward (22)
Lafayette (23)
Lake Merritt (24)
MacArthur (25)
Millbrae (26)
Montgomery St. (27)
North Berkeley (28)
North Concord/Martinez (29)
Orinda (30)
Pittsburg/Bay Point (31)
Pleasant Hill/Contra Costa Centre (32)
Powell St. (33)
Richmond (34)
Rockridge (35)
San Bruno (36)
San Francisco Int'l Airport (37)
San Leandro (38)
South Hayward (39)
South San Francisco (40)
Union City (41)
Walnut Creek (42)
West Dublin/Pleasanton (44)
West Oakland (43)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Caltrain Is Selected

Q331 Specify Caltrain start station
 22nd Street (1)
 Atherton (2)
 Bayshore (3)
 Belmont (4)
Blossom Hill (5)
Broadway (6)
Burlingame (7)
California Ave (8)
Capitol (9)
College Park (10)
Diridon (11)
Gilroy (12)
Hayward Park (13)
Hillsdale (14)
Lawrence (15)
Menlo Park (16)
Millbrae (17)
Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)

Answer If Which mode of ${q://QID296/ChoiceGroup/SelectedChoices} did you use? Caltrain Is Selected

Q332 Specify Caltrain end station
22nd Street (1)
Atherton (2)
Bayshore (3)
Belmont (4)
Blossom Hill (5)
Broadway (6)
Burlingame (7)
California Ave (8)
Capitol (9)
College Park (10)
Diridon (11)
Gilroy (12)
Hayward Park (13)
Hillside (14)
Lawrence (15)
Menlo Park (16)
Millbrae (17)
Morgan Hill (18)
Mountain View (19)
Palo Alto (20)
Redwood City (21)
San Antonio (22)
San Bruno (23)
San Carlos (24)
San Francisco (25)
San Jose (26)
San Martin (27)
San Mateo (28)
Santa Clara (29)
South San Francisco (30)
Stanford (31)
Sunnyvale (32)
Tamien (33)
Answer If Which mode of \${q://QID296/ChoiceGroup/SelectedChoices} did you use? Other bus provider than Muni (e.g. AC Transit/Golden Gate Transit/SanTrans) Is Selected

Q333 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If Which mode of \${q://QID296/ChoiceGroup/SelectedChoices} did you use? Carpool/Vanpool Is Selected

Q334 I was the:
 Passenger (1)
 Driver (2)

Answer If Which mode of \${q://QID296/ChoiceGroup/SelectedChoices} did you use? Carpool/Vanpool Is Selected

Q335 Number of people in the carpool/vanpool on Wednesday, April 6, 2016:
 2 (2)
 3 (3)
 4 (4)
 5 (5)
 6 (6)
 7 (7)
 More than 7 (8)

Answer If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us h... Private vehicle (cars, carpool, motorcycle, etc.) Is Selected

Q336 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)

Answer If On your trip from SF State's main campus, what was your fourth mode of transportation? (If your previous segment was via BART please use this question as an opportunity to tell us h... Taxi, Uber, Lyft, or other on-demand taxi or real-time ridesharing services known as TNCs Is Selected

Q337 Please estimate (in miles) the distance you traveled for this segment of your trip (for instance if you traveled 1 1/2 miles, enter 1.5)
Q199 How many round trips, other than those already reported in this survey, did you take to/from campus (or home for on-campus residents) on Wednesday, April 6, 2016? Please do not include trips taken within campus.

0 (No other trips made other than my commute to/from campus). (13)
1 (1)
2 (4)
3 (5)
4 (6)
5 (7)
6 (8)
7 (9)
8 (10)
9 (11)
10 or more (12)

If 0 (No other trips made other than my commute to/from campus) is selected, then skip to have you participated in or used / do...

Q200 What was your primary mode of travel for these trips? If this includes an auto trip for any segment, please select that option.

Walk, bike, or other active transport (4)
Public transportation / shuttle (5)
Private vehicle (cars, carpool, motorcycle, etc.) (6)
Taxi, Uber, Lyft, or other on-demand taxi services known as TNCs (7)

Q201 How many of these trips occurred (arrived or departed campus) between the hours of 7-9 AM?

0 (12)
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
8 (8)
Q202 How many of these trips occurred (arrived or departed campus) between the hours of 4-6 PM?

0 (11)
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
8 (8)
9 (9)
10 or more (10)

Q26 Have you participated in or used / do you currently participate in or use any of the following programs and services ?

- I wasn't aware of this service (1)
- I've heard of this service but never used it (2)
- I occasionally (1-2 times a week) use this service (3)
- I frequently (3-5 days a week) use this service (4)

Free round trip transfer on Muni 28/28R from Daly City BART when using Clipper Card (1)

- Bike Barn (2)
- Bike Racks (7)
- 511 RideMatch Service (3)
- Zipcar (9)
- Electric Vehicle Charging Stations (10)

Answer If What is your primary affiliation with SF State? Staff or Administrator Is Selected Or What is your primary affiliation with SF State? Faculty Is Selected

Q146 For Employees: Have you participated in or used / do you currently participate in or use any of the following programs and services ?
I wasn't aware of this service (1) I've heard of this service but never used it (2) I occasionally (1-2 times a week) use this service (3) I frequently (3-5 days a week) use this service (4)

Commuter Check Pre-Tax Transit Benefit (pre-tax purchase of transit passes) (1)
Vanpool (2)
Emergency Ride Home Program (3)
Pre-Tax Parking Benefit (pre-tax purchase of parking) (4)

q27 Do you know where to go if you have questions about your commute or need other transportation information?
 Yes, and I have used the resources available to me before (1)
 Yes, but I have not used the resources available to me (2)
 No, I do not know what resources are available to me (3)

Q147 Which resources have you used to get transportation and commute information? (please check all that apply)
 " SF State Website home page (1)
 " Parking & Transportation Website (2)
 " Word of mouth (Fellow student or Coworker) (3)
 " My manager (5)
 " Human Resources (6)
 " Hiring Materials (7)
 " A distribution list that I signed up for (8)
 " Digital Screens found around campus (9)
 " Other (please specify) (10) ____________________

Q116 In an effort to reduce parking demand and to expand affordable transportation options, SF State is exploring the possibility of pursuing discounts for our students, faculty, and staff for on-demand taxi services known as TNCs such as Uber and Lyft. Would you be interested in such a benefit?
 Yes (1)
 No (2)
Q212 Please provide any additional comments about transportation issues that relate to SF State.

q31 If you would like to be entered for a chance to receive a $100 gift card to the SF State Bookstore, please enter your email address.
I wasn't aware of this service (1) I've heard of this service but never used it (2) I occasionally (1-2 times a week) use this service (3) I frequently (3-5 days a week) use this service (4)

Commuter Check Pre-Tax Transit Benefit (pre-tax purchase of transit passes) (1)

Vanpool (2)
Emergency Ride Home Program (3)
Pre-Tax Parking Benefit (pre-tax purchase of parking) (4)

q27 Do you know where to go if you have questions about your commute or need other transportation information?
 Yes, and I have used the resources available to me before (1)
 Yes, but I have not used the resources available to me (2)
 No, I do not know what resources are available to me (3)

Q147 Which resources have you used to get transportation and commute information? (please check all that apply)
 SF State Website home page (1)
 Parking & Transportation Website (2)
 Word of mouth (Fellow student or Coworker) (3)
 My manager (5)
 Human Resources (6)
 Hiring Materials (7)
 A distribution list that I signed up for (8)
 Digital Screens found around campus (9)
 Other (please specify) (10) ____________________

Q116 In an effort to reduce parking demand and to expand affordable transportation options, SF State is exploring the possibility of pursuing discounts for our students, faculty, and staff for on-demand taxi services known as TNCs such as Uber and Lyft. Would you be interested in such a benefit?
 Yes (1)
 No (2)
Q212 Please provide any additional comments about transportation issues that relate to SF State.

q31 If you would like to be entered for a chance to receive a $100 gift card to the SF State Bookstore, please enter your email address.
APPENDIX F
Mitigation Monitoring and Reporting Program
APPENDIX F
MITIGATION MONITORING AND REPORTING PROGRAM

This Mitigation Monitoring and Reporting Program (MMRP) for the Creative Arts and Holloway Mixed-Use Project (Project) is designed to ensure implementation and compliance with mitigation measures during all phases of project implementation, as relevant. The Focused Tiered Final Environmental Impact Report (Final EIR) (SCH #2016072013), prepared in accordance with the California Environmental Quality Act (CEQA), is tiered to the San Francisco State University Campus Master Plan (CMP) EIR (SCH #2006102050), which was certified as a Program EIR under CEQA Guidelines Section 15168, by the California State University (CSU) Board of Trustees in November 2007. The Final EIR incorporates mitigation measures from the CMP EIR by reference and as part of the Project. Those mitigation measures are identified in topic-specific sections.

The Project also includes a new Project-specific mitigation measure. Table F-1, Project-Specific Creative Arts and Holloway Mixed-Use Project Mitigation Monitoring and Reporting Program, specifies the project-specific mitigation measure that must be implemented to ensure that identified impacts are reduced to the extent feasible. This Project-specific MMRP will be considered for adoption by the Trustees of the California State University as part of its approval of the proposed Project.
Table F-1
Creative Arts & Holloway Mixed-Use Project Mitigation Monitoring and Reporting Program

<table>
<thead>
<tr>
<th>Mitigation Number</th>
<th>Mitigation Measure</th>
<th>Responsible Party</th>
<th>Mitigation Timing</th>
<th>Implementation Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULT-5B</td>
<td>The following mitigation measures are recommended in advance of the Project, and elaborate on the mitigation measure outlined in the Campus Master Plan EIR’s Mitigation CULT-2C(ii)</td>
<td>SF State</td>
<td>Prior to demolition of existing buildings</td>
<td>Documentation and video recordation as specified by the mitigation measure.</td>
</tr>
</tbody>
</table>

DOCUMENTATION:
SF State shall facilitate documentation of the affected historic resource and its setting. Generally, this documentation shall be in accordance with Historic American Building Survey (HABS) Level II per Campus Master Plan EIR Mitigation CULT-2C(ii), which includes:

i. **Drawings:** Select original Church and Schultz drawings of Blocks 1 and 6, if available from Parkmerced Investors LLC or the San Francisco Planning Department, should be photographed with large-format negatives or photographically reproduced on Mylar. Measured drawings are not required, as these were completed for each type of building as part of the mitigation for demolition of the Parkmerced site (completed by Page & Turnbull in 2016).

ii. **Photographs:** Archivally printed digital photographs of exterior and interior views of Blocks 1 and 6. These photographs must adequately document the character-defining features of the buildings and should be produced by a qualified professional who is familiar with the character-defining features of the buildings, as identified in the Historic Resource Evaluation completed by Page & Turnbull in 2009 and information provided in this report. Photographs should include general views that illustrate the setting; the exterior façades; the courtyard façades; details including front entrances and/or typical doorways; typical windows; exterior details indicative of the era of construction or of historic or architectural interest; and interior views to capture spatial relationships and any decorative elements. An example of printed digital
Table F-1
Creative Arts & Holloway Mixed-Use Project Mitigation Monitoring and Reporting Program

<table>
<thead>
<tr>
<th>Mitigation Number</th>
<th>Mitigation Measure</th>
<th>Responsible Party</th>
<th>Mitigation Timing</th>
<th>Implementation Procedures</th>
</tr>
</thead>
</table>
| | Photographs, site plans, and photo captions can be found in the Parkmerced HABS-HALS photographs produced as part of the mitigation for demolition of the Parkmerced Investors LLC site. These photograph sets are located at the San Francisco Public Library History Center and the Northwest Information Center of the California Historical Resources Information System. The photograph set for Blocks 1 and 6 should correspond to the previously produced sets.

iii. Written data: Not required, as these blocks are covered in the HABS-HALS written report produced as part of the mitigation for demolition of the Parkmerced Investors LLC site.

HABS material standards regarding reproducibility, durability, and size shall be met. The HABS Level II documentation shall be completed by professionals who meet or exceed the Secretary of the Interior’s Professional Qualification Standards for History or Architectural History.

Three copies of the drawings and photographs should be provided to the San Francisco Public Library History Center, the Northwest Information Center of the California Historical Resources Information System, and SF State University.

This mitigation would create a collection of preservation materials that would be available to the public and inform future research. Implementation of this mitigation measure will assist in reducing the project-specific impacts; however, according to Section 15126.4(b)(2) of the Public Resources Code (CEQA), HABS-level documentation of a historical resource as mitigation for significant impacts of demolition of the resource will typically not mitigate the impacts to less-than-significant.

VIDEO RECORDATION: SF State will facilitate the creation of a walk-through video of Blocks 1 and 6 and their Parkmerced setting, including an...
Table F-1
Creative Arts & Holloway Mixed-Use Project Mitigation Monitoring and Reporting Program

<table>
<thead>
<tr>
<th>Mitigation Number</th>
<th>Mitigation Measure</th>
<th>Responsible Party</th>
<th>Mitigation Timing</th>
<th>Implementation Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exterior overview of adjacent streets (with medians and traffic circles), nearby tower apartments, and primary public spaces at Parkmerced such as the central Common and the Meadow. The documentation shall be conducted by a professional videographer, preferably one with experience recording architectural resources. The documentation shall be narrated by a qualified architectural historian. The documentation shall include as much information as possible—using visuals in combination with narration—about the materials, construction methods, current condition, historic use, and historic context of the historical resources. Copies of the video documentation shall be submitted to the San Francisco Public Library History Room, the Northwest Information Center, and SF State University. This mitigation measure will supplement the traditional HABS-HALS documentation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
